

NRAO ALMA Correlator Enhancement Proposal

Rich Lacasse and many collaborators

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Collaborators

- Ray Escoffier NRAO (retired)
- Joe Greenberg NRAO
- Bob Treacy NRAO
- Alejandro Saez JAO/NRAO
- Rodrigo Amestica NRAO
- John Webber NRAO (retired)
- Alain Baudry Université de Bordeaux
- Mircea Stan
 UVA
- Al Wootten NRAO

CDL

Outline

- Scientific Motivation
 - Observing Efficiency
 - Higher time resolution
- Technical Approach
 - Upgrade as opposed to replace
 - Good "bang for the buck"
- Ripple effects and status

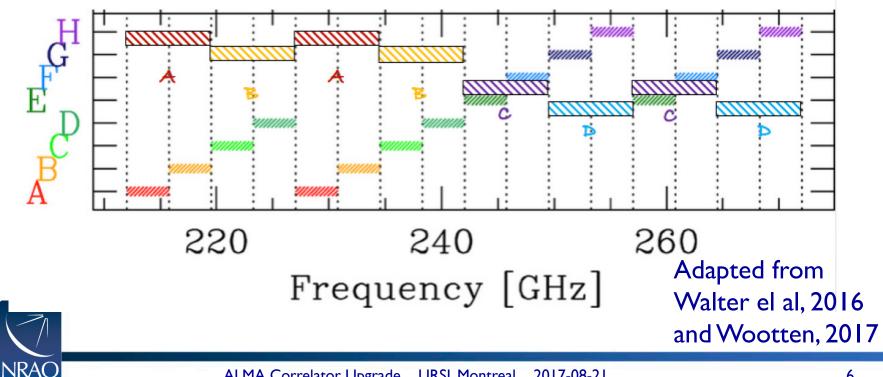
Scientific Motivation

• A ROAD MAP FOR DEVELOPING ALMA, ASAC Recommendations for ALMA 2030, Bolatto et. al. states:

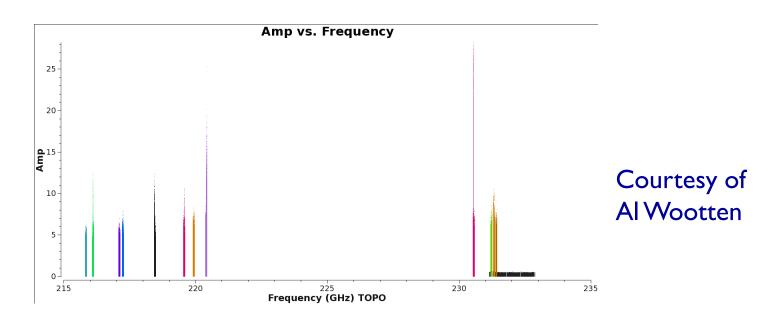
"The ability to provide and process wider instantaneous bandwidths, together with continuous improvements in receiver sensitivity, can bring scientifically significant increases in observation speed. The ultimate goal is to correlate an entire receiver band in one go, with no loss of sensitivity. This requires improvements not just to the receivers themselves, but also to the digitizers, the IF transport, the correlator, and the archive." ...Doubling the bandwidths of the digitizers, fiber-optics transmission, correlator,

and archive seem, likewise, eminently possible with current technology.

- Efficiency improvement gained by 4-bit correlation
- There is some interest in higher time resolution (FRBs, pulsars, solar)


Proposal in a Nutshell

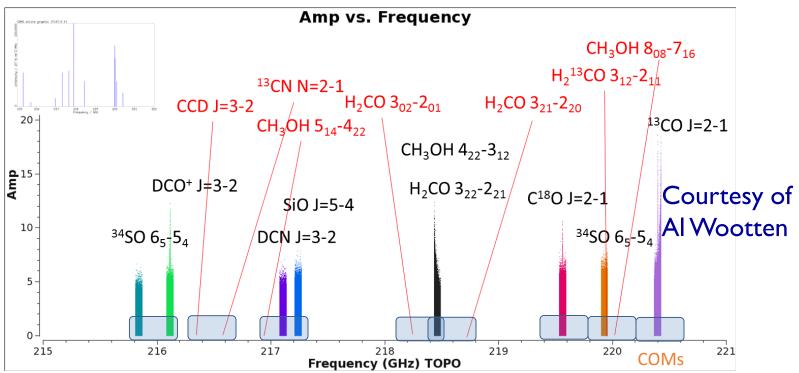
- Double the current bandwidth, providing instantaneous coverage of the entire IF band.
- Increase the spectral resolution by a factor of 8
- Increase the time resolution, at least in hardware, by a factor of 16.



