

Magnetic Field Morphologies in Star Forming
Clouds at mpc Angular
Tang, Ya-WenResolutionTang, Ya-WenDutrey, Anne (LAB)
Girart, Josep M. (CSIC)Koch, Patrick M.
Ho, Paul T. P.Guilloteau, Stephane (LAB)
Lai, Shih-Ping (NTHU)Academia Sinica, Institute of Astronomy and Astrophysics, TaiwanRao, Ramprasad (ASIAA)

I. B field morphologies from pc to mpc scale

I.I Star forming cloud:

Color scale:

- dust continuum emission at 850 Im
- trace dense region

W51A:

- A star forming cloud in our Galaxy
- Distance: 7 kpc
- Two brightest cores: W51e2, W51 North

1.1 W51A: magnetic field

Color scale:

- dust continuum emission at FIR (850 µm)
- dense gas: $n > 10^3$ cm⁻³
- Cyan segments:
- B field orientation traced via the polarization of FIR emission
- uncertainties: $\sim 10^{\circ}$
- JCMT image: 15" resolution
- B field varies significantly across the cloud

Observations

Sub-Millimeter Array (SMA)

*8 x 6-m antennae *Frequency: 345 GHz (870 μm) →trace thermal dust emission *Quarter-wave plates → measure dual polarization → Stokes I, Q, U & V *Angular resolution: ~1"

Importance of high angular resolution

color scale: polarization intensity

Complex B field morphologies where the polarization signals can be averaged out. Example: the depolarization regions in W51 e2

Tuesday, May 14, 13

Dust Polarization Mechanism

- individual dust particle: dipole
- in submm: linear polarization from thermal dust emission
- coherent alignment mechanism: B field is one possibility
- mechanism provides only projected field orientation/morphology
- need something more to derive field strength

Correlation of intensity gradient and B field

Correlation of intensity gradient and B field

What does this "correlation" mean?

- is everything simply radially aligned by gravity?
- No! distribution of deviations is non-Gaussian but bimodal
 - mean deviation larger than measurement uncertainties
- some deeper physical insight? check some MHD....

→ polarization-intensity gradient method to derive local field strength (Koch, Tang & Ho 2012a,b)

 $\mathbf{D}_{\nabla \mathbf{I}}$

application of polarization-intensity gradient method

other methods only give local or averaged
B strength values

(Zeeman, Chandrasekhar-Fermi method)

- estimate gravity dilution
- star formation efficiency reduced to
- ~10% of free-fall efficiency

W51 N (SMA SubC+Ext)

Correlation of gradient I and B: tighter in the core regions than outside of core regions <u>3pc</u> <u>2pc</u> <u>0.4 pc</u> <u>0.2 pc</u>

Angular resolution	20''		15"		3.5''	0.7''
	CSO, 350 µ m		JCMT, 850 µ m		SMA, 850 µ m	SMA, 850 µ m
Correlation coefficient of $\phi_{B} \phi_{\nabla_{I}}$	0.81		0.70		0.70	0.00
	0.59	0.88	0.66	0.73	0.70	U.00
mean of φ B- Φ ⊽I	40		44		27	ЭE
	51	34	48	38	57	55
	envelope	core	envelope	core	core	CORE TANG+2013, APJ

Tuesday, May 14, 13

Tight correlation of intensity gradient and B field at core region: purely observational quantities

Intuitive picture: in denser regions the gravity will dominate the system and the B fields will be dragged by the motion of material

Correlation of intensity gradient and B: quantitative analysis on the force ratio

TANG+2013, APJ

Summary

- B field morphologies show more variations at higher angular resolution
 - De-polarization seen with lower angular resolution is partly due to more complex underlying B field morphologies
- Analysis of the PA of the intensity gradient and PA of the B
 - B field shows tighter correlation with intensity gradients toward denser regions at both pc and mpc scales
 - Based on our analysis of the force ratio of gravity to B field tension $(\Sigma_B = f_B/f_G)$, we also found that Σ_B is smaller in the core regions.
 - Development of the B field strength map based on the polarization-intensity gradient method.

2. B field shaped by stellar feedbacks

Color lines: CO outflow Zapata+2009 Background: H₂ jet

SMA Legacy Project: Filaments, Star Formation & Magnetic Fields

Q. Zhang (CfA), J.M. Girart (ICE, IEEC-CSIC), K. Qiu (MPIfR), P. Koch, Y.-W. Tang, R. Rao (ASIAA), S.P. Lai (NHTU), P. Frau (OAN, CAB-CSIC), H. Li (MPIA) & H.-Y. Liu, H.-H. Chen,, P. Ho, H.-R. Chen, E. Keto, Z.-Yun Li, S. Bontemps, T. Csengeri, M. Padovani

Goal: Get a large sample of massive molecular clumps to investigate the role of magnetic fields in formation and fragmentation of massive filaments. Compare observations with radiative transfer modeling and simulations

So far:

- \checkmark More than 30 tracks (beam ~ 1 arcsec)
- High fraction of dust polarization detections
- Some sources show a complex B configuration BUT ...
- Some show hour-glass morphology with the B direction almost parallel to the outflow
- Some sources maintain the main direction observed at larger scales

THANKS