

Synergy of ALMA with Herschel

B. Matthews & J. Di Francesco Herzberg Institute of Astrophysics

1738-1822

National Research Council Canada de recherches Canada

 2006 ESA-ESO Report on ALMA-Herschel synergy available at:

http:www.stecf.org/ coordination/esa_eso/ alma-herschel.php

This talk is not a rehash of that report

Chair: Tom L. Wilson Co-chair: David Elbaz

Synergy Punch Line

- Herschel Launch: 2008 (August)
- Herschel start of Operations: 2009 (January)
- Herschel cessation of Operations: 2011?
- ALMA Early Science (16): 2010 (Q3)
 ALMA Full Operations (50): 2012 (Q4)

 Imaging with Herschel will provide the higher frequency "pathfinder" observations for ALMA

Herschel Space Observatory

Herschel Primary Science Goals

 The cool universe: formation of galaxies and stars, ISM physics/chemistry, solar system objects

 Herschel's large aperture, low background and no atmospheric attenuation = high sensitivity

Herschel Factoids

- primary diameter = 3.5 m (large!)
- primary material = SiC with a thin reflective Al layer + plasil layer
- primary WFE* < 6%
- telescope temperature < 90 K
- telescope emissivity < 4%
- abs/rel pointing (68%) < 3.7" / 0.3"
- science instruments = 3
- cryostat lifetime > 3.5 years
- height / width ~ 7.5 m / 4 m
- launch mass = 3200 kg
- power ~ 1500 W

cold side

* wave front error

hot side

The 3 Herschel Instruments

• PACS (Photodetector Array Camera and Spectrometer)

• SPIRE (Spectral and Photometric Imaging REceiver) #

• HIFI (Heterodyne Instrument for the Far-Infrared)

*

Herschel Instruments

Photometry/Imaging: 6 bands at 75-520 μm

- **PACS:** 1.7' x 3.5' FOV at 75/110 μm and 170 μm - **SPIRE:** 4' x 8' FOV at 250, 363 and 517 μm
- sensitivity: ~ 1 mJy 1 σ 1 hour (confusion!) - no chopping! (no spatial filtering of emission) - angular resolution: ~15" x (λ /250 µm)

Herschel Instruments

- Spectroscopy: 57 670 μm range, R = 20 10⁷
 - PACS: (grating) 0.8' FOV at 57 210 μm,
 R = 1500 4000, 5 x 5 spatial x 16 spectral pixels
 SPIRE: (FTS) 2.6' FOV at 200 670 μm,
 R = 20 100
 - HIFI: (*heterodyne*) 1-pixel FOV at 157 212 μm and 240 625 μm (no gaps), 4000 channels, R = 10⁷

SPIRE

ALMA/Herschel "Discovery Space" Plots

Herschel has wide FOV (mapping), ALMA has high spatial resolution (details)

Comparison of ALMA/Herschel Bands

SPIRE 360 μm

SPIRE 520 µm

(other 1 SPIRE and 3 PACS bands unseen from ground)

Only direct photometric overlap in Band 10!

Comparison of ALMA/Herschel Bands

PACS spectrostanostopic253ads(57 µm)

PartialNoveragepofv8hfAll.Moveragesof 9 & 10

Lines of Interest in Overlap Bands

Table 7: Frequencies, Assignments & Estimated Atmospheric Transmission where ALMA and Herschel HIFI Receiver Bands Overlap

			Molecule or Atom	Transition	Energy of Lower Level (K)	Frequency (GHz)	Transmission (percent)
			ALMA Band 8:				
		-	CS	J = 10-9	106	489.8	37.1
		-	CI	³ P ₁ - ³ P ₀	0	492.2	51.8
			NH ₂ D	$J_{KaKc} = 4_{13} - 4_{14}$	152	494.4	54.3
			HDO	J _{KaKe} = 1 ₁₀ -1 ₀₁	22	509.3	38.9
			ALMA Band 9:				
neat-			HDO	$J_{KaKe} = 2_{11} - 2_{02}$	66	599.9	21.7
	- 1		D_2O	$J_{KaKe} = 3_{03} - 1_{11}$	26	607.4	30.2
lines			HCO*	J = 7-6	90	624.4	21.3
111162	:		SiH	$J_{F} = (3/2)_{1} - (1/2)_{1}$	0	624.9,627.7	24.9,36.5
			H ³⁷ Cl	J = 1-0	0	625.0,625.9	25.5,30.6
			DF	J = 1-0	0	651.1	51.1
			¹³ CO	J = 6-5	79	661.0	53.9
			D_2H^*			690	49.9
			CO	J = 6-5	83	691.5	48.1
			ALMA Band 10:				
			CO	J = 7-6	116	806.6	39.2
		-	CI	³ P ₂ - ³ P ₁	24	809.3	40.6
			$H_{2}CO$	$J_{KaKc} = 12_{0,11} - 11_{0,11}$	228	855.2	48.9
			¹³ CO	J = 8-7	148	898.0	40.6
			HDO	$J_{KaKe} = 1_{11} - 0_{00}$	0	893.6	40.1
			LiH	J = 2-1	21	887.3	34.0
			$H_{2}CO$	J _{KaKe} = 12 _{1,11} -11 _{1,10}	249	896.7	40.5
			D_2O	$J_{KaKc} = 2_{12} - 1_{01}$	17	897.9	40.6

