Cosmic Evolution Survey (COSMOS)

HST image 2 deg.² ! 590 orbits in Cy 12-13 + VLT-VIMOS, XMM, Subaru, VLA,

Spitzer, Galex, ...

- rational for survey
- major multi-wavelength components
- identification of structures
- galaxy evolution vs z and environment

<u>Coupled</u> evolution of LSS, galaxies, star formation, AGN w/ Z

==> ~ 2 million galaxies !!

COSMOS field : 1.4x1.4 deg near equator RA = 10:00:28.6 DEC = +02:12:21 (near but shifted from VVDS 10 hr field) $E_{B-V} = 0.02 \text{ mag}$ and very uniform

!! most important : all instruments can see field e.g. VLA, ALMA future TMT/OWL

Infrared Backgrounds and Sensitivities (1600 sec)					
Field	$8\mu m$		$24 \mu m$		$100 \mu m$
	Background	$S_{\nu}(5\sigma)$	Background	$S_{\nu}(5\sigma)$	Background
COSMOS	6.9	12.7	32.3	0.080	0.90
Lockman, CDF-S	5.0-5.3	11.0	18.4-19.4	0.061	0.45
SWIRE-XMM	7.1	12.9	31.1	0.078	1.25

==> rel. sens. only ~20 - 25% worse than very best fields

COSMOS -- 38 ==> 80 team members --US, Japan, Europe and Canada

Telescopes :

Hubble -- very fine & sensitive optical images XMM -- xray imaging Galex -- ultraviolet imaging Spitzer -- Mid IR w/ IRAC

Subaru -- multiple color imaging VeryLargeArray -- radio imaging ESO-VLT & Magellan-- opt. spec. ~ 45,000 gal. NIR -- NOAO, UH88, UKIRT ... Submm : MAMBO, BOLOCAM, AZTEC, LABOCA

=> cover largest large scale structures

- high sensitivity (I > 28.6 mag AB, 5σ)
 => morphology of L_{*} galaxies at z < 2
- sensitivity + area
 => 2x10⁶ galaxies , unusual objects at higher z
- equatorial => multi- λ observations from all tel.

ACS source counts Enormous area and sensitivity

==> large samples of all objects :

COSMOS Photo-z catalog (Subaru, CFHT, NOAO)

Redshift distribution

LSS from galaxy overdensities in redshift slices ==>

All SED types (not just early types)

redshift slices w/ $\Delta z = 0.1$

~ 40 major large-scalestructures at z < 1.2

w/i each LSS

LSS mass : Σ galaxies w/i each LSS

Prob. of halo mass structures

luminous early-type ==> dense core of LSS

XMM-Newton COSMOS

X-ray: COSMOS-XMM survey (Hasinger et al.)

higher z ==> later type SED
cores of LSS/halos ==> earlier type SED

see LSS out to highest z !

Ly Alpha emission @ z=5.7 in the COSMOS

narrow band subaru imaging at 8150 Ang. Taniguchi & Ajiki etal

→ 58 emission candidates

Survey Volume = $1.5 \times 10^{6} \text{ Mpc}^{3}$ $n(\text{LAE}) = 3.8 \times 10^{-5} \text{ Mpc}^{-3}$ $L_{\text{ly alpha}} > 10^{42.6} \text{ ergs/s}$

Examples of LAEs @ z=5.7

LSS @ z=5.7 probed by LAEs

high Z ULIRG survey of COSMOS field

ALMA targetted to clusters / LSS ===> many sources per beam

Cosmos IRAC coming in !!

