Chondritic meteorites and their components: Constraints on the early Solar System processes

Sasha Krot<sup>1,2</sup>

<sup>1</sup>Hawai 'i Institute of Geophysics & Planetology & NASA Astrobiology Institute, University of Hawai 'i at Mānoa, USA <sup>2</sup>Center for Stars & Planets, Natural History Museum of Denmark, Denmark

Big Island, Hawai'i - April 10, 2013

# Outline

- I. Introduction: Chondritic meteorites & their classification
- II. <u>Calcium-Aluminum-rich Inclusions</u> (CAIs)
  - → constraint on astrophysical setting of Solar System formation
    → constraint on oxygen-isotope reservoirs
- III. Chondrules & fine-grained matrices
  - → constraint on life-time of protoplanetary disk (PPD)
     → constraint on duration of accretion of chondrite parent asteroids
- IV. Aqueous activity on chondrite parent asteroids
  - $\rightarrow$  constraint on sources of asteroidal water



# Major chondritic components: Chondrules, matrix, & CAIs

1 mm



CR carbonaceous chondrite • matrix

CAI

- chondrules + Fe,Ni-metal (30–98 vol%)
- Ca,Al-rich inclusions (CAIs) (<1-5 vol%)</li>
- fine-grained matrix (<2–70 vol%)

Fe,Ni-metal dominated by crystalline material → thermal processing in PPD (evaporation, condensation, thermal annealing, & melting)

## Classification of chondritic meteorites (chondrites)

• based on mineralogy, petrography, bulk oxygen-isotope & chemical compositions, chondrites are divided into 15 groups & 3 major classes

| <u>Carbonaceous</u> | <u>Enstatite</u> | <u>Ordinary</u> | Other |
|---------------------|------------------|-----------------|-------|
| I CM CR CV CK CO (  | CB CH EH EL      | H L LL          | K R   |

- letters designating groups refer to a prototype meteorite in a group:
  - CI Ivuna-like (CI chondrite: Orgueil)
  - CM Mighei-like (CM chondrite: Murchison)
  - CV Vigarano-like (CV chondrite: Allende)
- some chondrites are ungrouped (e.g., Acfer 094)





intergroup variations in textures, mineralogy, sizes & abundances of chondritic components
CAIs & chondrules present in all chondrite groups & in a comet 81P/Wild 2

## CAIs & a chondrule fragment from 81P/Wild 2 comet



Matzel et al. (2010) Science

### Bulk chemical compositions



J. Wasson's lab (UCLA)

- CIs <u>compositionally</u> most similar to solar photosph. & in cosmochemistry CIs  $\equiv$  Sun
- chondrite groups have distinct bulk chemical compositions
- chondrites within a group are compositionally similar  $\rightarrow$  sampled same asteroid

Bulk oxygen-isotope compositions



very different from composition of solar wind,  $\delta^{17,18}$ O  $\approx$  -60% (McKeegan et al., 2011)

# II. Ca, Al-rich Inclusions (CAIs)



## Redox conditions in CAI-forming region(s)



CAI minerals contain no oxidized Fe (Fe<sup>2+</sup> or Fe<sup>3+</sup>) & have high Ti<sup>3+</sup>/Ti<sup>4+</sup> ratio → formed in highly-reducing, gas-dominated region(s) with a solar  $H_2O/H_2 \sim 5 \times 10^{-4}$ 

#### Oxygen-isotope compositions of CAIs





• relict <sup>16</sup>O-depleted ultrarefractory CAI inside <sup>16</sup>O-rich host CAI

#### • most CAIs: <sup>16</sup>O-rich, close to solar wind value

- some CAIs: <sup>16</sup>O-enriched or <sup>16</sup>O-depleted relative solar wind
- $\rightarrow$  early generation of isotopically distinct oxygen reservoirs in PPD
- **mechanism** of generation of these reservoirs is not understood (CO self-shielding?)

