MHD Waves as a Source of Heating in Accretion Disks

Aline A. Vidotto

Vera Jatenco-Pereira

Astronomy Dept. University of São Paulo, Brazil

Transformational Science with ALMA June 22-24, 2007

- Angular Momentum Transport in Accretion Disks
- The Magneto-Rotational Instability

Our Model

- Alfvén Wave Damping
- Disk Initial Conditions

3 Results

- Initial Parameters
- Temperature Profiles
- The Dead Zone

4 Conclusions

Angular Momentum Transport in Accretion Disks The Magneto-Rotational Instability

Introduction: Angular momentum transport

• Understanding \vec{L} transport is the first step towards an understanding of accretion

b) 4 = b

Angular Momentum Transport in Accretion Disks The Magneto-Rotational Instability

The magneto-rotational instability

<u>MRI</u>: differential rotation energy \rightarrow turbulence (Balbus, Hawley)

• the magnetic field destabilizes the disk

$$\frac{\partial^2 \vec{\xi}}{\partial t^2} = -(\vec{k} \cdot \vec{v}_A)^2 \vec{\xi}$$

- MHD turbulence arises
- radial transport of \vec{L} \rightarrow accretion of particles

Angular Momentum Transport in Accretion Disks The Magneto-Rotational Instability

The magneto-rotational instability

Keys to the mechanism existence

- weak magnetic field
- differential rotation (e.g. Keplerian rotation)
- (partially) ionized plasma

<u>Minimum ionization fraction</u> → **coupling** between magnetic field and disk particles

(B)

Angular Momentum Transport in Accretion Disks The Magneto-Rotational Instability

The magneto-rotational instability

Keys to the mechanism existence

- weak magnetic field
- differential rotation (e.g. Keplerian rotation)
- (partially) ionized plasma

(B)

Alfvén Wave Damping Disk Initial Conditions

Our model

We know...

- disks are magnetized systems
- dust grains are present
- usually grains immersed in a plasma are charged
- charged grains can damp Alfvén waves

Aim:

Determine if the dissipation of Alfvén waves due to the interaction with grains is a significant source of heating.

(B)

- T

Alfvén Wave Damping Disk Initial Conditions

Dust-cyclotron damping mechanism

Illustrative movie of Alfvén waves in the solar wind (S. Cranmer)

broad band of resonance frequencies

▶ < ∃ ▶</p>

Alfvén Wave Damping Disk Initial Conditions

Dust-cyclotron damping mechanism

Illustrative movie of Alfvén waves in the solar wind (S. Cranmer)

broad band of resonance frequencies

▶ < ∃ >

Alfvén Wave Damping Disk Initial Conditions

Disk initial conditions

- steady-state and axisymmetric
- optically thick
- geometrically thin
- Keplerian rotation

Energy used to heat the disk:

$$\mathcal{F}_{\rm tot} = \mathcal{F}_{\nu} + \mathcal{F}_A = \sigma T^4$$

$$\mathcal{F}_{\nu} = \frac{3\Omega_K^2 \dot{M}}{8\pi} \left[1 - \left(\frac{R_i}{R}\right)^{1/2} \right]$$

$$\mathcal{F}_A = \int_0^{H/2} \frac{\mathcal{F}_A}{L} dz$$

▶ < ∃ >

-

Alfvén Wave Damping Disk Initial Conditions

Disk initial conditions

- steady-state and axisymmetric
- optically thick
- geometrically thin
- Keplerian rotation

Energy used to heat the disk:

$$\mathcal{F}_{tot} = \mathcal{F}_{\nu} + \mathcal{F}_{A} = \sigma T^{4}$$

$$\mathcal{F}_{\nu} = \frac{3\Omega_{K}^{2}\dot{M}}{8\pi} \left[1 - \left(\frac{R_{i}}{R}\right)^{1/2} \right]$$

$$\mathcal{F}_A = \int_0^{H/2} \frac{\mathcal{F}_A}{L} dz$$

▶ < ∃ >

-

Alfvén Wave Damping Disk Initial Conditions

Disk initial conditions

- steady-state and axisymmetric
- optically thick
- geometrically thin
- Keplerian rotation

Energy used to heat the disk:

$$\mathcal{F}_{\nu} = \frac{3\Omega_{K}^{2}M}{8\pi} \left[1 - \left(\frac{R_{i}}{R}\right)^{\prime} \right]$$

$$\mathcal{F}_A = \int_0^{H/2} \frac{\mathcal{F}_A}{L} dz$$

프 () () () (

3

 $\mathcal{F}_{tot} = \mathcal{F}_{u} + \mathcal{F}_{A} = \sigma T^{4}$

Introduction Our Model Results

Disk Initial Conditions

Disk initial conditions

- steady-state and axisymmetric
- optically thick
- geometrically thin
- Keplerian rotation

