Spatially Resolved Observations of Protoplanetary Disk Chemistry

Karin Öberg

University of Virginia

Collaborators: **Chunhua Qi (CfA)**, David Wilner (CfA), Sean Andrews (CfA), Ted Bergin (Michigan), Michiel Hogerheijde (Leiden), Katherine Rosenfeld (CfA)

Planet formation around the snow line

Affects planet formation efficiencies because: Icy grains are stickier than bare grains, grain column density increases, pressure traps etc.

Also affects the composition of forming planets

[e.g. Ciesla & Cuzzi 2006, Ros & Johansen 2013]

Disk Snowlines

The importance of the CO snowline I

Assuming interstellar molecular abundances, the C/O ratio between the CO₂ and CO snowlines will be ~1.

0

0

0

If a gas giant accretes the core from solids and envelope from gas, C/O~1 in the atmosphere, assuming no planetesimal pollution or core dredging.

[Öberg, Murray-Clay & Bergin 2011b]

The importance of the CO snowline II

[Öberg, Garrod et al. 2009]

Delivery of volatiles to Earth from Comets

[Hartogh et al. 2011]

Deuterium Enrichment toward TW Hya

Deuterium enrichment occurs at a range of temperatures during planet formation!

[Qi et al. 2008, Öberg, Qi et al. 2012]

Observing (CO) Snow Lines / Snow Surfaces

Multi-transitional CO data (J=2-1, 3-2, 6-5 and four isotopologues) required to constrain the CO temperature structure and snowline location towards HD 163296.

CO freeze-out outside of 170 AU, corresponding to a freeze-out temperature of ~19 K.

[Qi, d'Alesssio, Öberg et al. 2011]

Disk Imaging Survey of Chemistry with the SMA

20 track survey of 10 molecular lines toward 12 protoplanetary disks: CO 2-1, HCO⁺ 3-2, DCO⁺ 3-2, N₂H⁺ 3-2, H₂CO 3-2, 4-3, HCN 3-2, DCN 3-2, CN 2-1 SMA compact configuration ~ 2-3" resolution ~ 100-400 AU

DiSCS Summary

[Öberg, Qi et al. 2010, 2011]

H₂CO and N₂H⁺ formation should both depend on CO freeze-out.

HCO⁺

T>20 (16) K T<20 (16) K

H₂CC

DiSCS: N₂H⁺ vs. H₂CO Statistics

H₂CO proposed to form from hydrogenation of CO ice

N₂H⁺ is destroyed by gas-phase CO

Disk averaged N₂H⁺ and H₂CO emission are strongly correlated

Consistent with that both molecules rely on CO freeze-out

DiSCS: H₂CO Excitation Temperature

[Qi, Öberg et al. 2013a]

H₂CO and the CO snow line in HD 163296

H₂CO `ring' radius consistent with CO snow line.

Conclusion supported by statistics from DiSCS sample.

Very low S/N...

The ALMA revolution: c-C₃H₂

[Qi, Öberg et al. 2013b]

ALMA Simulations of Chemical Rings

N₂H⁺ Towards TW Hya

Molecular Probes of Protoplanetary Disks

Disk chemistry depends on temperature, density and radiation structures, and the location of snowlines \rightarrow large untapped potential for molecular probes.

ALMA will continue to improve sensitivity and resolution: already exquisite chemical imaging of protoplanetary disks!

Low-mass stars are likely more hospitable to prebiotic chemistry since CO snowlines and thus CH₃OH formation are closer to the planet-forming zone.