Herschel is a Pathfinder for ALMA

 SPIRE and PACS offer wide-field photometric mapping:

 will provide large, confusion-limited maps in which many objects will be detected at "low" spatial resolution

 SPIRE and PACS offer moderate-FOV spectral mapping:

 will provide images of lines at low- to moderate

resolution

- HIFI offers single-pixel observations:
 - will provide ground-breaking work of new spectral territory at high spectral resolution

 Herschel data will provide source lists for high spatial resolution follow-up with ALMA

Herschel Timeline: Telescope

- 2008 August LAUNCH
- travel to L2, cooldown
- commissioning & performance verification
- science demonstration + workshop
- routine science operations (36 months+):
 - ~1000 days of available time (2009-2011)
 - ~1/3 share is Guaranteed Time (GT) to instrument teams

6 mos.

- ~2/3 share is Open Time (OT) to world community
- three "Calls for Proposals" (Cycles) foreseen:
 - one for Key Projects (>100 hrs), GT & OT
 - two for regular programs, GT & OT
 - in every cycle, GT obs'ns made before OT obs'ns

Herschel Timeline: Data

 AO issued as late as possible, to maximize timeliness of scientific programmes and knowledge of instruments

• 2007 Feb 1: AO for KP proposals issued • 2007 Apr 5: deadline for GT KP proposals • 2007 Jul 5: selection/announcement of GT KP projects • 2007 Oct 25: deadline for OT KP proposals • 2008 Feb 28: selection/announcement of OT KP projects • 2008 Feb 28: AO for regular GT proposals • 2008 Apr 3: deadline for GT1 proposals • 2008 Jun 5: selection/announcement for GT1 projects • 2008 August: LAUNCH

Relevant Herschel GT Key Projects

 SPIRE/PACS "Herschel Gould Belt Survey": (PI's: P. Andre & P. Saraceno)

 SPIRE/PACS/HIFI "Stellar Disk Evolution" (PI: G. Olafsson)

 HIFI "Water In Star-forming environments with Herschel (WISH)"
 (PI: E. van Dishoeck)

Herschel Gould Belt Survey

extinction map of Orion A & B

Herschel Gould Belt Survey

extinction map of Orion A & B PACS (70/170 μm) and SPIRE parallel mode **AORs** 37 hours total good match to Spitzer coverage

Herschel Gould Belt Survey

extinction map of Orion A & B

PACS only AORs (110/170 µm) 29 hours total

Relevant Herschel GT Key Projects

- SPIRE/PACS "Herschel Gould Belt Survey" :
 - map 16 molecular clouds < 500 pc with SPIRE + PACS in parallel mode, for 145 deg² in 272 hrs
 - follow-up high A_v regions (55 deg²) with PACS,
 in 195 hrs
 - total = 467 hrs (depends on overheads)
 - will be sensitive at 10 σ to cores > 0.2-0.3 M_{sun} at Orion, lower mass limit for closer clouds
 identify all embedded SF locations, test mass f'n
 - slope for differences with cloud environment

Stellar Disk Evolution

850 µm SCUBA obs of debris disks

Beta Pictoris

Fomalhaut

Relevant Herschel GT Key Projects • SPIRE/PACS "Stellar Disk Evolution": - map 6 extended debris disks with SPIRE + PACS (Vega, Fomalhaut, ε Eri, β Pic, AU Mic, τ Cet) - 19 hrs of 70/170 µm PACS obs'ns and 6 hrs of SPIRE obs'ns (i.e., to the confusion limit) - probe line emission towards these with PACS, SPIRE and HIFI, for solid state features - PACS: 55 - 210 μ m (14 hrs); (O I and forsterite) - SPIRE: 200 - 670 µm (12 hrs) - HIFI: H₂O at 557 GHz, NH₃ at 572 GHz, CI at 492 GHz (20 hrs)

Water in Disks

H₂O lines observable with HIFI

H₂O is a major unknown factor in interstellar chemistry, Herschel will observe it well

Relevant Herschel GT Key Projects

- HIFI "Water In Starforming environments with Herschel (WISH)"
 - a 499 hr program of cores, protostars and disks
 - use HIFI to observe H₂O, H₂¹⁸O, H₂¹⁷O, O, OH lines, in disks test for vertical mixing between cold midplane, warm interiors and outer PDRs
 H₂O is the main ice reservoir, drives chemistry

92 hr disk program: 3 mK rms for
 557 GHz line, and 10 mK rms for
 1113 GHz line of H₂O for TW Hya,
 DM Tau, LkCa 15, and MWC 480

Major Opportunities for Disks!

These are the only disk-related Guaranteed Time Key Projects that have been awarded time by the HOTAC
There is a lot of ground left to cover in OT: low-mass disks, nearby stars, moving groups, disk evolution, etc.
OT Key Project Deadline coming up fast!

Summary

- Herschel will probe disks over a relatively unexplored regime of the EM spectrum at high sensitivities
- data will provide important pathfinder info for ALMA
- 2/3 observing time is available to the world community, 2009-2011, so use Herschel while it is available!
- For more info see *http://www.rssd.esa.int/herschel*

