Chemistry of Protoplanetary Disks at the Dawn of the ALMA Era

Edwige Chapillon

Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), Taiwan

Protoplanetary disks around low-mass PMS stars

Protoplanetary disks : birth place of planets.

- morphology (distribution of density)
- kinematic
- temperature (gas and dust)
- composition of the gas (molecular complexity, deuteration...)
- grains properties
- gas-to-dust ratio
- $$\label{eq:Gas} \begin{split} \mathsf{Gas} &= \mathsf{main} \ \mathsf{component} \ \mathsf{of} \ \mathsf{protoplanetary} \ \mathsf{disks} \\ & \mathsf{dissipate} \ \mathsf{during} \ \mathsf{star}/\mathsf{planet} \ \mathsf{formation} \end{split}$$

Protoplanetary disks observation

Dutrey et al. 2004

3

IR observations

- Sensitive to inner disk
- Optically thick dust emission
- Rotational/vibrational transition of molecules

mm observations

- Sensitive to cold regions (outer disk)
- Optically thin dust emission
- Rotational transitions of molecules
- High spectral resolution
- Sub-arsec resolution (interferometers)

Molecules (and atoms) detected in disks (so far)

- CO, ¹³CO, C¹⁸O
- CN, HCN, HNC, CS, SO, H₂CO, CCH, HC₃N, c-C₃H₂ (e.g. Dutrey et al 1997, Henning et al 2010, Chapillon et al 2012, Qi et al 2013)
- C₂H₂, CO₂, OH, HD (e.g. Pontoppidan et al 2010, Thi et al 2011, Bergin et al. 2013)
- ions : HCO⁺, H¹³CO⁺, N₂H⁺, CH⁺ (Qi et al 2008, Dutrey et al 2007, Qi et al 2013)
- deuterated : DCO⁺, DCN (e.g. van Dishoeck et al 2004, Qi et al 2008)
- H₂O (Bergin et al 2010, Hogerheijde et al 2011, Podio et al 2013)
- CII, OI (e.g. Sturm et al. 2010, Meeus et al 2012)

Sampling the disk

Different molecules will trace different regions

- analyse of observational data thanks to radiative transfer codes
- comparison with results from chemical codes
- ightarrow bring information on kinematics, density, thermal structure, turbulence...

Radiative transfer

Parametrization of the disk : power law of the radius

- Rotation : $v(r) = v_0(r/r0)^{-v}$ Keplerian case : v = 0.5, $v_0 = \sqrt{(GM/r_0)}$ (V is measured)
- temperature : T(r) = T₀(r/r0)^{-q}
 if hydrostatic equilibium
- scale height : $h(r) = h_0 (R/r0)^{-h}$
- density : $n(r, z) = n(r, 0).exp[-(z/h)^2]$
- surface density : $\Sigma(r) = \Sigma_{0.}(r/r0)^{-p}$ (power law with sharp edge) $\Sigma(r) = \Sigma_{0.}(r/R0)^{-p} exp(-(r/Rc)^{2-p})$ (viscous model)

Analyse in the $\mathit{uv}\text{-plane}:\chi^2$ minimization \rightarrow errorbars

Brightness temperature

Angular Distance (")

 10^{2}

Radius (AU)

イロト 不得下 イヨト イヨト 二日

c¹⁸0(3-2)

Continuum 0.8 mm

 H_2 mass is not yet well constrained even if distribution is known

Where are the molecules?

- Surface chemistry (on grains) (need a realistic size distribution)
- Neutral neutral (low and high T)
- Ion neutral
- 3 body reactions (?)

- Photodissociation, photoionization by UV
- Interactions with X rays
- Interactions with cosmic rays
- ophotodesorbtion

some chemical codes : Nautilus (Hersant et al 2009), ProDiMo (Woitke)... some disks models : see papers by e.g. Aikawa, Walsh, Fogel

(sub)millimeters chemical "Survey"

- "Chemistry In Disk" (CID)
- "Disk Imaging Survey of Chemistry with SMA" (DISCS)

General trend :

- no complex molecules detected
- Herbig Ae are poor in molecules.

