Searching for Pulsars
with PRESTO

By Scott Ransom
NRAO / UVa

Getting PRESTO

Homepage: http://www.cv.nrao.edu/~sransom/presto/

PRESTO is freely available from github
https://github.com/scottransom/presto

Note the new FAQ!

You are highly encouraged to fork your own copy,
study / modify the code, and make bug-fixes,
Improvements, etc....

http://www.cv.nrao.edu/~sransom/presto/
https://github.com/scottransom/presto
https://github.com/scottransom/presto/blob/master/FAQ.md

For this tutorial...

* You will need a fully working version of PRESTO (including
the python extensions)

* If you have questions about a command, just try it out!
Typing the command name alone usually gives usage info.

* You need at least 1GB of free disk space

* Linux users: if you have more than that amount of RAM, |
encourage you to do everything in a subdirectory under
/dev/shm

e Commands will be > typewriter script

* The sample dataset that I'll use is here (25MB)
http://www.cv.nrao.edu/~sransom/GBT Lband PSR fil

http://www.cv.nrao.edu/~sransom/GBT_Lband_PSR.fil

Qutline of a PRESTO Search

Examine data format (readfile)

Search for RF| (rfifind)

Make a topocentric, DM=0 time series (prepdata and exploredat)
FFT the time series (realfft)

|dentify “birdies” to zap in searches (explorefft and accelsearch)

Make De-dispersion plan (DDplan.py)

De-disperse (prepsubband)

Search the data for periodic signals (accelsearch)

Search the data for single pulses (single_pulse_search.py)

)
)
)
)
)
6) Make zaplist (makezaplist.py Note:see simple_zapbirds.py)
)
)
)
0)
1) Sift through the candidates (ACCEL_sift.py)
)
)

Examine the raw data
> readfile GRT ILband PSR.fi1l

> readfile GBT_Lband_PSR.fil

Assuming the data is a SIGPROC filterbank file.

1: From the SIGPROC filterbank file 'GBT Lband PSR.fil':

Telescope

Source Name

Obs Date String

MID start time

RA 12000

RA J2000 (deg)

Dec J2080

Dec J2080 (deg)
Tracking?

Azimuth (deg)
Zenith Ang (deg)
Number of polns
Sample time (us)
Central freg (MHz)
Low channel (MHz)
High channel (MHz)
Channel width (MHz)
Number of channels
Total Bandwidth (MHz)
Beam

Beam FWHM (deg)
Spectra per subint
Spectra per file
Time per subint (sec)
Time per file (sec)
bits per sample
bytes per spectra
samples per spectra
bytes per subint
samples per subinmt
zero offset

Invert the band?
bytes in file header

GET

Mystery PSR
2004-01-06T11:38:09
53010.48482638889254
16:43:38.10080
250.90875
-12:24:58.7008
-12.4163655555556
True

2]

¢

2 (summed)

72

1408

1352.5

1447 .5

1

96

96

1 of 1

0.147

2408

531066

8.1728

38.232

4

48

96

115206

230400

3]

False

365

* readfile can
automatically identify
most of the datatypes
that PRESTO can
handle (in PRESTO
v2, though, this is
only SIGPROC
filterbank and
PSRFITs)

* |t prints the meta-data
about the observation

Search for prominent RFI: 1

> rfifind -time 2.0 -o Lband GBT Lband PSR.fil

> rfifind -time 2.8 -o Lband GBT Lband PSR.fil

Pulsar Data RFI Finder
by Scott M. Ransom

Assuming the data are SIGPROC filterbank format...
Reading SIGPROC filterbank data from 1 file:
'GBT Lband PSR.fil'

Number of files =1
Num of polns = 2 (summed)

Center freq (MHz)} = 1488
Mum of channels = 96
Sample time (s) = 7.2e-85

Spectra/subint = 2480
Total points (N) = 531860
Total time (s) = 38.232

Clipping sigma = 6.000
Invert the band? = False
Byteswap? = False

Remove zeroDM? = False

1 e 33l 8@ 53010.48482638889254

Analyzing data sections of length 28800 points (2.8736 sec).
Prime factors are: 2 22 22223355

Writing mask data to 'Lband rfifind.mask’.
Writing RFI data +to 'Lband rfifind.rfi'.
Writing statistics to 'Lband rfifind.stats'.

Massaging the data ...

Amount Complete = 37%"C
o=

 rfifind identifies strong

narrow-band and/or short
duration broadband RFI

Creates a “mask” (basename
determined by “-0”) where RFl is
replaced by median values

PRESTO programs automatically
clip strong, transient, DM=0
signals (turn off using —noclip)
Usually a good thing!