Energy used to heat the disk:

$$\mathcal{F}_{\nu} = \frac{3\Omega_{K}^{2}M}{8\pi} \left[1 - \left(\frac{R_{i}}{R}\right)^{\prime} \right]$$

$$\mathcal{F}_A = \int_0^{H/2} \frac{\mathcal{F}_A}{L} dz$$

프 () () () (

$$\mathcal{F}_{\mathrm{tot}} = \mathcal{F}_{\nu} + \mathcal{F}_{A} = \sigma T^{4}$$

Initial Parameters Temperature Profiles The Dead Zone

Initial parameters

Star & disk

- T Tauri star:
 - $M_{\star}=0.5~M_{\odot}$

•
$$R_{\star} = 2 R_{\odot}$$

•
$$\dot{M} = 10^{-8} M_{\odot}/{
m yr}$$

- Grain characteristics
 - $a_1 = 0.005 \, \mu \text{m}$
 - *a*₂ = 0.250 μm

•
$$ho_{
m gas}/
ho_{
m dust}=100$$

$$f = \frac{\sqrt{\langle (\delta B)^2 \rangle}}{B}$$

$$\mathcal{F}_A^{z=0} \propto v_A (fB)^2$$

< 17 ▶

글 > : < 글 >

Initial Parameters Temperature Profiles The Dead Zone

Initial parameters

Star & disk

- T Tauri star:
 - $M_{\star}=0.5~M_{\odot}$

•
$$R_{\star} = 2 R_{\odot}$$

•
$$\dot{M} = 10^{-8} M_{\odot}/y$$

- Grain characteristics
 - $a_1 = 0.005 \, \mu \text{m}$
 - *a*₂ = 0.250 μm

•
$$ho_{
m gas}/
ho_{
m dust}=100$$

$$f = \frac{\sqrt{\langle (\delta B)^2 \rangle}}{B}$$

$$\mathcal{F}_A^{z=0} \propto v_A (fB)^2$$

A ▶

글 > : < 글 >

Initial Parameters Temperature Profiles The Dead Zone

Results: temperature profiles

< 🗇 🕨

A B M A B M

Initial Parameters Temperature Profiles The Dead Zone

Results: temperature profiles

(日) (同) (日) (日)

Initial Parameters Temperature Profiles The Dead Zone

Results: temperature profiles

< 🗇 🕨

A B M A B M

Initial Parameters Temperature Profiles The Dead Zone

Results: temperature profiles

2

< ∃ >

Initial Parameters Temperature Profile The Dead Zone

Results: simple estimate of the dead zone size

Following Gammie (1996) ($x \gtrsim 10^{-13}$):

- $\Sigma \lesssim 100 \text{ g cm}^{-2}$
- $T\gtrsim 10^3~{
 m K}$

Size of the dead zone:

 $0.1 \lesssim r({
m AU}) \lesssim 6$

Considering Alfvén waves:

 $0.65 \lesssim r(\mathrm{AU}) \lesssim 3.7$

(日) (同) (三) (三)

The Dead Zone

Results: simple estimate of the dead zone size

Following Gammie (1996) ($x \gtrsim 10^{-13}$): • $\Sigma \leq 100 \text{ g cm}^{-2}$ • $T \gtrsim 10^3$ K Layered Accretion in a T Tauri Disk Size of the dead zone: DEAD ZONE $0.1 \leq r(AU) \leq 6$ thermal cosmic ray ionization ionization critical radius 0.1 AU Considering Alfvén waves: $0.65 \leq r(AU) \leq 3.7$ not to scale

ACTIVE LAYER

ACTIVE LAYER

- **(**

A B A A B A

Conclusions

- Dissipation of Alfvén waves
 - ${\scriptstyle \bullet }$ flattens the temperature profile of the disk compared to the $\alpha {\rm -model}$
 - $\bullet\,$ and causes a more significant increase in ${\cal T}$ at large distances from the star
 - reduces the size of the dead zone (simple estimates)

• The region we study in this work will be accessible with ALMA, whose observations will place hard constraints on the disk structure.

Conclusions

- Dissipation of Alfvén waves
 - ${\scriptstyle \bullet }$ flattens the temperature profile of the disk compared to the $\alpha {\rm -model}$
 - $\bullet\,$ and causes a more significant increase in ${\cal T}$ at large distances from the star
 - reduces the size of the dead zone (simple estimates)
- The region we study in this work will be accessible with ALMA, whose observations will place hard constraints on the disk structure.

・ロト ・四ト ・ヨト ・ヨト

∃ りへぐ