Oberg et al 2010

Kinematic

Protoplanetary disks are in Keplerian rotation : MWC 480 ¹²CO J=2-1 Piétu et al 2007 ப ப் on ở 0 ហ ហំ 0 ப ப் 0 ப ப் ப ப் 0 0 0 0 CP. 3.9 5.1 6.3 0 .u -J.

Kinematic

CO cavity : GM Aur

See also poster by S. Bruderer P.4

HD 163296 ALMA SV observations

 12 CO(3-2) channel map : (De Gregorio et al. subm.)

э

Declination (J2000)

Other disk tracers

Survey with the IRAM 30m Guilloteau et al 2012

Survey of 42 T-Tauri and Herbig A2 in CN J=2-1, 13 CO and C 17 O J=2-1, H₂CO and SO

- ¹³CO is strongly affected by confusion,
- CN is a good tracer of disks for stars in the M1-K5 range
- SO is ubiquitously found in outflow-driving, embedded sources, but exceptional in disks (only 1 source).

Gas temperature

Vertical gradient

PdBl observation of CO & $^{13}\mathrm{CO}$ Dartois et al 2003, Piétu et al 2007 see also Akiyama et al 2012

In TTauri disks T can be very low

Cold molecular layer in T-Tauri?

Observation of molecules at very low temperature (${\sim}10$ K at R = 100 AU) in T-Tauri

- $\bullet~\text{CO}/^{13}\text{CO}~\text{J=1-0}$ and J=2-1 Dartois et al 2003, Piétu et al 2007 (DM Tau)
- CCH J=1-0 and J=2-1 Henning et al 2010 (DM Tau, LkCa 15)
- CN J=2-1 /HCN J=1-0 Chapillon et al 2012 (DM Tau, LkCa 15)
- CS J=3-2 and J=5-4 Guilloteau et al 2012 (DM Tau)

So far, observations cannot be reproduiced by chemical models

But warm gas in MWC 480 (Herbig Ae)

- CO/¹³CO T> 20 K Pietu et al 2007
- CN T \sim 30 K Chapillon et al 2012

Investigating the disk mid-plane :

Searching for H₂D⁺

o- H_2D^+ 372 GHz line TW Hya (APEX), DM Tau (JCMT) no detection (Chapillon et al 2011)

Tracing the CO snow line at

 $\overline{\rm R} \sim 155~\rm AU$ in HD 163296

- from CO isotopologues Qi et al 2011
- from H_2CO Qi et al 2013
- from DCO⁺ Mathews et al 2013 subm.

See talks by Mathews and Oberg

Turbulence

Turbulence, important for accretion, grain coagulation... Line-width : thermal broading + turbulence $\Delta V = \sqrt{\delta v_{cb}^2 + \delta v_{tu}^2}$

From CO observation :

- DM Tau : < 0.14 km/s Dartois et al 2003, Piétu et al 2007
- Hughes et al 2011 : TW Hya < 0.04 km/s, HD 163296 \sim 0.3 km/s

CS in DM Tau

CS : heavy and still abundant $\sim 1''$ PdBI data (+30m) $T_{300AU} = 7 - 10$ K

 $\delta v_{th} = 0.13 - 0.12$ km/s Guilloteau et al. 2012 (CID VIII)

Geometric	Adopted	Fitted	
Parameter	Value	Value from CS	
Distance (pc)	140		
PA (°)	65	65 ± 2	
<i>i</i> (°)	-35	-35 ± 1	
VLSR	6.08	6.08 ± 0.02	
V_{100} (†)	2.16	2.17 ± 0.10	
$M_*(M_{\odot})$	0.54	0.54 ± 0.04	
h	-1.25		
Fitted	Density Model		
Value	(A) Power Law	(B) Tapered Edge	Note
χ^2	2468353	2468336	
H_0 (AU) (a)	[16]	9 ± 1.5	(1)
T_0 (K) (b)	7.2 ± 0.4	8.0 ± 1.3	
9	0.63 ± 0.09	0.60 ± 0.20	
$\hat{\Sigma}_{CS}$ (cm ⁻²) (b)	$5.9 \pm 2.5 \ 10^{12}$	(2) (2)	(2)
X_{CS} (b)	12	$4.2 \pm 4.8 \ 10^{-10}$	(2)
PCS	0.13 ± 0.20	0.39 ± 0.18	
Σ_d (cm ⁻²)	()=	$\approx 10^{21.7 \pm 0.1}$	(3)
Rout (AU)	540 ± 10	> 580	100
dV_0 (km.s ⁻¹) (b)	0.13 ± 0.03	0.12 ± 0.025	
ev	0.38 ± 0.45	[0,3]	(1)