Typical integration times (-t ime)
should be a few seconds

Modify the resulting mask using
“~nocompute -mask ... and
the other r£ifind options

Search for prominent RFI: 2

Writing mask data to 'Lband rfifind.mask’.
Writing RFI data to 'Lband rfifind.rfi".
Writing statistics to 'Lband rfifind.stats'.
Massaging the data ...

Amount Complete = 108%

There are 31 RFI instances.

Total number of interwvals in the data: 1824

Number of padded intervals: 96 (5.263%)
Number of good intervals: 1487 (B1.524%)
Mumber of bad intervals: 241 (13.213%)
Ten most significant birdies:
Sigma Period(ms) Freg(Hz} Number
1 6.83 11.5521 86.5644 147
2 6B6.71 11.6494 85.841 178
3 6.68 11.6168 86.0822 146
4 6.57 g.76787 114.053 1
5 6.53 11.5844 86.3233 145
6 6.10 11.52 86.8055 135
7 5.96 11.4881 87.0467 1a7
g8 5.89 11.7153 85.3588 21
9 5.88 11.6823 85.5999 23
18 5.65 11.7484 85.1177 24
Ten most numercous birdies:
MNumber Period(ms) Freg(Hz) Sigma
1 493 34.56 28.9352 4.82
2 351 34.8504 28.6941 4.75
3 280 17.28 57.8704 4.85
4 271 17.3523 57.6292 4.80
5 1&e 17.4252 57.3881 4.68
6 179 17.4987 57.147 4.67
7 178 11.6494 85.841 6.71
g8 147 11.5521 86.5644 6.83
9 146 11.6168 86.0822 6.08
18 145 11.5844 86.3233 6.53

Check the number of bad
intervals. Usually should be
less than ~20%

Most significant and most
numbers birdies are listed (to
see all, use —rfixwin)

Makes a bunch of output files
including “...rfifind.ps” where
colors are bad (red is
periodic RFI, blue/ are
time-domain statistical
iIssues)

Re-run with “~time 17 or re-
compute with “—nocompute”
In this case

Search for prominent RFI: 3

Loana_rTiTing
[T T 1 Object: Mysiery PSE Num channels = 96 Pts per int = 28800

ThIS is not so great... too much color, and randomly arranged!
Usually we see bad channels or bad time intervals.
Random red color probably means we are masking a bit too much data.

5 pﬁjx Bower 20 llalal {s) = 38.3984 min = 0.000 max = 15.000
Freguency (MHz} Frequency (MHz) Frequency (MHz) Power
136013801400142071440 13601380140014201440 13601380140014201440 Olgd Mask Hagls
: R T ' —3 " " " User Zap Mean
- Vo Frequency (MHz)
Power 1360 380400420440
S LA L L L
il
AN .
lo S (R
i
4N (N
R |
D = I | | o2
= N | ==
E 5
— N |\ | :
1l h =
|
4 Te]
L’ I L |
| } i |
. el o Aids o AL
0 20 40 860 80 0 20 40 60 B8O 0 20 40 60 80 0 20 40 60 80
Channel Channel Channe Channel

14—Se0—2017 16:56

ime (s}

Search for prominent RFI: 4

Loand_rmirind

T : Object: Mystery PSR Num channels = 96 Pts per int = 14400
Telescope: GBT Num intervals = 37 Time per int = 1.0368
o i Instrument: unset Power: medion = 10.089 o = 0.87
0 i \
£ .
S || !] L] L] cc 0 L1} L] L]
z J W This is after using “~time 1” and it looks slightly better.
- II.' '.\ .
T - [eomoie (5) = 7.2e—05 Mean: median = 8.350 ¢ 1.5
5 10 20 { - 1 e — —
Mox Powe: Motal (S) 58,5616 mi 0.000 mox = 15.000
Freguency (MHz)} Frequency (MHz) Frequency (MHz) Fower
13601380140014201440 13601380140014201440 13601380140014201440 Old Mask grna
T T] ET T [B e User Zap Mean
S q Ve B g bato e ota Frequency (MHz)
i B DRI R - Mean 1360 380400420440
1T
| I N
| I
o |
Jo I I o
o o Moo | | | M
" ™ Pt |I IF I
L | | |
L [Y
I |
I ©
| o =
=) o 7 R) 1 g]
™ o o I I I =
I o
I | z
- | |I o
- ;1 =
- (R
o © © o | |I|| | ©
B 0
|
| I
! |
T |
@ o ! o o L [|
0 20 40 B0 80 0 20 40 B0 80 0 20 40 B0 80 0 20 40 60 80
Channel Channel Channe Channel

