Molecular Gas in High-z QSO Host Galaxies

Pierre Cox IRAM Grenoble, France

History of the Universe

The spectrum of a ULIRG: a `field guide'

Non-thermal radio

- Thermal dust
 - Dominated luminosity
 - Hotter in AGN
 - Mid-IR spectral features (missing in AGN)
- Molecular and atomic lines
 - mm CO/HCN
 - far-IR: C/N/O
 - mid-IR: C-C/C=C/H2

Luminosities involved: 3x10¹¹ <L/L_{sun}< 10¹⁴

From Blain (2003)

Jan. 13-14, 2006

Deep Field Sources

15"/10" SCUBA/ MAMBO

Source identification critical (usually through RC, Chapman et al. 2004)

Pointed Observations

 Sources selected from optical (SDSS) and radio (VLA): <u>Quasars</u> (radio-quiet), radio-galaxies
 Position well known; redshifts known

Jan. 13-14, 2006

NRAO/Charlottesville

-> poster

L_FIR = $4x10^{12} \times S_{250}(mJy) L_sun for z=0.5 to 8$ SFR = $1400 \times S_{250}(mJy)M_sun/yr$ (very high) M_dust = $1.4x10^8 \times S_{250}(mJy) M_sun$

Beelen et al. 2005

QSOs: First Detections of CO at High-*z*

BR1202-0725 at z=4.12

Cloverleaf at z=2.6

Jan. 13-14, 2006

High z Sources detected in CO - August 2005

Source Name	2	Telesco pes	CO Line		1.2 mm Cont.	Ref.
		0.000	line	[Jy km s ⁻¹]	[m Jy]	
IRAS 10214+4724	2.28	12-m; 30-m	3→2	4.1±0.9	9.6±1.4	[1,2]
Cloverleaf	2.56	PdB; 30-m	32	9.9±0.6	18±2	[3]
BR 1202-0725	4.69	PdB; NRO	5-4	2.4±0.3	12.6±2.3	[4,5]
BRI 1335-0417	4.41	PdB	5-4	2.8±0.3	10.3±1.0	[6]
53W002	2.39	OVRO; PdB	32	1.20±0.15	1.7±0.4	[7,8]
MG 0414+0534	2.64	PdB	32	2.6±0.4	40±2 [†]	[9]
SMM J02399-0136	2.80	OVRO; PdB	32	3.1±0.4	7.0±1.2	[10,11]
APM 08279+5255	3.91	PdB	4-3	3.7±0.5	17.0±0.5	[12]
BRI 0952-0115	4.43	PdB	5-4	0.91±0.11	2.8±0.6	13
Q1230+1627B	2.74	PdB	32	0.90±0.26	2.7±0.6	13
SMM J14011+0252	2.57	OVRO	32	2.4±0.3	R8 3	[14]
4C60.07	3.79	PdB	43	2.50±0.43	4.5±1.2	[15]
6C1909+722	3.53	PdB	4→3	1.62±0.30	< 3	[15]
HR 10	1.44	PdB	5-4	1.35±0.20	4.9±0.8	[16]
MG 0751+2716	3.20	PdB	43	5.96±0.45	6.7±1.3	17
PSS 2322+1944	4.12	PdB	43	4.21±0.40	9.6±0.5	18
B3 J2330+3927	3.09	PdB	43	1.3±0.3	4.2±0.6	[19]
TN J0121+1320	3.52	PdB	43	1.2±0.4		[20]
J 1409+5628	2.56	PdB	32	3.28±0.36	10.7±0.6	[21]
J 1148+5251	6.42	VLA & PdB	3-12	0.18±0.04	5± 0.6	[22,23]
SMM J04431+0201	2.51	PdB	3-12	1.4±0.2	1.1±0.3	[24]
SMM J09431+4700	3.34	PdB	43	1.1±0.1	2.3±0.4	24
SMM J16358+4057	2.38	PdB	32	2.3±1.2	2.6±0.2	24
cB58	2.73	PdB	32	0.37±0.08	1.06±0.35	[25]
Q0957+561	1.41	PdB	2-1	1.20 ± 0.06	5.7±1.8 [†]	[26.27]
RX J0911+0551	2.79	OVRO	32	2.9±1.1	10.2±1.8	[28]
SMM J04135+1027	2.84	OVRO	32	5.4±1.3	7±1	28
B3 J2330+3927	3.08	PdB	4-3	1.3±0.3	4.8±1.2	[29]
4C41.17	3.79	PdB	4-3	1.8±0.2	3.8±0.4	1301
TNJ0121+1320	3.52	PdB	4-3	1.2±0.4	2	1311
TNJ0924-2201	5.19	ATCA	1-0	0.52±0.11	-	32
SMM J02396-0134	1.06	PdB	2-1	3.4±0.3		1331
SMM J13120+4242	3.41	PdB	4-3	1.7±0.3	<u>_</u>	[33]
SMM J16366+4105	2.45	PdB	3-2	1.8±0.3	2	[33]
SMM J16371+4053	2.38	PdB	3-2	1.0±0.2	-	1331
SMM J22174+0015	3.09	PdB	3-2	0.8±0.2	-	1331
SMM 116359+6612	2.51	PdB & OVRO	3-2	5.75±0.25	3.0±0.7	[34]

