
Accelerating Acceleration
Searches for Pulsars

Scott Ransom
NRAO / Univ. Virginia

Why Search for Binary Pulsars?

• Much of the “sexiest” pulsar science comes from
those systems in binaries:

• Tests of general relativity and other gravity theories

• Masses of compact objects (equation of state of
dense matter)

• High precision timing from millisecond pulsars may
detect gravitational waves

• SKAI non-imaging processing is dominated by
pulsar binary searches: ~10 Pops/sec(!)

• Real-time processing is required – the beams
will not be permanently stored

Binary Pulsar Search Techniques

• Isolated Pulsars
• Fourier analysis

3ms pulsar, 2 hr obs

Binary Pulsar Search Techniques

• Isolated Pulsars
• Fourier analysis

3ms pulsar, 2 hr obs

• Binary Porb > 10Tobs

• “Acceleration”
Searches

Binary Pulsar Search Techniques

• Isolated Pulsars
• Fourier analysis

3ms pulsar, 2 hr obs

• Binary Porb > 10Tobs

• “Acceleration”
Searches

• Binary Porb ~ Tobs

• “Dynamic” Power
Spectra

Binary Pulsar Search Techniques

• Isolated Pulsars
• Fourier analysis

3ms pulsar, 2 hr obs

• Binary Porb > 10Tobs

• “Acceleration”
Searches

• Binary Porb ~ Tobs

• “Dynamic” Power
Spectra

• Binary Porb << Tobs

• “Sideband” Searches

What are acceleration searches?
• Pulsar binaries typically have circular orbits

• Position, Velocity, and Accel. vs. time are all sinusoids

• If the orbital period >> observation time, then the
acceleration is approx constant during the observation

• A “chirp” with small Δf/f (phase changes quadratically)

Porb = 10 Tobs

Two ways to implement...
• Constant acceleration gives a quadratic change

of signal phase (i.e. this is a chirp with small Δf/f)

• Time domain (e.g. Jonhston & Kulkarni 1991 etc)

• Use a time transform to quadratically
stretch/compress the full input time series

• Each acceleration trial is a new stretched time series
followed by a long FFT

• Freq domain (e.g. Ransom, Eikenberry & Middleditch 2002)

• Correct phase change in Fourier domain by applying
complex matched filters (ala coherent dedispersion)

• One long input FFT is operated on by many short
filters, usually via FFT convolution/correlation

Two ways to implement...
• Constant acceleration gives a quadratic change

of signal phase (i.e. this is a chirp with small Δf/f)

• Time domain (e.g. Jonhston & Kulkarni 1991 etc)

• Use a time transform to quadratically
stretch/compress the full input time series

• Each acceleration trial is a new stretched time series
followed by a long FFT

• Freq domain (e.g. Ransom, Eikenberry & Middleditch 2002)

• Correct phase change in Fourier domain by applying
complex matched filters (ala coherent dedispersion)

• One long input FFT is operated on by many short
filters, usually via FFT convolution/correlation

Fourier-Domain Acceleration Searches
• Short correlations,

computed via FFTs, with
the Fourier amplitudes of
the full time series, exactly
remove linear acceleration

• Uniformly tile “f-fdot” plane

• Fourier bins drifted 'z' is
related to acceleration:

Fundamental harmonic of accelerating
MSP J1807-2459A in f-fdot plane

Z = 0 (FFT sinc response)

Correlation “kerrnels” are horizontal slices
(highly oversampled; phases not shown)

Kernel width
is ~ |z|

Z ~ -5

Z ~ +5

Z ~ +2

Z ~ -8

Comparison with time-domain method

Figure: Wallace Turner

Time-domain technique makes
diagonal lines in f-fdot plane

Freq-domain technique
uniformly tiles f-fdot plane

Oversampling

Under-
sampling

Fourier Domain Pros/Cons
• Pros:

• The f-fdot plane is optimally sampled in both the 'f'
and 'fdot' directions over the full parameter range