14—Sep—2017 17:02

Shortcuts for big observations

Sometimes for long observations, or those with many channels, fast sampling,
or lots of RFIl, r£ifind can take a long time to run. You can often mask most
of the RFI doing a few shortcuts and using —ignorechan:

Run rfifind on a subset of the data (one or more of the individual files)

Tweak the results, primarily using —-nocompute and different values of -
fregsigand -timesig, so the worst channels are marked for masking

Run rfifind_stats.py on one of the resulting rfifind files. That will
average the stats over the rfifind file and make a “.weights” file that shows
which channels should be zero weighted (also an average “.bandpass” file)

You can then convert that weights file into a list of channels to ignore using
the weights_to_ignorechan.py routine, which also gives you a paz
command (from PSRCHIVE) to zap folded archives made from the data

“‘ignorechan” syntax lists channels (starting from 0), or start:end ranges of
channels, separated by commas which can be used with prepfold,
prepdata, prepsubband, or mpiprepsubband, for example:

> prepdata .. —ignorechan 0:10,15,20:25,67 .. myfiles*.f1il

* prepdata de-disperses a single

Look for persistent low-level RFI

> prepdata —nobary -0
—dm 0.0 —-mask Lba
GBT Lband PSR.fil

Lband_topo_DMO0.00 \
nd rfifind.mask \

time-series. The “—nobary” flag
tells PRESTO not to barycenter the
time series.

If you need to de-disperse
multiple time-series, use
prepsubband

Fil

Rea

We used to need to set the
number of points (—numout) to
make it a nice round number for
FFTing, but PRESTO does that
automatically now

ALT

Wri
Wri

Mas
Amo
Don

Sim

Pulsar Data Preparation Routine
Type conversion, de-dispersion, barycentering.
by Scott M. Ransom

Assuming the data are SIGPROC filterbank format...
Reading SIGPROC filterbank data from 1 file:

GBT Lband PSR.fil'

Number of files = 1
Num of polns = 2 (summed)

Center freq (MHz) = 1400

Num of channels = 96

Sample time (s) = 7.2e-85

Spectra/subint = 2400
Total peints (N) = 531000
Total time (s) = 38.232

Clipping sigma = 6.008

Invert the band? = False

Byteswap? = False

Remove zeroDM? = False

e Start Spec Samples Padding Start MID
2] 531086 6 53010.48482638889254
d mask information from 'Lband rfifind.mask’
empting to read the data statistics from 'Lband rfifind.stats'...
succeded. Set the padding values equal to the mid-80% channel averages.
ting output data to 'Lband topo DM8.808.dat'.
ting information to 'Lband_ topo DM8.88.1inf"'.
saging the data ...
unt Complete = 188%

e.

ple statistics of the output data:
Data points written: 538000
Maximum value of data: 989.85
Minimum value of data: 674.91
Data average value: 785.54
Data standard deviation: 23.12

Explore and FFT the time-series

> exploredat Lband_topo_DMO0.00.dat
> realfft Lband_topo_DMO0.00.dat
> explorefft Lband_topo_DMO.00.fft

exploredat and
explorefft allow you to
Interactively view a time-
series or its power
spectrum (for finding RFI)

changing the power
normalization (key ‘n’) in
explorefft is often very
helpful

realfft requires that the
time-series is easily
factorable (and at least
has 1 factor of '2'). Check
using “factor’.

Note: Rednoise and its suppressmn

If your time series looks like the one on the T s T T
right, you have a rednoise problem |

Rednoise makes searches for, and folding of,
slow pulsars (in particular), problematic

You can suppress much of that rednoise in
your .fft using the rednoise program (which
is described in Lazarus et al. 2015)

That program makes a new fft file (and
corresponding .inf file) that ends in *_red.fft,
which you can search

Or, you can use realfft on the * red.fft file ‘
to create a de-reddened time series i
(*_red.dat), as seen to the right (which can
then be folded with prepfold)

Beware that rednoise will always decrease
your S/N at the frequencies where it is
present! Removing it with the rednoise
program will not fix that!