Obvious Advantages

- **Root-2 increase in continuum sensitivity**
- Factor of 2 increase in spectral survey speed (e.g., **Band 6 below)**

Scientific Motivation – less obvious



- Typical Correlator Setup, Starved for BW at high resolution
- 12 high resolution 58 MHz windows available (need one low res window for continuum)
- Many lines cannot be covered

• Upgraded correlator provides broader windows at high resolution, in addition to higher resolution across them

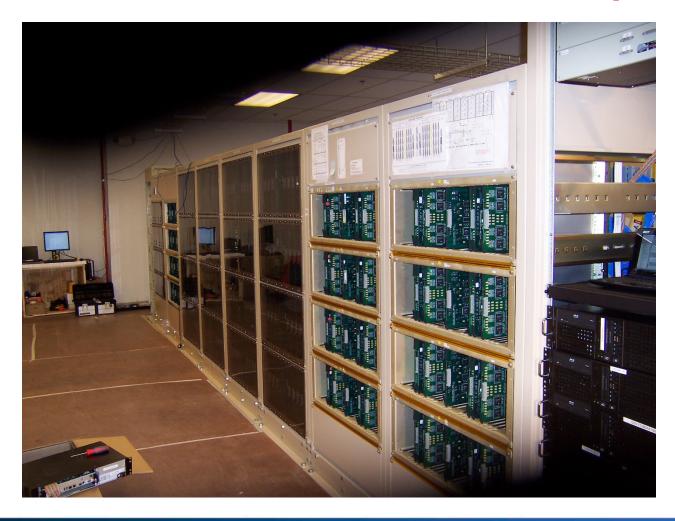
Less Obvious Advantage I

- In Red are important lines that are missed with current correlator
- Upgraded correlator accesses all the missed lines at the current resolution, using wider filters, shown in <u>blue</u>.

Less Obvious Advantage 2

Total Bandwidth	Number of Spectral Points	Spectral Resolution	Correlation	Samp le Factor	Minimum dump time ¹	Sensitivity ²
2 GHz	32768	61 kHz	2-bit x 2-bit	Nyquist	512 msec	0.88
2 GHz	16384	122 kHz	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
2 GHz	8192	244 kHz	4-bit x 4-bit	Nyquist	128 msec	0.99

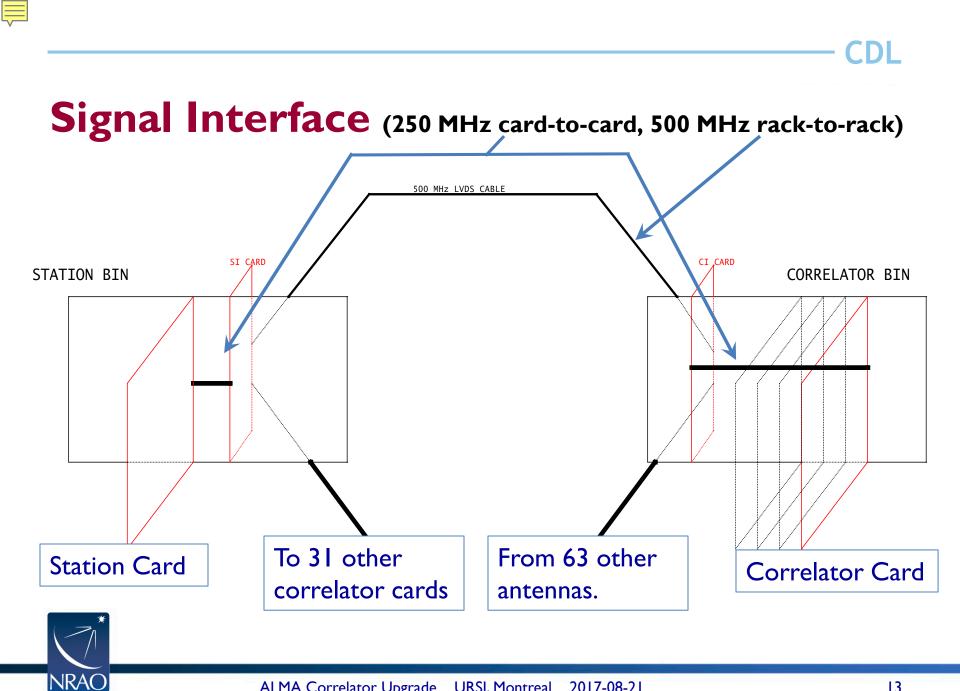
- At narrower bandwidths, trade-offs to improve sensitivity are possible
- Software for twice-nyquist and 4x4-bit correlation is currently unavailable, but will be developed in parallel with the upgrade.