Jan. 13-14, 2006

J1148+5251 - The Most Distant QSO at z=6.42

z-band (Keck – Djorgovski et al.)

z=6.42; age~870 Myr
one of the first luminous sources
M_{BH} ~ 1-5 x 10⁹ M_{sun} (Willot et al. 2003)
M_{dust} ~ 10⁸ M_{sun} (Bertoldi et al. 2003)

Jan. 13-14, 2006

NRAO/Charlottesville

Dust continuum at 1.2 mm

RIGHT ASCENSION (J2000)

Walter et al. 2003 Bertoldi et al. 2003

Jan. 13-14, 2006

NRAO/Charlottesville

PdBI

VLA

CO excitation in J1148+5251 (filled circles), compared to NGC 253 (dashed) LVG Model: T_{kin} = 100K, n_{H2} =7x10⁴ cm⁻³

 Mass: M_{H2} = 2 x 10¹⁰ M_{sun} M_{dyn} = 3 x 10⁹ sin⁻²(i) M_{sun}

Mass in C and O: ~3x10⁷ M_{sun}

Bertoldi et al. (2003)

Jan. 13-14, 2006

Resolving the CO emission in J1148+5251

VLA A+B + C array; res.: 0.15" (~1 kpc)

- Two sources separated by 0.3" (1.7 kpc at z=6.4) containing each 5 x 10⁹ M_{sun}
- Not likely to be amplified
- If gravitationally bound, M_{Dyn}=4.5x10¹⁰ M_{sun}

Walter et al. 2004

Multiple CO Lines

IRAM 30m CO multiline survey (1, 2, 3mm bands)

Weiss et al. (2006)

Jan. 13-14, 2006

LVG solution Cloverleaf

T_{ex} (CI) ~ low J T_{ex} (CO) [similar critical densities]

CO LVG solution: Disk radius: 1 kpc excellent agreement with lens models ! $log(n(H_2)) = 4.2 \text{ cm}^{-3}$ $T_{kin} = 30 \text{ K}$

$$\begin{split} M(H_2) &= 8 \; 10^{10} \; M_{\odot} \\ L'_{\rm CO(1-0)} &= 4.4 \; 10^{10} \; {\rm K \; km/s \; pc^2} \\ X_{\rm co} &= 1.8 \; {\rm M_{\odot}/ \; K \; km/s \; pc^2} \end{split}$$

Neutral Carbon: $M(CI) = 3 \ 10^7 \ M_{\odot}$ $[CI]/[H_2] = 6 \ 10^{-5}$ (~4 \ 10^{-5} local starbursts)

High Density Tracer: HCN

J1409+5628 (z=2.56)

APM08279+5255 (z=3.91)

High density tracer in starbursts: $n_{H2} > 10(5)$ cm(-3)

Carilli et al. 2004

Wagg et al. 2005

Jan. 13-14, 2006

Search for Neutral Carbon [CI]

 2^{nd} extra galactic CI ratio L'_{CI(21)} / L'_{CI(10)}= 0.5, T_{ex} = 30 K

 $[C_I]/H_2 \sim 3 \ge 10(-5)$

Barvainis et al. 1997; Weiss et al. 2003, 2004; Pety et al. 2004

[[CII] 158 microns emission line detected in J1148+5251 at z=6.42 Probing the physics of a PDR at the end of the re-

ionisation epoch

[CII] in J1148+5251

- Done at the 30-meter
- Massive starburst (2000 Msun/yr)
- Significant metal enrichment
- The ratio of the [CII] line luminosity to the total far-infrared luminosity is about 0.06%, i.e. an order of magnitude smaller than has been observed locally
- One of the 3 key scientific goals of the ALMA project.

Maiolino, Cox et al. (2005)

Conclusions

□ From 'imagery' to physics and (chemistry) of the ISM in the early Universe – *QSOs are prime targets* \Box CO measurements \rightarrow physical conditions of the dense, warm (40-100 K) gas in star-forming galaxies at high redshifts: massive $(10^{10} M_{\odot})$, compact (~ 1kpc), dense (10^4 cm⁻³) and enriched (abundances ~ solar) **Detection of species other than CO: HCN, [CI] and [CII]** \Box Some sources have been resolved with 1 kpc (~0.2") □ Studies in the very early universe (< 1 Gyr): - Metal enrichment

- Metal enrichment
- Dynamical masses