https://ui.adsabs.harvard.edu/abs/2015ApJ...812...81L/abstract

Find the periodic interference

> accelsearch

—numharm 4

—zmax 0 \

Lband_topo_DMO0O.00.dat

summed Coherent Num Period Frequency FFT 'r' Freq Deriv FFT 'z’ Accel
Cand Sigma Power Power Harm (ms) (Hz) (bin) (Hz/s) (bins) (m/s”2) Notes
1 60.87 1876.6 3637.40 2 34.777(8) 28.754(6) 1113.00(25) 0.0000(7) 0.0(1.0) 0.0(7.0)Xx1043
2 20.81 229.74 671.54 4 16.6698(9) 59.989(3) 2322.00(13) 0.0000(3) 0.00(50) 0.0(1.7)x10~3
3 9.20 57.94 57.02 1 5.7945(4) 172.58(1) 6680.00(50) 0.000(1) 0.0(2.0) 0.0(2.3)x163 H 6 of Cand 1
4 7.93 55.92 53.33 4 5.8484(1) 170.986(3) 6618.38(13) 0.0000(3) 0.00(50) 0.0(5.9)x10~2
5 4.26 31.23 59.09 4 5.6024(1) 178.494(3) 6909.00(13) 0.0000(3) 0.00(50) 0.0(5.6)x10"2
6 3.98 25.82 5.39 2 2.92384(6) 342.016(6) 13238.50(25) 0.0000(7) 0.0(1.0) 0.0(5.9)x10/2
Power [Raw FFT 'r Pred 'r' FFT 'z’ Pred 'z' Phase Centroid Purity
Cand Harm Sigma Loc Pow Power (bin) (bin) (bins) (bins) (rad) (8-1) <p> =1 Notes
1 1 78.99 3125(79) .99%e+03 1113.1595(70) 1113.00 -0.022(55) 0.00 2.477(13) 0.4943(37 0.9895(57
2 5.87 19.9(6.3) 16.9 2226.319(91) 2226.00 -0.04(73) .00 5.12(16) 0.481(46) 0.962(74)
2 1 12.38 80(13) 90.9 2322.080(43) 2322.00 0.26(32) .00 5.424(79) 0.462(23) 1.021(35)
2 20.96 224(21) 143 4644.161(26) 4644.00 0.52(20) 0.00 5.411(47) 0.508(14) ©0.997(21)
3 4.17 11.1(4.7) 12.9 6966.24(11) 6966.00 0.78(87) 0.00 3.75(21) 0.511(61) 1.024(93)
4 3.49 8.3(4.1) 7.02 9288.32(14) 9288.00 1.0(1.2) 0.00 2.05(25) 0.418(71) 0.94(12)
3 1 10.37 57(11) 70.8 6680.255(56) 6680.00 0.32(47) .00 3.222(94) 0.469(27) 0.927(45)
4 1 6.98 27.2(7.4) 24.8 6618.261(77) 6618.38 -1.01(62) 0.00 1.94(14) 0.483(39) 0.968(63)
2 3.62 8.8(4.2) 10.3 13236.52(15) 13236.75 -2.0(1.4) 0.00 4.05(24) 0.350(69) 0.85(13)
3 2.58 5.3(3.3) 6.47 19854.78(40) 19855.12 -3.0(7.5) 0.00 4.62(31) 0.290(88) 0.42(33)
4 2.95 6.4(3.6) 15.3 26473.04(20) 26473.50 -4.0(2.1) .00 5.09(28) 0.342(80) 0.76(16)
5 1 6.12 21.5(6.6) 19.6 6909.061(89) 6909.00 -0.35(73) 0.00 4.98(15) 0.412(44) 0.942(72)
2 2.87 6.2(3.5) 4.55 13818.12(16) 13818.00 -0.7(1.2) 0.00 3.82(28) 0.416(82) 0.99(13)
3 2.43 4.9(3.1) 4.33 20727.18(26) 20727.00 -1.1(2.9) 0.00 4.43(32) 0.519(92) 0.69(21)
4 2.54 5.2(3.2) 6.43 27636.25(18) 27636.00 -1.4(1.4) 0.00 0.28(31) 0.391(90) 0.96(14)
6 1 1.43 2.6(2.3) 3.81 13238.68(17) 13238.50 1.18(94) .00 3.36(44) 0.43(13) 1.41(14)
2 4.45 12.4(5.0) 25 26477.37(12) 26477.00 2.4(1.0) 0.00 4.14(20) 0.394(58) ©.929(97)
“ L] ,, L] L] L] L] L L L
 We “trick” accelsearch into finding periodic interference (it found 6
candidates, with several harmonics in each)
L] " L] “ L] ,, L]
* That information will be used to create a “birds” file
[J

“.inf” file is human readable ASCII (it is also found in the ACCEL file).

Make a “birds” file

« What the heck is a “birds” file?

* “birds” are pulsar astronomer jargon for periodic interference that
shows up in our power spectra. We usually “zap” them by zeroing
them out before we search the power spectrum.