Technical Approach

- The ALMA Correlator design was begun around the year 2000.
- In the intervening years, technology has progressed significantly (surprise!)
- A group in North America and Europe recently completed a study project focused on upgrading the correlator
 - Approach: upgrade the **existing** infrastructure
 - Conclusion: It is a doable project
- The study project has led to an ALMA development proposal
 - Still being evaluated
 - Will concentrate on the technical approach and interfaces, which is what is of interest here




Correlator Configuration: Station Bins, Correlator Bins, Computers

Block Diagram (black existing, red new, green reduction)

Key External Interface Requirements

Sample Rate

- Currently 4 Gs/s, 3-bit
- Improve to 8 Gs/s, 3 or 4-bit
 - Note that correlator design has 2, 3 and 4 bit modes
 - The new 4-bit modes will have better spectral resolution than the current 2-bit modes (not available for all bandwidths)

Output Data Rate

- Flexible: data can be time or spectral averaged to accommodate required data rates.
- Currently <= 60 MB/s peak, 6 MB/s average
- 500 MB/s average or more is possible.

System Test Approach

- Goal is to minimize disruption to a very busy observatory
- System Test in Charlottesville using
 - "5th Quadrant"
 - Pseudo-random data sources
 - Production software with very few modifications
- System Test at the OSF
 - "5th Quadrant
 - Real-world signal chain
 - Production software

Ripple Effects

Anti-Aliasing Filter

• Filter in front of the sampler and associated electronics

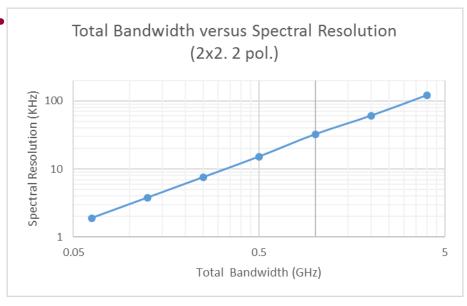
Samplers and Data Transmission

• Discussed later in this session!

Software in other systems:

- M&C for Front End and Back End (bandwidth)
- Telescope Calibration (TELCAL, 8X # points)
- Observing Tool (all new capabilities)
- Data transmission between systems (hardware and software)
- Data analysis (CASA, calibration, 8X # points, BW)

CDL


What It Does Not Do

Correlation Resolution Limitations

- Widest bandwidths are still 2-bit x 2-bit resolution
- 4x4-bit correlation is possible only at narrower bandwidths
- Does not quite get to I KHz resolution in dual-pol modes

Correlator still trades spectral resolution for

bandwidth.

Summary

- ALMA2030 vision calls for doubling the bandwidth
- Our proposed design does this and improves spectral and time resolution.
- We feel that our design accomplishes that with
 - Minimum disruption
 - Minimum effort
 - Minimum cost
 - Minimum risk
 - Fast time to operation
- Awaiting approval...

Thanks... and Questions?

