MHD Waves as a Source of Heating in Accretion Disks

Aline A. Vidotto
Vera Jatenco-Pereira

Astronomy Dept.
University of São Paulo, Brazil

Transformational Science with ALMA
June 22-24, 2007
1 Introduction
 • Angular Momentum Transport in Accretion Disks
 • The Magneto-Rotational Instability

2 Our Model
 • Alfvén Wave Damping
 • Disk Initial Conditions

3 Results
 • Initial Parameters
 • Temperature Profiles
 • The Dead Zone

4 Conclusions
Introduction: Angular momentum transport

- Understanding \vec{L} transport is the first step towards an understanding of accretion.
The magneto-rotational instability

MRI: differential rotation energy \rightarrow turbulence (Balbus, Hawley)

- the magnetic field destabilizes the disk
 \[
 \frac{\partial^2 \vec{\xi}}{\partial t^2} = -(\vec{k} \cdot \vec{v}_A)^2 \vec{\xi}
 \]
- MHD turbulence arises
- radial transport of \vec{L} \rightarrow accretion of particles
The magneto-rotational instability

Keys to the mechanism existence

- weak magnetic field
- differential rotation (e.g. Keplerian rotation)
- (partially) ionized plasma

Minimum ionization fraction \rightarrow coupling between magnetic field and disk particles
The magneto-rotational instability

Keys to the mechanism existence
- weak magnetic field
- differential rotation (e.g. Keplerian rotation)
- (partially) ionized plasma

Minimum ionization fraction \rightarrow coupling between magnetic field and disk particles
Our model

We know...

- disks are magnetized systems
- dust grains are present
- usually grains immersed in a plasma are charged
- charged grains can damp Alfvén waves

Aim:

Determine if the dissipation of Alfvén waves due to the interaction with grains is a significant source of heating.
Dust-cyclotron damping mechanism

Illustrative movie of Alfvén waves in the solar wind (S. Cranmer)

broad band of resonance frequencies
Dust-cyclotron damping mechanism

Illustrative movie of Alfvén waves in the solar wind (S. Cranmer)

broad band of resonance frequencies
Disk initial conditions

- steady-state and axisymmetric
- optically thick
- geometrically thin
- Keplerian rotation

Energy used to heat the disk:

$$F_{\text{tot}} = F_\nu + F_A = \sigma T^4$$

$$F_\nu = \frac{3\Omega_K^2 \dot{M}}{8\pi} \left[1 - \left(\frac{R_i}{R} \right)^{1/2} \right]$$

$$F_A = \int_0^{H/2} \frac{F_A}{L} \, dz$$
Disk initial conditions

- steady-state and axisymmetric
- optically thick
- geometrically thin
- Keplerian rotation

Energy used to heat the disk:

\[\mathcal{F}_{\text{tot}} = \mathcal{F}_{\nu} + \mathcal{F}_A = \sigma T^4 \]

\[\mathcal{F}_{\nu} = \frac{3\Omega_K^2 \dot{M}}{8\pi} \left[1 - \left(\frac{R_i}{R} \right)^{1/2} \right] \]

\[\mathcal{F}_A = \int_0^{H/2} \frac{\mathcal{F}_A}{L} \, dz \]
Disk initial conditions

- steady-state and axisymmetric
- optically thick
- geometrically thin
- Keplerian rotation

Energy used to heat the disk:

\[
\mathcal{F}_{\text{tot}} = \mathcal{F}_\nu + \mathcal{F}_A = \sigma T^4
\]

\[
\mathcal{F}_\nu = \frac{3 \Omega_K^2 \dot{M}}{8\pi} \left[1 - \left(\frac{R_i}{R}\right)^{1/2}\right]
\]

\[
\mathcal{F}_A = \int_0^{H/2} \frac{\mathcal{F}_A}{L} \, dz
\]
Disk initial conditions

- steady-state and axisymmetric
- optically thick
- geometrically thin
- Keplerian rotation

Energy used to heat the disk:

$$F_{\text{tot}} = F_\nu + F_A = \sigma T^4$$

$$F_\nu = \frac{3\Omega_K^2 M}{8\pi} \left[1 - \left(\frac{R_i}{R} \right) \right]^{1/2}$$

$$F_A = \int_0^{H/2} \frac{F_A}{L} \, dz$$

Aline Vidotto

MHD Waves as a Source of Heating in Accretion Disks
Initial parameters

Star & disk

- **T Tauri star:**
 - $M_*= 0.5 \, M_\odot$
 - $R_*= 2 \, R_\odot$
 - $\dot{M} = 10^{-8} \, M_\odot/\text{yr}$