 In PRESTO, a .birds file is a simple ASCII text file with 5 columns

The fundamental frequency of the periodic interference in Hz

The width of the interference in Hz (power lines RFI at 50 or 60 Hz is
often quite wide, but some interference is only a single FFT bin wide)

The number of harmonics of the fundamental to zap, and then 0/1
(no/yes) for whether the width of the harmonics should grow with
harmonic number and whether the freqs are barycentric or not (e.g. the
ATNF database freq for a strong pulsar in the data is barycentric)

A row starting with a “#” is a comment
Here is an example .birds file:

= cat Lband.birds
#Freq Width
1.2 0.02
25.0
60.0
100.0
>

0.01
0.1
0.02

#harm
5

20

5

24

g
6
¢
1
0

row? bary?
0

¢]
0
0

Make a “birds’ file

Use explorefft and the *ACCEL O files to identify the main periodic
signals. Since these are DM=0, they are almost certainly RFI.

Edit the .birds file with a text editor

Given the results of our earlier accelsearch run, here is an example
(where | examined the signals with explorefft to check their widths):

> cat Lband.birds

#Freq Width #harm grow? bary?
28.760 0.1 2 ¢] ¢
,60.0 0.e5 2 L 0

=

Notes:

 Don't stress out too much over getting a perfect .birds file (especially
about high frequency not-too-strong signals — they will be smeared out
at high DMs). You mainly want to get the really strong stuff, with
Fourier powers more than 50 or so.

* Usually | make a .birds file only for a certain type of data (like once for
a whole project where the data are all the same) or for really important
single pointings.

Convert the “birds” file to a zaplist

Note: The command simple_zapbirds.py can do all the following now!
 Make an associated “.inf” file for the “.birds” file
> cp Lband_rfifind.inf Lband.inf
 Now convert all of the “birds” and harmonics into individual freqgs/widths
> makezaplist.py Lband.birds
* The resulting “Lband.zaplist” is ASCII and can be edited by hand

e |t can also be loaded into explorefft so you can see if you are zapping
everything you need (see the explorefft help screen)

* Apply the zaplist using “zapbirds”:

> zapbirds —-zap —-zapfile Lband.zaplist \
Lband_topo_DM0.00.fft

e Zapping barycentric time-series requires “~baryv’ to convert topocentric RFlI
freqs to barycentric. Get that by running prepdata or prepfold on raw data
(you can ctrl-c to stop them). As an example:

> prepdata —-o tmp GBT_Lband_PSR.fil | grep Average
Average topocentric velocity (c) = -5.697334e-05

Determining a De-Dispersion Plan

> DDplan.py -d 500.0 —n 96

-b 96 -t 0.000072 \

-r 0.5

“—r” reduces the effective time
resolution to speed up search

—f 1400.0 -s 32 —-r 0.5
=
-
= DDplan.py -d 500.0 -n 96 -b 96 -t 0.000072 -f 1400.0 -s 32
Minimum total smearing 0.102 ms
Minimum channel smearing : 1.51e-05 ms
Minimum smearing across BW : 0.00145 ms
Minimum sample time : 0.072 ms /
Setting the new 'best' resclution teo : 0.5 ms

Mote: ok _smearing = dt (i.e. data is higher rescluticn th
Mew dt is 4 x 0.072 ms = 0.288 ms
Best guess for optimal initial dDM is 1.984

Low DM High DM dDM DownSamp dsubDM #DMs DMs/call calls WorkFract
o.0o00 336.000 2.00 4 48.00 168 24 7 3.8235
336.000 552.000 3.00 8 72.00 72 24 3 @.1765

an needed)

DDplan.py determines near-optimal ways to de-disperse your data to

maintain sensitivity to fast pulsars yet save CPU and 1/O time

using “subband” de-dispersion
Specify command line information from

Assumes using prepsubband to do multiple-passes through the data

readfile, or (New!) give the

filename and DDplan.py will determine the observation details

The new “-w” option will write out a dedisp*py file that you can run to

dedisperse your data (and edit as needed, i.e. to add rfifind masks)

Determining a De-Dispersion Plan

Jotr = 1400 MHz dt = 72 us BW = 96 MHz N = 96 N = 32

chan sub

\\72 (17.6%)
| L L

72 (3)

Smearing (ms)

Total Smearing

Channel Smearing

i DM Stepsize Smearing
- / Subband Stepsize Smearing (# passes)
1 1 1 1 I 1 1 1 1 I 1 1 1 1 J 1 1 L 1 l 1 1 1 1
0 100 200 300 400 500

Dispersion Measure (pc/cm®)