Notes. (†) Rotation velocity (km.s⁻¹) at 100 AU, which determines the stellar mass $M_{..}$ (a) at 100 AU, (b) at 300 AU. (1) a number between brackets \parallel indicate a fixed parameter. (2) Large errorbar due to strong coupling with temperature. (3) Error bar not symmetric; derivation from covariance matrix inaccurate.

Gas mass estimation

Estimation of the disks masses

Crutial parameter for planetary formation. Very difficult : Usually from CO $\,$

- $\bullet\,$ from gas emission $\to\,$ need molecular abundaces
- from dust emission \rightarrow need gas-to-dust ratio

"Direct" measurement

Detection of HD (Bergin et al 2013) in TW Hya

 $\Rightarrow M_{\textit{disk}} > 0.05 M_{\odot}$

DCN and DCO⁺

Multiple pathway to deuteration (Oberg et al 2012) DCN, DCO^+ J=3-2 data

- DCN centraly picked \rightarrow in the warm region additional pathway to formation at T > 30 K through CH₂D⁺
- $\bullet~DCO^+$ formed at $T < 30\,K$ through H_2D^+

H_2O

- tentative detection in DM Tau (Bergin et al 2010)
- detection in TW Hya (Hogerheijde et al 2011) T_{spin} =13,5± 0,5 K

 detection in DG Tau (Podio et al 2013) trace the disk's kinematic strong stellar UV flux, orrigine of water in a super-heated layer.

New detection of complexe molecules

H₃CN, deep search with IRAM 30m and

Chapillon et al 2012

Qi et al 2013

Search for CCS and HC₃N

	$\Sigma_{300} (cm^{-2})$			
	HC ₃ N		CCS	
Souce	Derived	Predicted	Derived	Predicted
LkCa 15	$8 \pm 2 \cdot 10^{11}$	$5.2 \cdot 10^{13}$	$\leq 1.4 \cdot \ 10^{12}$	$2.9 \cdot 10^{11}$
GO Tau	$13 \pm 2 \cdot 10^{11}$	$4.4 \cdot 10^{13}$	$\leq 1.2 \cdot 10^{12}$	$3.7 \cdot 10^{11}$
DM Tau	$\leq 3.5 \cdot 10^{11}$	$4.4 \cdot 10^{13}$	$\leq 1.1 \cdot 10^{12}$	$3.7 \cdot 10^{11}$
MWC 480	$6 \pm 1 \cdot 10^{11}$	$6.4 \cdot 10^{11}$	$\leq 0.9 \cdot \ 10^{12}$	$3.1 \cdot 10^{11}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Deep search with the IRAM 30-m and PdBI for heavier molecules.

• CCS not detected.

Upper limit compatible with chemical model

- N(HC₃N) are 2 orders of magnitude lower than predicted
 - \rightarrow strong UV field
 - \rightarrow grain growth?
 - \rightarrow dust settling ?

Chapillon et al 2012 (CID VII)

Search for S-bearing molecules

CS detected

• SO and H_2S : upper limits

Table 3. Sulfur-bearing Molecules: detections and 3σ upper limits.