ALMA Correlator Upgrade URSI, Montreal 2017-08-21

CDL

Backup slides

ALMA Correlator Upgrade URSI, Montreal 2017-08-21

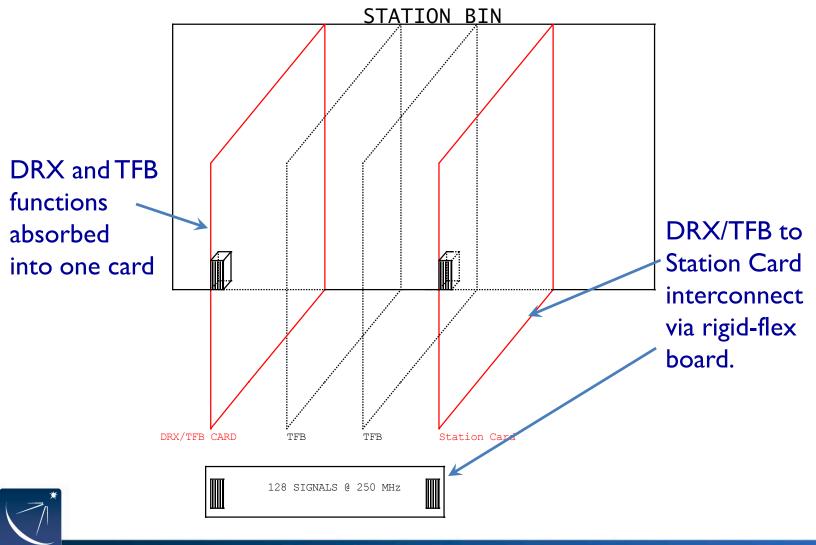
Single-pol modes

Mode #	Number of sub- channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time ^l	Sensitivity ²
1	32	4 GHz	65536	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
19	32	4 GHz	32768	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
38	32	4 GHz	16384	244 kHz	0.64 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
2	16	2 GHz	65536	30.5 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
20	16	2 GHz	32768	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
39	16	2 GHz	16384	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
53	16	2 GHz	8192	244 kHz	0.64 km/s	4-bit x 4-bit	Twice Nyquist	64msec	0.99
3	8	l GHz	65536	15.3 kHz	0.02 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
21	8	l GHz	32768	30.5 kHz	0.04 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
40	8	l GHz	16384	61 kHz	0.08 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
54	8	l GHz	8192	122 kHz	0.16 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
4	4	500 MHz	65536	7.5 kHz	0.01 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
22	4	500 MHz	32768	15.3 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
41	4	500 MHz	16384	30.5 kHz	0.04 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
55	4	500 MHz	8192	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
5	2	250 MHz	65536	3.75 kHz	0.005 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
23	2	250 MHz	32768	7.5 kHz	0.01 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
42	2	250 MHz	16384	15.3 kHz	0.02 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
56	2	250 MHz	8192	30.5 kHz	0.04 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
6	L I	125 MHz	65536	I.9 kHz	0.0025 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
24	I	125 MHz	32768	3.75 kHz	0.005 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
43	I	125 MHz	16384	7.5 kHz	0.01 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
57	I	125 MHz	8192	15.3 kHz	0.02 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
25	1	62.5 MHz	65536	0.95 kHz	0.00125 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
58	I	62.5 MHz	16384	3.75 kHz	0.005 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
68	Time Division Mode	4 GHz	512	7.8125 MHz	10.2 km/s	3-bit x 3-bit	Nyquist	16 msec	1.00
71	Time Division Mode	4 GHz	512 ³	7.8125 MHz	10.2 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

Ē

Dual-pol modes

Mode #	Number of sub- channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time ¹	Sensitivity ²
7	32	4 GHz	32768	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
8	16	2 GHz	32768	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
26	16	2 GHz	16384	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
44	16	2 GHz	8192	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
9	8	l GHz	32768	61 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
27	8	l GHz	16384	122 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
45	8	l GHz	8192	244 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
59	8	l GHz	4096	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
10	4	500 MHz	32768	15.3 kHz	0.02 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
28	4	500 MHz	16384	30.5 kHz	0.04 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
46	4	500 MHz	8192	61 kHz	0.08 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
60	4	500 MHz	4096	122 kHz	0.16 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
11	2	250 MHz	32768	7.6 kHz	0.01 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
29	2	250 MHz	16384	15.3 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
47	2	250 MHz	8192	30.5 kHz	0.04 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
61	2	250 MHz	4096	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
12	I	125 MHz	32768	3.8 kHz	0.005 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
30	I	125 MHz	16384	7.6 kHz	0.01 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
48	I	125 MHz	8192	15.3 kHz	0.02 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
62	I	125 MHz	4096	30.5 kHz	0.04 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
31	l. I	62.5 MHz	32768	I.9 kHz	0.0025 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
63	I	62.5 MHz	8192	7.6 kHz	0.01 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
69	Time Division Mode	4 GHz	512 ³	7.8 MHz	10.2 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88


Cross-pol modes

Mode #	Number of sub- channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time ^l	Sensitivity ²
13	32	4 GHz	16384	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
72 ³	32	2 GHz ³	16384	122 KHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
14	16	2 GHz	16384	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
32	16	2 GHz	8192	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
15	8	I GHz	16384	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
33	8	I GHz	8192	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
16	4	500 MHz	16384	30.5 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
34	4	500 MHz	8192	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
17	2	250 MHz	16384	15.3 kHz	0.02 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
35	2	250 MHz	8192	30.5 kHz	0.04 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
51	2	250 MHz	4096	61 kHz	0.08 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
18	I	125 MHz	16384	7.6 kHz	0.01 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
36	I	I 25 MHz	8192	15.3 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
52	l	125 MHz	4096	30.5 kHz	0.04 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
66	l	125 MHz	2048	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
37	l	62.5 MHz	16385	3.8 kHz	0.005 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
67	I	62.5 MHz	4096	15.3 kHz	0.02 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
70	Time Division Mode	4 GHz	512	7.8 MHz	10.2 km/s	2-bit x 2-bit	Nyquist	32 msec	0.88

Ę

Implementation Details – Station Bin

NRAO

CDL

Major concerns, minor concerns (in my opinion, anyway)

- ASIC cost (especially if we need to re-spin the chip)
- Non-correlator upgrades to ALMA needed
- Amount of control card firmware required
- System installation/testing
- Rack-to-rack LVDS interface
- ASIC power dissipation