Subband De- Dlsper3|on 1

Incoherent de-dispersion
requires you to shift the arrival
times of each input channel for
a particular DM

This can be made much
quicker by partially shifting
groups of channels (subbands)
to some nominal DM

The resulting subband dataset
can then be de-dispersed
around neighboring DMs with
many fewer calculations

In PRESTO, we do this
subband de-dispersion with

prepsubband and
mplprepsubband

i“. Original Dispersed Signal

Frequency

=
E Subband Dedispersed
z::.j' Signal

Time

From Magro and Zarb Adami, MNRAS in press

Subband De-Dispersion 2

> prepsubband —nsub 32 —-lodm 0.0 —-dmstep 2.0 —numdms
24 —downsamp 4 —-mask Lband_rfifind.mask —-o Lband
GBT_Lband_PSR.fil

That command comes from the first call of the first plan line:

Low DM High DM dOM DownSamp dsubDM #DMs DMs/call calls WorkFract
o.o06 336.000 2.00 4 48.00 168 24 7 @.8235
336.000 552.000 3.00 8 72.00 72 24 3 @.1765

Run prepsubband as many times as there are “calls™ in the plan

Accepted file formats to run prepsubband on are SIGPROC filterbank
(“.fil") and PSRFITS (“.sf” or “fits”)

If you have a parallel computer (and long observations), you can use
the fully parallel mpiprepsubband to have one CPU read the data,
broadcast it to other CPUs, which each effectively makes a “call”

The dedisp.py scriptin SPRESTO/examplescripts can help you
automate this process (and generate subbands as well, which can be
used to fold candidates faster than folding raw data). When the file has
been edited, do: python dedisp.py

DDplan.py can now generate dedisp.py scripts with the -w option

Prepare for Searching the Data

First we'll clean up this directory but putting the subband files in their
own directory and getting rid of the temporary topocentric files

> mkdir subbands
> mv *.sub* subbands/
> rm —f Lband*topo* tmp*
Use xargs (awesome Unix command) to fft and zap the * . dat files
> realfft *.dat # works with multiple files now
> 1s *.fft | xargs —-n 1 zapbirds -zap \
—zapfile Lband.zaplist —-baryv —-5.697334e-05
New recommended zapping alternative:

> simple_zapbirds Lband.birds *.fft

Remember that we can get the barycentric value (i.e. average
topocentric velocity) by running a fake prepdata or prepfold
command on the raw data

Now we are ready to run accelsearch on the *. fft files

If your time series are short (like these), you can use accelsearch to
do its own FFTing and zapping by calling it on the “.dat” file. See the -
zaplist and —baryv options for accelsearch.

Searching for Periodic Signals

> accelsearch —-zmax 0 Lband DMO.0O0.fft

e Accelsearch conducts Fourier-domain acceleration (or not, if
zmax=0) searches for periodic signals using Fourier interpolation and
harmonic summing of 1, 2, 4, 8, 16 and/or 32 harmonics (8 is default).

 “zmax” is the max number of Fourier bins the highest harmonic for a
particular search (i.e. fundamental or 1t harm. for a 1 harm. search, 8™
harm. for a 8 harm. search) can linearly drift in the power spectrum (i.e.
due to orbital motion). Sub-harmonics drift proportionally less (i.e. if 2™
harmonic drifts 10 bins, the fundamental will drift 5).

* The time that the searches take doubles for each additional level of
harmonic summing, and is linearly proportional to zmax.

 For MSPs, 8 harmonics is almost always enough. And zmax < 200 or
so (beyond that non-linear acceleration start to creep in).

* Youcanuse xargs:. 1ls *.fft | xargs —n 1 accelsearch...

* For this tutorial data, which is very short, you might want to use “~flo
15" so that the rednoise at the very lowest freq bins aren’t detected

Sifting the periodic candidates

python ACCEL_sift.py > cands.txt

ACCEL_sift.pyisin $SPRESTO/examplescripts and can be edited
and tweaked on an observation specific basis

It uses several heuristics to reject bad candidates that are unlikely to be
pulsars. And it combines multiple detections of the same candidate
signals over various DMs (and harmonics as well).

The output is a human-readable ranked list of the best candidates

ASCII “plots” in the cands.txt file allow you to see rough signal-to-noise
versus DM (if there is a peak at DM != 0, that is good)

The format for the “candidate” is the candfile:candnum (as you would
use them with prepfold)

You can also look through the ACCEL files themselves. The ones
ending in numbers are human readable (use less -S). Summaries of
the candidates are at top and details of their harmonics at bottom.