Short-lived radionuclides (<sup>53</sup>Mn, <sup>60</sup>Fe, <sup>182</sup>Hf, <sup>10</sup>Be, <sup>26</sup>Al, <sup>41</sup>Ca)

- <sup>53</sup>Mn ( $t_{1/2} \sim 3.7$  Myr), <sup>60</sup>Fe (2.6 Myr), <sup>182</sup>Hf (9 Myr): uniformly distributed in PPD & inherited from MC
- $\rightarrow$  <sup>53</sup>Mn & <sup>182</sup>Hf are used for chronology of SS processes
- <sup>10</sup>Be ( $t_{1/2} \sim 1.5$  Myr), <sup>26</sup>Al (0.7 Myr), & <sup>41</sup>Ca (0.1 Myr): heterogeneous among CAIs
  - <sup>10</sup>Be: energetic particle irradiation near protoSun
  - → formation of CAIs near protoSun
  - <sup>26</sup>Al & <sup>41</sup>Ca correlate with each other, but do not correlate with <sup>10</sup>Be;
  - <sup>26</sup>Al in PPD is too high to be explained by irradiation *Dupra & Tatischeff (2007) ApJ*
  - $\rightarrow$  external, stellar origin
  - $\rightarrow$  Solar System formed near massive star(s) (SN\*, AGB, Wolf-Rayet)

\*previously inferred high abundance of <sup>60</sup>Fe requiring SN source has not been confirmed (*check poster #43 by M. Telus*)

# <sup>26</sup>Al heterogeneity during epoch of CAI formation

- CV CAIs:  ${}^{26}Al/{}^{27}Al = (5.25 \pm 0.02) \times 10^{-5}$ , "canonical"
  - uniform distribution of <sup>26</sup>Al in PPD
  - brief (<0.002 Myr) duration of CAI formation
- incorrect:
  - some CAIs: <sup>26</sup>Al/<sup>27</sup>Al < 5×10<sup>-6</sup> & formed before or contemporaneously with canonical CAIs
  - $\rightarrow$  <sup>26</sup>Al heterogeneity in protosolar MC
  - $\rightarrow$  recent injection of <sup>26</sup>Al into MC core or PPD





## CAIs: Summary

• earliest SS solids dated:  $\sim$ 4567.3 Ma = age of SS = time 0 in cosmochemistry

- evaporation, condensation, aggregation, irradiation ( $^{10}Be$ ) & ±melting processes in a gas of solar composition (reduced &  $^{16}O$ -rich) in region(s) with ambient T >1400K

- early generation of isotopically distinct oxygen reservoirs in PPD
- heterogeneous distribution of <sup>26</sup>Al & <sup>41</sup>Ca in PPD
  - $\rightarrow$  recent injection of <sup>26</sup>Al into <sup>26</sup>Al-poor MC core by massive star(s)
  - $\rightarrow$  duration of CAI formation is not known & cannot be inferred from <sup>26</sup>A1
  - $\rightarrow$  distribution of <sup>26</sup>Al in PPD cannot be inferred from CAIs
- present in all chondrite groups & in a comet 81P/Wild 2
  - $\rightarrow$  after formation were removed from hot region & dispersed throughout PPD



### III. Chondrules & fine-grained matrices





courtesy of D. Lauretta mm-sized molten & rapidly solidified objects once freely floating in space

Davis & Richter (2005)

• less refractory than CAIs

• contain ferromagnesian silicates (Fe<sup>2+</sup>) & abundant volatiles (Na, K, S)

## Porphyritic textures & relict grains: Incomplete melting



• melting (often incomplete) of solid precursors, including fragments of earlier formed chondrules & CAIs

### Oxygen-isotope compositions of chondrules





relict AOA & relict chondrule fragments in a ferroan porphyritic chondrule

• chondrules are <sup>16</sup>O-depleted relative to CAIs

• relict grains <sup>16</sup>O-enriched relative host chondrules

 $\rightarrow$  chondrules formed by melting of isotopically diverse precursors in <sup>16</sup>O-depleted gaseous reservoir

# Chondrule-matrix relationship: Insights from oxygen isotopes

Kakangari (K) MX 

• matrix & chondrules in Kakangari contain isotopically similar olivine & pyroxene



Nagashima et al. (2012) LPSC

## Chondrule-matrix relationship: Insights from oxygen isotopes



matrix & igneous rims around Kakangari chondrules contain abundant <sup>16</sup>O-rich grains
 matrix grains were among chondrule precursors

#### Chondrule-matrix relationship: Insights from bulk chemistry



• matrix & chondrules in a chondrite group are chemically complementary: e.g., Mg/Si ratio in Renazzo, CR chondrite

| matrix         | $0.65 \pm 0.11$ |
|----------------|-----------------|
| chondrules     | $1.03 \pm 0.20$ |
| bulk chondrite | 0.91            |
| solar Mg/Si    | 0.90            |

