The Radial and Vertical Gas Disk Structure in HD163296 1st ALMA Science Verification Results

8-13 Apr 2013 Hilton Waikoloa Village, Hawaii Transformational Science with ALMA: From Dust to Rocks to Planets Formation and Evolution of Planetary Systems Eiji Akiyama

Outline

Introduction HD 163296

2. Observation & Results

¹²CO(J=1-0), ¹²CO(J=2-1), ¹²CO(J=3-2),
 ¹³CO(J=1-0), ¹³CO(J=2-1), ¹³CO(J=3-2),
 C¹⁸O(J=1-0), C¹⁸O(J=2-1)

- 3. Model Fit
 - Power-law disk model
 - Similarity solution disk model
- 4. Discussion
 - Vertical Temperature Distribution
 - Radial Density Distribution
- 5. Summary

Complex structures of Protoplanetary Disks

1"=137AU

Object Details

- HD 163296 is very famous Herbig Ae star.
- It has been observed by many people and basic properties are already well known. → We have plenty of observational data!
- No complex structures \rightarrow easy to analyze

distance [pc]	SP type	${ m M}_{*}$ [${ m M}_{\odot}$]	$M_{disk} \ [M_{\odot}]$	Age [Myr]	inclination [deg.]
122 ^a	A1 ^b	2.3 ^b	0.024 ^b	~5°	45 ^d

^a van den Ancker et al. 1998 ^b Mannings et al. 1997 ^c Natta et al. 2004 ^d Isella et al. 2007

Wisniewski+ 2008

Isella et al. 2007

Observation

	Interferometer	Single Dish		
Lines	CO, ¹³ CO, C ¹⁸ O (<i>J</i> =2-1)	CO, ¹³ CO, C ¹⁸ O (<i>J</i> =1-0) CO, ¹³ CO (<i>J</i> =3-2)		
Telescopes	ALMA	<i>J</i> =1-0: NRO 45 m <i>J</i> =3-2: ASTE 10 m		
HPBW	0.68" × 0.55"	J=1-0: ~ 15" J=3-2: ~ 23"		
Tsys	100 - 250 K	150 - 600 K		

Results 1 (ALMA No. 2011.0.000010.SV)

Results 2

Power-Law Model

Model description

- •Keplerian disk model (Kitamura et al. 1993)
- Power-law in temperature and surface density distribution (Hayashi et al. 1981, Beckwith et al. 1990)

$$T(r) = T_0 \left(\frac{r}{100AU}\right)^{-q} \quad \Sigma(r) = \Sigma_0 \left(\frac{r}{100AU}\right)^{-q}$$

 T_{100} : temperature at 100 AU from a central star

 Σ_{100} : surface density at 100 AU from a central star

> Assumption

- -X(12CO) = 10000
- X(12CO) / X(13CO) = 60
- $X(^{13}CO) / X(C^{18}O) = 5$
- Local Thermal Equilibrium (LTE)
- Hydrostatic Equilibrium

Image of the model

Similarity Solution Model

 \succ Similarity solution for the surface density (Hughes et al. 2008)

 $\Sigma(r) = \frac{C_1}{r^p} \exp\left[-\left(\frac{r}{C_2}\right)^{2-p}\right]$

 C_1 normalized surface density C_2 distance where $\Sigma(r)$ starts decreasing exponentially

- Vertical density distribution Hydrostatic equilibrium
- > Uniform temperature is assumed
- Difference between the two models truncation caused by power-law

Model Parameters

• Fixed parameters : The results obtained by other observations applied

	distance [pc]	M∗ [M⊙]	inclination [deg.]	р	q
HD163296	122	2.3	45	1.0	0.5

• Free parameters : Best fit parameters are searched

• Outer radius: r_{out} , C_2 • Temperature: T_{100} • Surface density: Σ_{100} , C_1

Fitting by Power-Law Model

Fitting by Similarity Solution Model

Vertical Location of the Photosphere Optical depth of rotational transition emission from rigid rotor molecules such as CO (Scoville et al.1986)

$$\tau_{v_0} = \frac{8\pi^3 B\mu^2}{3kT_{ex}\Delta V_{gas}} (J+1)N\exp\left[-\frac{hBJ(J+1)}{kT_{ex}}\right] \left[1 - \exp\left(-\frac{hv_0}{kT_{ex}}\right)\right]$$

B: rotational constant μ : permanent dipole momentJ: rotational quantum numberN: column densityh: Plank constantk: Boltzman constant T_{ex} : excitation temperature ΔV_{gas} : velocity width

 v_0 : transitional frequency

Optical depth expressed by surface density

$$\tau_{v_0} = \int_{z_1}^{\infty} \frac{\Sigma(r)\kappa_v}{\sqrt{\pi}H(r)} \exp\left[-\left(\frac{z}{H(r)}\right)^2\right] dz$$

 z_1 : distance from the mid-plane to the photosphere κ_v : opacity

Location of the Photospheres

Vertical temperature structure

The upper layer is warm and interior is cold.
Vertical temperature distribution presents near the scale height.

≻ HD163296 was observed by 8 CO isotopologue lines.

- The velocity width is wider in optically thin line and narrower in optically thick line.
- \succ The upper layer is warm and interior is cold.
- We compared power-law and similarity solution disk models.
 - → Similarity solution is better at reproducing gas emission simultaneously.
 - \rightarrow Surface density tapers off gradually in the outer edge of the disk.

Discrepancy between Dust & Gas Emission Discrepancy in disk size has emerged between the extent of the dust continuum and molecular gas emission. Dust continuum: smaller size Gas emission: larger size Examples •AB Aur (Pietu et al. 2005) Continuum (2.8, 1.4 mm): 350±30 AU $^{12}CO(J=2-1)$: 1050±10 AU •HD 163296 (Isella et al. 2007)

Continuum (0.87-7mm)

 $^{12}CO(J=3-2)$ etc

- : 200±15 AU
- : 540±40 AU

Successful Examples of Similarity Solution

Similarity solution model is better at reproducing both dust continuum and gas emission simultaneously.

Disk Classification

SED Classification (Meeus +2001, Dullemond +2002)

Group I :power law+black body (@MIR)

 $\log \lambda[\mu m]$

Group I (flared)

Group II (self-shadow)

高温層による他の輝線への影響 ¹²CO(J=3-2)の高温層が他の輝線に著しく寄 与していると温度構造が破綻する。

J=3-2領域からのJ=1-0の強度は、低温層からのJ=1-0強度の1/10程度。ほとんど影響はない。

HD169142 Fitting by SS model

 $r_{out} = 800 AU, p=1.5, \theta=13^{\circ}$

Residuals after Model Fitting

residual

Similarity solution disk model shows better fitting than the power-law disk model

 \rightarrow Surface density tapers off gradually in the outer edge of the disk

Previous talk: Vertical temperature structure