For large single ACCEL files, you can use quick_prune_cands.py

Folding Pulsar Candidates

> prepfold —accelcand 1 —-accelfile \
Lband DM62.00 ACCEL O.cand Lband DM62.00.dat

* prepfold can fold time-series (*.dat files), subbands (*.sub?? files),
or rawdata files. Many ways to specify period (-p) / freq (-1£) etc.

* Folding time-series is very fast and is useful to decide which
candidates to fold the raw data

* When you fold subbands and/or the raw data, make sure that you
specify the DM (and choose the set of subbands with closest DM).

 For modern raw data, using 64 or more subbands (-nsub) is a good
idea for folding (to see narrow band RFI and scintillation better)

* If RFlis bad, can zap it using show_pfd or re-fold using —-mask

> prepfold —-dm 62.0 —accelcand 1 —-accelfile \
Lband DM62 .00 ACCEL_O.cand \
subbands/Lband DM72.00.sub??

> prepfold —n 64 -nsub 96 -p 0.004621638 —-dm 62.0 \
GBT_ Lband_PSR.f1l

Pulsar! (timeseries)

> prepfold —accelcand 1 —-accelfile \
Lband DM62.00 ACCEL O.cand Lband DM62.00.dat

2 Pulses of Best Profile

Epoch,,

somple

Data Folded
Data Avg
Data StdDev
Profile Bins
Profile Avg
Profile StdDev

GBT
= N/A

«Q
o
o
o
i
o
3
o
. L = L L D
0] 0.5 1 1.5 100 50 0
Phase Reduced xz

Lband_DM62.00.dat

Fraction of Observation

Candidate: ACCEL_Cand_2
Telescope:

0.000288
131072

793.3
12.02
16

6.498e+06

1088

P—dot (s/s)

-1077 —2x1077

0

1077

Epochbory = 53010.48095587327

Search Information
RAj000 = 16:43:38.1000 DEC 000 = —12:24:58.7000
Best Fit Parameters
Reduced ¥* = 109.428 P(Noise) ~ 0
Dispersion Measure (DM) = N/A
P, (ms) = N/A P (ms) = 4.6216732(87)
PF:’:; (s/s) = N/A PP:::; (s/s) = 0.0(1.8)x10™°

2%x1077

FHE] LT TR W Tl L

P iopo (5/5%) = N/A P oy (3/8%) = 0.0(3.1)x107'°
Binary Parameters

Po (8) = N/A e = N/A

a,sin(i)/c (s) = N/A @ (rad) = N/A

Toen = N/A

Freq — 216.371855 (Hz)

—0.1 -0.05 0 0.05 0.1

. . i . T = o
3 12

1 Reduced

- 3 ¥
50 100
:'—r, +——+— f—t—t—t—} T

1
0.0

0 5x1073

F—dot (Hz)

—5x107°

-0.01

PO TU Sl W Wi 1 | g] b | AT T [RO

2x1073

1073 0 -10"% -2x1073
Period — 4.62167318 (ms)
22-Jun—-2011 15:34

Time (s)

Pulsar! (raw data

> prepfold —n 64 -nsub 96 -p 0.004621638 —-dm 62.0 \
GBT_Lband_PSR.fil

2 Pulses of Best Profile

0 0.5 1 1.5
Phase
GBT_Lband_PSR.bcpm2

Search Information

Candidate: 4.62ms_Cand RAjp000 = 16:43:38.1000 DEC 000 = —12:24:58.7000
Telescope: GBT Best Fit Parameters
Epcn.:htmo = 53010.48482638889 Reduced xz = 49.231 P(Noise) ~ 0
Epochy,, = 53010.48095597343 Dlspersmn Measure (DM; pc/cm”) = 62.318
= 7.2¢-05 Piopo (MS) = 4.6213746(62) Py (ms) = 4.6216380(62)
Dota Folded = 512000 P' (s/s) 0.0(1.3)x107° P! (s/s) = 00(1 3)x107°
fopo 10 b 10
Data Avg = 785.6 P ose (s/s?) = 0.0(2.3)x10~ P oy (s/s?) = 0.0(2.3)x10”
Data StdDev = 21.53 Binary Parameters
Profile Bins = 64 Pos (s) = N/A e = N/A
Profile Avg = 6.284e+06 a,sin(i)/c (s) = N/A w (rad) = N/A
Profile StdDev = 1925 Towi = N/A
- '-: .l T r .' ,‘I' - T] T ! O T T T Nx
T gt bl -3 r 1% o
o |18 - j & = °o;
“__.ir.., WL i [J¥-a
= - : - & N l) &
Jw Th - b - o 2x10~7 0 —2%10
= o | B aye el G P—dot — 1.5738e—12 (s/s)
_E@ .I ; o Tt . 5
E ‘_85 i B LR e R 2 i R N)<
c | T F 1% o
c 2 -0 o
= 30 3 (¥
oo n+s - o - 48 3
oc ol B~
o Q- L
0 ; | L I 4 ek e o
2 ' 0 A0S 100 0 ~10 —2x10°Y
s & el Period — 4.62137464 (ms)
s 3
1335 m Freq — 216.385833 (Hz)
g o — @ . —01 -005 0 005 0.1
0 04 08 2 = o[i s T
Phase ~ & > ©
- '} o 9
1w P 2 58
N;(g [E o o %
T - 1o ™
gST | n 37
3 F g 5 ©
o o PN TRN W T IO N O TN VO N T VAR N W S O Y N WO -?c)\(l.|..‘.|....|....|....l._?‘|°
40 20 O 50 55 60 65 70 o 2x10~% 1073 Iv] —1073 —2x%107% W
Rediicad X2 DM (pc/cms) Period — 4.62137464 (ms)

