

Coordinated Instruments for Source Detection and Characterization

Grant Wilson University of Massachusetts

From Z-Machines to Alma 1/14/06

LMT/GTM

- 50m dia.
- 70µm rms surface
- 15000 ft alt
- Sierra Negra, MX
- A Collaboration between

The University of Massachusetts at Amherst

and

Instituto Nacional de Astrofísica, Óptica, y Electrónica (INAOE)

LMT 1st Generation Continuum Instruments

- AzTEC (imaging)
 - 144 element bolometer array
 - 1.1mm, 1.4mm, or 2.1mm
 - Commissioned: June 2005 at JCMT
 - 2.5 months on sky: Nov. 2005 Feb. 2006
- SPEED (photometry)
 - 2.1mm, 1.4mm, 1.1mm, and 850µm.
 - New bolometer technology
 - Commissioning: Fall 2006 at SMT

<u>UMass</u> Grant Wilson (PI) Min Yun

Thushara Perera

Jay Austermann Kim Scott Ilsang Yoon

Cara Battersby Chris Roberts <u>INAOE</u> David Hughes Itziar Aretxaga

<u>Caltech</u> James Bock Sunil Golwalla

<u>Cardiff</u> Peter Ade Phil Mauskopf

Douglas Haig Simon Doyle

<u>Sejong University</u> Young Woon Kang Sungeun Kim

Smith College James Lowenthal

The AzTEC Instrument

- 144 element bolometer array (designed for imaging)
- Detectors read out continuously at 64Hz.
- System designed to have good low freq. stability (AC biased)
- All commands and signals pass via fiber optics (low flux demands low systematics)

144 element spiderweb bolo array – S. Golwala

UMassAmherst

AzTEC Internal Optics Layout

UMassAmherst

Folded optical design minimizes optical microphonic pickup and thermal gradients

The AzTEC Instrument

Pre-shipment checkout

Optics alignment at JCMT

AzTEC Rastering

RA [dogrooo]

AzTEC First Light – June 8, 2005

Initial AzTEC Results 05B

UMassAmherst

OMC1

AzTEC/JCMT05B SMG Studies

Field	Size [arcmin ²]	Obs Time [hrs]	σ [mJ]	Ν (>4σ)	PI
SHADES	1800	198.5 (225)	0.7	300	Dunlop
COSMOS	900	<mark>45</mark> (45)	1.0	100	D.Sanders
GOODS-N	160	43 (90)	0.3	200	E.Chapin
MS0451	225	30 (30)	0.5	50	1.Smail
4C41.17	200	48 (48)	0.3	250	D.Hughes
0316-257	50	30 (30)	0.3	70	H.Rottgering
BR0952	21	14.65 (24)	0.8	4	K.Knudsen

~1deg²

~900 sources

AzTEC/JCMT05B SMG Studies

Field	Size [arcmin ²]	Obs Time [hrs]	σ [mJ]	Ν (>4σ)	PI
SHADES	1800	198.5 (225)	0.7	300	Dunlop
COSMOS	900	<mark>45</mark> (45)	1.0	100	D.Sanders
GOODS-N	160	43 (90)	0.3	200	E.Chapin
MS0451	225	<mark>30</mark> (30)	0.5	50	I.Smail
4C41.17	200	<mark>48</mark> (48)	0.3	250	D.Hughes
0316-257	50	<mark>30</mark> (30)	0.3	70	H.Rottgering
BR0952	21	14.65 (24)	0.8	4	K.Knudsen

~1deg²

~900 sources

Lots of room for improvement

- Pointing is next on the list.
- Need to characterize instrument noise.
- Deep jiggle mapping needs much work.
- Still some systematics in raster and jiggle data that need exploring.
- Improved data reduction scheme in the works
 - Better atmosphere subtraction
 - Better faint/extended source reconstruction

In all, these are still the first steps towards reducing AzTEC data. Stay tuned ...

SPEED

<u>UMass</u>

Grant Wilson Min Yun

Thushara Perera

Dan Logan

Ed Slavich

<u>U. Chicago</u> Stephan Meyer Tom Downes

Case Western

John Ruhl Kecheng Xiao NASA/GSFC Bob Silverberg (PI) David Cottingham Dale Fixsen Tina Chen Fred Finkbeiner

The Speed Photometer

- Prototype 4 pixel Array of Frequency Selective Bolometers (FSB)
- Simultaneous
 observations at
 2.1, 1.4, 1.1, and
 0.85 mm in each pixel

The Speed Photometer

- Prototype 4 pixel Array of Frequency Selective Bolometers (FSB)
- Simultaneous observations at
 2.1, 1.4, 1.1, 0.85 mm in each pixel

Absorption Profile

UMassAmherst

1st Deployment of SPEED

- Plan to bring SPEED to SMT for commissioning in mid-late 2006.
- Focus on
 - SZE
 - follow-up of AzTEC sources
 - ~1hr to get brightest sources to 5σ in bands 2,3,4
 - Secondary calibrators

AzTEC/SPEED/LMT

- Fast High-Z galaxy photometry for
 - Photometric redshift (eg. to all Spitzer sources)
 - Spectral index of sub-mm galaxies
 - 3min to 5 σ in photometry mode

Summary

- AzTEC data set in hand should expand known submm galaxy population by factor of _____.
 - Cosmic variance
 - Clustering
 - Biased vs. Unbiased regions
- SPEED allows rapid multi-frequency follow-up at discovery waveband.
 - Source confirmation
 - Photometric Z (given ancillary data at higher freq.)