 $\rightarrow$  matrix & chondrules formed in the same nebular regions throughout the PPD, contrary to X-wind model suggesting chondrules formed near the protoSun & were transported to 1-4 AU where they accreted together with thermally unprocessed matrices (Shu et al. 1996, 1997, 2001)

## Chondrules: Relative & absolute chronology



- relict CAIs in chondrules
- → CAIs predated chondrules
  → age difference cannot be inferred

#### based on short-lived radionuclide <sup>26</sup>Al



#### assumption: uniform <sup>26</sup>Al/<sup>27</sup>Al in PPD

Krot et al. (2009) GCA

- if  $({}^{26}\text{Al}/{}^{27}\text{Al})_0$  in PPD was uniform,  $\sim 5 \times 10^{-5}$
- $\rightarrow$  1 Myr age gap between CAIs & chondrules
- $\rightarrow$  chondrule formation lasted for ~3 Myr
- $\rightarrow$  life-time of PPD is at least 4 Myr

## Chondrules: Relative <sup>26</sup>Al-<sup>26</sup>Mg & absolute U-Pb chronology



assumption: uniform <sup>26</sup>Al/<sup>27</sup>Al in PPD

Krot et al. (2009) GCA

#### Relative <sup>26</sup>Al-<sup>26</sup>Mg chronology:

1 Myr age gap between CAIs & chondrules chondrule formation lasted for ~3 Myr at least 4 Myr PPD life-time



Connelly et al. (2012) Science

#### Absolute U-Pb chronology:

 <u>chondrule formation started</u> contemporaneously with CAIs
 <u>lasted for at least 3 Myr</u>

### Chondrules formed under oxidizing conditions



under much more oxidizing (up to IW-1) conditions than CAIs (up to IW-7)
 high partial pressures of Si, Na, Mg, Fe, & S (were not lost from chondrule melts)
 → formed under <u>non-solar</u> conditions (D/G > 10<sup>4</sup>×solar; H<sub>2</sub>O/H<sub>2</sub> >10<sup>2</sup>×solar)

# Models of chondrule formation: Shock waves, impacts, lightning ...





by X-ray flares





Nakamoto et al. (2005)

# Chondrules & fine-grained matrices: Summary

- in isotopically distinct regions of inner disk dominated by <sup>16</sup>O-poor dust & gas
- at lower ambient T (<650 K) & highly non-solar dust/gas &  $H_2O/H_2$  ratios
- rapid heating (up to 1600°C) & cooling (1-1000°C hr<sup>-1</sup>) of isotopically & mineralogically diverse solid precursors (fragments of earlier formed chondrules & CAIs, & matrix)
- most matrix was thermally processed during chondrule & CAI formation
- formation mechanisms are not understood: shock waves, impacts, lightning, ...
- started contemporaneously with CAIs & lasted  $\sim$  3-4 Myr
- $\rightarrow$  life-time of PPD  $\sim$  3-4 Myr
- $\rightarrow$  duration of accretion of chondrite asteroids ~ 3-4 Myr
- chondrule formation may have been rapidly followed by chondrite accretion





## Phyllosilicates, carbonates, veins, chondrule pseudomorphs



aqueous alteration occurred on chondrite asteroids, <u>not in the nebula</u> CMs, CIs, & CRs: low-T aq. alteration ~25-100°C at high W/R vol. ratio: 0.4-1

### Fayalite-hedenbergite-magnetite veins



- CV, CO, CK, H, L, LL, & R chondrites:  $T \sim 100-200^{\circ}C$  & low W/R <0.2
- aqueous alteration under highly-oxidizing conditions
- phyllosilicates, fayalite (Fe<sup>2+</sup><sub>2</sub>SiO<sub>4</sub>), magnetite (Fe<sup>2+</sup>Fe<sub>2</sub><sup>3+</sup>O<sub>4</sub>), hedenbergite CaFe<sup>2+</sup>Si<sub>2</sub>O<sub>6</sub>, andradite Ca<sub>3</sub>Fe<sub>2</sub><sup>3+</sup>Si<sub>3</sub>O<sub>12</sub>

# Chronology of aqueous alteration



<sup>53</sup>Mn-<sup>53</sup>Cr system: <sup>53</sup>Mn  $\rightarrow$  <sup>53</sup>Cr,  $t_{1/2} \sim 3.7$  Myr <sup>53</sup>Mn uniformly distributed in PPD with the (<sup>53</sup>Mn/<sup>55</sup>Mn)<sub>0</sub> = 6×10<sup>-6</sup> (*Kleine et al., 2012, GCA*)

Doyle et al. (2013) LPSC

- fayalite in CVs : 3.7 Myr after  $t_0$
- fayalite in COs : 4.4 Myr after  $t_0$

Fujiya et al. (2012, 2013) EPSL, Nature Comm.