- **Grain characteristics**
 - $a_1 = 0.005 \, \mu m$
 - $a_2 = 0.250 \, \mu m$
 - $\rho_{\text{gas}} / \rho_{\text{dust}} = 100$

\[f = \frac{\sqrt{\langle (\delta B)^2 \rangle}}{B} \]

\[\mathcal{F}_A^{z=0} \propto v_A (fB)^2 \]
Initial parameters

Star & disk
- **T Tauri star:**
 - $M_* = 0.5 \ M_\odot$
 - $R_* = 2 \ R_\odot$
 - $\dot{M} = 10^{-8} \ M_\odot/\text{yr}$

- **Grain characteristics**
 - $a_1 = 0.005 \ \mu\text{m}$
 - $a_2 = 0.250 \ \mu\text{m}$
 - $\rho_{\text{gas}}/\rho_{\text{dust}} = 100$

\[
f = \frac{\sqrt{\langle (\delta B)^2 \rangle}}{B}
\]

\[
F_A^{z=0} \propto v_A(fB)^2
\]
Results: temperature profiles

\[T \propto R^{-q} \]

- \(f = 0.00 \quad q = 0.75 \)
- \(f = 0.05 \quad q = 0.71 \)
- \(f = 0.10 \quad q = 0.69 \)
- \(f = 0.20 \quad q = 0.67 \)

\(\alpha \)-model \(q = \frac{3}{4} \)

MMSN \(q = \frac{1}{2} \)

Andrews & Williams (2007)
Results: temperature profiles

\[T \propto R^{-q} \]

\[f = 0.00 \quad q = 0.75 \]
\[f = 0.05 \quad q = 0.71 \]
\[f = 0.10 \quad q = 0.69 \]
\[f = 0.20 \quad q = 0.67 \]
\[\alpha\text{-model} \quad q = 3/4 \]
\[\text{MMSN} \quad q = 1/2 \]

Andrews & Williams (2007)
Results: temperature profiles

\[T \propto R^{-q} \]

- \(f = 0.00 \) \(q = 0.75 \)
- \(f = 0.05 \) \(q = 0.71 \)
- \(f = 0.10 \) \(q = 0.69 \)
- \(f = 0.20 \) \(q = 0.67 \)

- \(\alpha \)-model \(q = 3/4 \)
- MMSN \(q = 1/2 \)

Andrews & Williams (2007)
Results: temperature profiles

![Graph showing temperature profiles](image)

- Red line: Viscous
- Blue line: Alfvenic

- Anomalously high viscosity
- Alfvenic

Axes:
- **T (K)**: Temperature in Kelvin
- **r (AU)**: Radius in Astronomical Units

Data Points:
- At 0.1 AU, T ≈ 500 K
- At 1.0 AU, T ≈ 200 K
- At 10.0 AU, T ≈ 100 K

Conclusion:
MHD waves act as a source of heating in accretion disks.
Results: simple estimate of the dead zone size

Following Gammie (1996) ($x \geq 10^{-13}$):

- $\Sigma \lesssim 100 \text{ g cm}^{-2}$
- $T \gtrsim 10^3 \text{ K}$

Size of the dead zone:

$$0.1 \lesssim r(\text{AU}) \lesssim 6$$

Considering Alfvén waves:

$$0.65 \lesssim r(\text{AU}) \lesssim 3.7$$
Results: simple estimate of the dead zone size

Following Gammie (1996) ($x \gtrsim 10^{-13}$):
- $\Sigma \lesssim 100 \text{ g cm}^{-2}$
- $T \gtrsim 10^3 \text{ K}$

Size of the dead zone:

$$0.1 \lesssim r(\text{AU}) \lesssim 6$$

Considering Alfvén waves:

$$0.65 \lesssim r(\text{AU}) \lesssim 3.7$$
Conclusions

- Dissipation of Alfvén waves
 - flattens the temperature profile of the disk compared to the α-model
 - and causes a more significant increase in T at large distances from the star
 - reduces the size of the dead zone (simple estimates)

- The region we study in this work will be accessible with ALMA, whose observations will place hard constraints on the disk structure.
Conclusions

- Dissipation of Alfvén waves
 - flattens the temperature profile of the disk compared to the α-model
 - and causes a more significant increase in T at large distances from the star
 - reduces the size of the dead zone (simple estimates)

- The region we study in this work will be accessible with ALMA, whose observations will place hard constraints on the disk structure.