Sources	$\Sigma_{300} (cm^{-2})$ SO H ₂ S CS			
DM Tau LkCa15 MWC480 GO Tau	$ \begin{array}{l} \leq 7.5 \cdot 10^{11} \\ \leq 1.9 \cdot 10^{12} \\ \leq 2.5 \cdot 10^{12} \\ \leq 8.9 \cdot 10^{11} \end{array} $	$ \leq 1.4 \cdot 10^{11} \\ \leq 3.6 \cdot 10^{11} \\ \leq 4.1 \cdot 10^{11} \\ \leq 1.8 \cdot 10^{11} $	$\begin{array}{l} 3.5 \pm 0.1 \cdot 10^{12} \\ 8.7 \pm 1.6 \cdot 10^{12} \\ \leq 8.4 \cdot 10^{11} \\ 2.0 \pm 0.16 \cdot 10^{12} \end{array}$	

Notes. Sulfur-bearing molecules surface densities (cm⁻²) at 300 AU (modeled as $\Sigma(r) = \Sigma_{300}(r/300 AU)^{-1.5}$). The surface densities are derived from the 30-m data (except for CS 3-2 in DM Tau) and the model DISKFIT. See text for details.

- better agreement with initial C/O = 1.2 (Hincelin et al 2011)
- CS and SO OK
- H₂S failed

 \rightarrow emphasis importance of grain surface chemistry. H₂S may be locked into grain mantle

 \Rightarrow chemical code to improve Dutrev et al 2011

Carbon in disks

Gas-poor dusty rich source

- PdBl data on 12 Cl J=2-1 CO J=2-1 optically thin + strong continuum gas temperature > 50 K Results depletion of factor 100? \rightarrow g/p ${\sim}1$?
- AND APEX data on CI (upper limits)
- model test grain size, g/p UV field (not well known)
- \Rightarrow gas-to-dust-ratio \sim 10 in CQ Tau

CI is sensitive to the stellar UV profile ("excess") (Chapillon et al 2008, 2010)

Carbon in disks

HD 100546, a Carbon-poor disk

Lots of CO lines + CII and OI lines and uper limits on CI.

- \bullet Warm atmosphere (Tgas > Tdust) needed to reproduce the high-J CO
- Can explain the upper limit of CI together with the CO ladder and OI for high gas-to-dust ratio, but low amount of volatile carbon. But this underproduces CII.
- CII likely affected by cloud emission

Bruderer et al 2012

Carbon in disks

CII detection rate is poor

but predicted strong. \rightarrow Contamination by clouds?

Meeus et al 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

27/31

Comparison with current chemical models

Some success (i.e. CO snow line in HD 163296), but still lot of discrepancies

- Current models do not reproduce cold gas-phase molecules in T-Tauri
- Order of magnitude of molecular column densities not reproduced (i.e. HC_3N , H_2S)
- Iack of CI and CII
- difference T-Tauri (low mass) / Herbig Ae (intermediate mass)
- \Rightarrow We miss something !
 - updated reaction rates (KIDA : KInetic Database for Astrochemistry, PI Wakelam)
 - initial conditions (better fit with an initial C/O = 1.2, Hincelin et al 2011)
 - interaction with grains
 - grain surface reactions
 - desorption mechanisms (UV, IR, heatting...)
 - grain growth, sedimentation, radial variation
 - Profile of illuminating UV spectrum (e.g. importance of UV excess in the CI prediction)
 - X- ray driven chemistry (link to TT/HAe difference?)

- chemistry is a powerfull tool to study protoplanetary disks structure and composition
- with ALMA,
 - imaging lines that are already detected with much better accuracy \hookrightarrow allow us to study specific layer in the disk
 - imaging of complex molecules may not be so easy
- we need more accurate chemical modeling
- we need more accurate estimation of the dust content
- we need more accurate estimation of the stellar UV/Xray emission profile
- desorption mechanismes seems important.
- \Rightarrow ALMA observation of gas AND dust \Rightarrow improve models

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

THANK YOU!

H₂ emission in GG Tau

GG Tau : circumbinary disks Severeal lines of H_2 detected (v= 1-0 S(1) and v =2-1)

イロン イ団と イヨン イヨン

3

 H_2 emission seems to trace the dust streamer Beck et al 2012