- carbonates in CMs : ~ 4 Myr after  $t_0$
- carbonates in CIs : ~ 3.5 Myr after  $t_0$

 $\rightarrow$  aqueous alteration on CC parent asteroids started shortly after accretion

- $\rightarrow$  chondrites formed near the snow line
- $\rightarrow$  position of snow line varied with time

## Water as a carrier of heavy oxygen in the molecular cloud & PPD



- preferential photodissociation of C<sup>17</sup>O & C<sup>18</sup>O in the initially uniformly <sup>16</sup>O-rich  $(\Delta^{17}O \sim -25\%)$  PPD or MC (assumption)
- released <sup>17</sup>O & <sup>18</sup>O incorporated into  $H_2O_{(s)}$ ; CO<sub>(g)</sub> is <sup>16</sup>O-enriched

 $H_2O_{(s)}/CO_{(g)}$  enrichment in the midplane of the protoplanetary disk followed by ice evaporation  $\rightarrow$  <sup>17,18</sup>O-enriched gas

thermal processing of dust in  $^{17,18}$ O-rich gas  $\rightarrow$  evolution of solids towards the TFL





#### Oxygen isotopes & water in the Solar System



McKeegan et al. (2011) Science

Hashizume et al. (2011) Nature Geoscience

• in the CO self-shielding models (Yurimoto & Kuramoto, 2004, Science; Lyons & Young, 2005, Nature), water in the outer disk (>30 AU) is highly <sup>17</sup>O & <sup>18</sup>O-enriched relative to the inner disk (testable by ALMA)

- iron oxides in Acfer 094 (ungr.):  $\Delta^{17}O \sim +90\%$  (Sakamoto et al., 2007, Science)
- grains in IOM from Y-793495 (CR):  $\Delta^{17}O \sim +500\%$  (Hashizume et al., 2007)

### Oxygen-isotope compositions of aqueously-formed minerals







Clayton & Mayedan (1999), Rowe et al. (1994), Leshin et al. (2011), Baker et al. (2002), Benedix et al. (2003)

Δ<sup>17</sup>O of aqueously-formed minerals can be used as a proxy for Δ<sup>17</sup>O of asteroid water ices; it stays ~constant during alteration
near terrestrial Δ<sup>17</sup>O values of water ices
→ local, inner SS origin of water

## Sources of water on asteroids: Insights from D/H ratio



- $\delta D = (D/H_{sample}/D/H_{SMOW} 1) \times 1000$
- bulk  $\delta D$  = phyllosilicates + organics
- $\delta D$  of phyllosilicates at C/H = 0



Alexander et al. (2012) Science

- δD in chondrites, Oort Cloud & Jupiter
   Family comets, & Enceladus
- → water in chondrites & comets formed in different SS regions (contrary to Walsh et al., 2011, Nature)

 $\rightarrow$  low influx of water from the outer SS into the inner disk ~2 Myr after  $t_0$  could be due to an early growth of Jupiter that prevented significant radial transport of dust from outside its orbit

## Constraints on the early SS processes from chondrites

- ✓ Solar System formed near massive star(s)
- ✓ early generation of <sup>16</sup>O-rich & <sup>16</sup>O-poor reservoirs in protoplanetary disk
- inner Solar System solids experienced extensive thermal processing during evaporation, condensation, thermal annealing, & melting
- $\checkmark$  thermally processed solids were radially transported to the outer Solar System
- ✓ life-time of the PPD is ∼3-4 Myr
- $\checkmark$  accretion of cm-sized objects started at  $t_0$
- $\checkmark$  accretion of asteroid-sized bodies started < 1 Myr after  $t_0$  & lasted at least 3-4 Myr
- $\checkmark$  accretion of individual asteroids may have been very rapid
- ✓ most chondrites accreted water ices, i.e., were close to the Snow Line
- influx of the outer Solar System material was small during chondrite accretion