22-Jun—2011 15:42

Searching for Transient Bursts

> single_pulse_search.py *.dat

single_pulse_search.py conducts matched-filtering single-
pulse searches using “boxcar” templates.

——fast can make things about a factor of 2 faster, but only use it if
the data are well-behaved (relatively constant power levels)

If there are very strong pulses in your data, they can look like RFI.
For those cases, turn off bad-block finding (-—nobadblocks)

Generates *.singlepulse files that are ASCII and a single-pulse plot

Can regenerate a plot using (for instance)

Can choose start and end times as well (--start and ——end)

Searching for Transient Bursts

Single pulse results for 'Lband'

Source: MysteryPSR RA (J2000): 16:43:38.1000 N seamples: 132500
Telescope: GBT DEC (J2000): —12:24:58.7000 Sampling time: 288.00 us
Instrument: BCPM1 MJD,,,,: 53010.480955148028 Freqy,: 1400.0 MHz
vc} " 5
ot o f = -
83k {1 39 1 3
=il = >
a a z
w2 = |
09 3 of 1 L -
L = [
3 3 ©
EQ L 4 E9 &
ST F E 50 1 3
z z - |
- ° e £y o
A . | 3 o -) !) P R O U
6 8 10 200 400 0 200 400
Signal—to—Noise DM (pc ecm™) DM (pc ecm™)
T
§
s| d i
~ I
5
|
£ '
o
L]
&) ;
=0
oo | -
o : ‘ y
5 |' S : % Awi .2
ic! .,' A bt adld b g i g o "'u i : o 48 Bl gy o L1 | s il
' ile LI 1 I 1 (I CRA 4113 LHIA : R 2l i Ll b i | Ny
IR | | !, i] il " ol i ’. g eS| i 7 1% Y & ! |
o LR | Wil g ! Boliritiy] e i (g fF 0 LR) L S L
0 5 10 15 20 25 30 it
Time (s)

22=Jun-2011 16:07

Making TOAs from the discovery obs

* get_TOAs.py needs to be run on a prepfold file of either a
topocentric time series or a fold of raw data. The fold must have
been made either using a parfile (use -t iming) or with the (-
nosearch) option.

* The must be either a single gaussian (-g FWHM), an ASCII profile
(i.e. a bestprof file from prepfold) or a multi-gaussian-template
(derived using pygaussfit.py: “—g template.gaussian”)

 —nis the number of TOAs (and must factor the number of parts (-
npart) from the prepfold file

* —sis the number of subband TOAs to generate (1 is default)

> get_TOAs.py —-g 0.1 —n 20 newpulsar.pfd

Now try it from scratch...

There is another sample data set (with mystery pulsar) here:

http://www.cv.nrao.edu/~sransom/Parkes 70cm_PSR_fits

Command history (and properly formatted dedisp.py file)
for this tutorial can be found here:

http://www.cv.nrao.edu/~sransom/GBT_Lband PSR cmd_history.txt

http://www.cv.nrao.edu/~sransom/dedisp.py

Note the new PRESTO FAQ! Check it out!

Let me know if you have any problems or suggestions!

Scott Ransom <sransom@nrao.edu>

https://github.com/scottransom/presto/blob/master/FAQ.md
http://www.cv.nrao.edu/~sransom/Parkes_70cm_PSR.fits
http://www.cv.nrao.edu/~sransom/GBT_Lband_PSR_cmd_history.txt
http://www.cv.nrao.edu/~sransom/dedisp.py

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