• Correlations to compute parts of f-fdot plane are
short, memory local, and therefore fast

• Maximum “z” value is flexible. Gets high-accel slow
pulsars (i.e. PSR-BH system), mid-accel
mildly-recycled pulsars (i.e DNS systems), and
low-accel MSPs: “a” and “f” offset each other

Tuned Acceleration for Binary Type
• Fourier domain method allows flexibility in

frequency vs acceleration amount:

• Black hole binaries: likely slow PSRs w/ high accel

• NS-NS binaries: likely 10s-of-ms PSRs w/ med accel

• MSP binaries: fast PSRs w/ low accel

Frequency

A
cc

e
l e

ra
tio

n

Fourier Domain Pros/Cons
• Pros:

• The f-fdot plane is optimally sampled in both the 'f'
and 'fdot' directions over the full parameter range

• Correlations to compute parts of f-fdot plane are
short, memory local, and therefore fast

• Maximum “z” value is flexible. Gets high-accel slow
pulsars (i.e. PSR-BH system), mid-accel
mildly-recycled pulsars (i.e DNS systems), and
low-accel MSPs: “a” and “f” offset each other

• Cons:

• Algorithm (and therefore code) is significantly more
complex than time-domain technique

• Has not yet been fully GPU-ized... work in progress

Opt #1: F-Fdot plane in RAM

• Current accelsearch (from PRESTO) algorithm
was designed for very long time series
(>100Mpts) and so computes f-fdot plane in
chunks as well as re-computes sub-harmonics

FrequencyF
-d

ot

1st Harm

Opt #1: F-Fdot plane in RAM

• Current accelsearch (from PRESTO) algorithm
was designed for very long time series
(>100Mpts) and so computes f-fdot plane in
chunks as well as re-computes sub-harmonics

F
-d

ot

2nd Harm

1st Harm

“Z
oo

m
”

FrequencyFrequency

Harmonic Summing (2 harmonic sum)

Opt #1: F-Fdot plane in RAM

• Current accelsearch (from PRESTO) algorithm
was designed for very long time series
(>100Mpts) and so computes f-fdot plane in
chunks as well as re-computes sub-harmonics

FrequencyF
-d

ot

4th Harm
3rd Harm

2nd Harm
1st Harm

4 harmonic sum

Opt #1: F-Fdot plane in RAM

• Current accelsearch (from PRESTO) algorithm
was designed for very long time series
(>100Mpts) and so computes f-fdot plane in
chunks as well as re-computes sub-harmonics

• If initial time series is short enough, we can tile
the full f-fdot plane into RAM. This would cause
an instantaneous speedup of ~Nharm/2 times.

• For SKA1: 600s integrations with 50us dumps
gives ~12Mpt time series. For 100 accelerations
and Fourier interpolation, we would require only
about 10 GB of RAM. Doable on GPU or FPGA.

Opt #2: Clever Harmonic Summing

1st harmonic 2nd harmonic 3rd harmonic

• Narrow pulses produce many harmonics

• Summing of 2, 4, 8, 16, and sometimes 32 harmonics

• In F-Fdot plane, accomplished by “zooming” in F and Fdot
directions, a 2D region around the sub-harmonic

• Interpolation and scaling by using GPU texture memory?

Summary / Request for Ideas
• Acceleration searches are crucial for SKA, and (I

argue) frequency-domain versions are better

• GPU-ization of accelsearch currently has
8-10x speed-up with extremely minimal code
changes (by Jintau Luo)

• Not fast enough to be worthwhile (Note that the
current accelsearch is highly optimized on CPU)

• Current algorithm is not optimized for short
duration search pointings, or for GPU memory:

• Put full F-Fdot plane in GPU RAM

• Improved harmonic summing (i.e. texture memory)

• Other ideas?

	Slide 1
	Slide 2
	Binary Searches
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Acceleration Search Example
	Slide 21

