Atmospheric phase correction for ALMA with water-vapour radiometers

B. Nikolic

Cavendish Laboratory, University of Cambridge

January 2009 NA URSI, Boulder, CO

Introduction

- Goals for this talk
- Atmospheric Phase Fluctuations at mm/sub-mm wavelengths
- Review of ALMA Phase Correction/Calibration Strategy
 Fast-switching
- Phase correction with WVRs
 - Water Vapour Radiometry
 - Algorithms

Introduction

- Goals for this talk
- Atmospheric Phase Fluctuations at mm/sub-mm wavelengths
- Review of ALMA Phase Correction/Calibration Strategy
 Fast-switching
- Phase correction with WVRs
 Water Vapour Radiometry
 - water vapour Radiome
 - Algorithms

Summary

Goals for this talk

Outline

Introduction

- Goals for this talk
- Atmospheric Phase Fluctuations at mm/sub-mm wavelengths
- Review of ALMA Phase Correction/Calibration Strategy
 Fast-switching
- Phase correction with WVRs
 Water Vapour Radiometry
 - Algorithms
 - Algorithms
 - Summary

Goals for this talk

- Introduce the work in Cambridge on *algorithms* for WVR phase corrections
 - Why this is interesting
 - Where we are heading
- Very briefly present some simulations
- Also briefly review results of prototype testing at the SMA

Introduction

- Goals for this talk
- Atmospheric Phase Fluctuations at mm/sub-mm wavelengths
- Review of ALMA Phase Correction/Calibration Strategy
 Fast-switching
- Phase correction with WVRs
 Water Vapour Radiometry

 - Algorithms

Summary

Causes of Phase Errors at mm/sub-mm wavelengths

Instrumental

- Sources: Mechanical/ Optical/ Electronic
- Timescales: from about 30 minutes to very long timescales (e.g., the diurnal cycle)
- Mitigation: Stable designs and astronomical phase calibration

Atmospheric – Tropospheric

Two sources:

- Fluctuating quantity of water-vapour along line of sight ('wet')
- Fluctuating temperature of dry air along line of sight ('dry')

Two relevant timescales:

- Inner: Set by the smoothing effect of the D = 12 m telescope beam: $\approx D/v \sim 1 \text{ s}$
- Outer: Determined by the baseline length *B*:

$$5 s \leq B/v \leq 20$$
 minutes

Example of observed path fluctuations

SMA, Mauna Kea, Hawaii

This and all other data from the SMA were collected by the ALMA WVR prototype collaboration: for full list of people involved and more details see http://www.mrao.cam.ac.uk/~bn204/alma/smat.html

Simulated ALMA phase errors

Details of simulations at http://www.mrao.cam.ac.uk/~bn204/alma/

Introduction

Impact of poorly corrected phase errors

General impact on science

- Phase errors increase with baseline length
 - \implies limit on maximum usable baseline length
 - \implies limit on possible resolution
- Loss of sensitivity due to de-correlation

Impact on snapshot + mosaics

Further effects due to time-variance of phase fluctuations

- Amplitude calibration
- Astrometric accuracy

Top level specification for ALMA

$$\delta p_{\text{corrected}} \leq \left(1 + \frac{w}{1 \text{ mm}}\right) 10 \,\mu\text{m} + 0.02 \times \delta p_{\text{raw}}$$

(1

Introduction

- Goals for this talk
- Atmospheric Phase Fluctuations at mm/sub-mm wavelengths

Review of ALMA Phase Correction/Calibration Strategy
 Fast-switching

3 Phase correction with WVRs

- Water Vapour Radiometry
- Algorithms

Summary

ALMA phase correction strategy

Fast-switching

- Observe nearby quasars
- Calculate antenna phase errors
- Calibration cycle down to 10–15 s (fast antennas!)
- Expect calibrators about two degrees from science target
- Can calibrate at 90 GHz and transfer up to 950 GHz

Water Vapour Radiometry

- *Measure* atmospheric properties along the line of sight of each telescope
- Use dedicated 183 GHz radiometers on each telescope
- Measurements at about 1 Hz
- Infer excess path
- Correct either in correlator or in post-processing

+ Self-Calibration in a very limited number of cases

Introduction

- Goals for this talk
- Atmospheric Phase Fluctuations at mm/sub-mm wavelengths

Review of ALMA Phase Correction/Calibration Strategy
 Fast-switching

3 Phase correction with WVRs

- Water Vapour Radiometry
- Algorithms

Summary

Fast-Switching offset calibration

Illustration of the geometry of the turbulent layer and the directions to astronomical and calibration sources.

Fast-switching

Simulated fast-switching phase calibration

Medium configuration, 15 s cycle (http://www.mrao.cam.ac.uk/~bn204/alma/)

Fast-switching phase calibration

- Use standard algorithms to determine antenna phase errors from observed visibilities
- Phase transfer from $\lambda = 3 \text{ mm}$ to the observing frequency. Benefits:
 - Quasars are much brighter at $\lambda = 3 \text{ mm}$ than in the sub-mm
 - Phase errors are unlikely to be large enough to cause phase wraps
 - Potential challenges:
 - Atmosphere is *dispersive* in the sub-mm so the transfer of gain solution requires modelling or itself needs calibration
 - Instrumental phase stability between $\lambda = 3 \text{ mm}$ and observing bands needs to be good
- Residual phase errors depend on the atmospheric conditions and the calibration cycle, but not on the baseline length

Introduction

- Goals for this talk
- Atmospheric Phase Fluctuations at mm/sub-mm wavelengths

Review of ALMA Phase Correction/Calibration Strategy
 Fast-switching

Phase correction with WVRs

- Water Vapour Radiometry
- Algorithms

Summary

- Introduction
- Goals for this talk
- Atmospheric Phase Fluctuations at mm/sub-mm wavelengths

Review of ALMA Phase Correction/Calibration Strategy
 Fast-switching

- Phase correction with WVRs
- Water Vapour Radiometry
- Algorithms

Summary

Water Vapour cm/mm/sub-mm lines

1 mm water vapour

The 183 GHz Water Vapour Line

Blue rectangles are the production WVR filters

B. Nikolic (University of Cambridge)

The 183 GHz Water Vapour Radiometers

- Un-cooled mixer, double-sideband, with $\approx 1000\,\mathrm{K}$ receiver noise
- Total bandwidth \approx 18 GHz split into four DSB channels
- Dicke-switched with a chopper wheel against loads at two temperatures allowing continuous calibration
- Specifications:
 - Sensitivity: 0.08–0.1 K per channel RMS
 - Stability: 0.1 K peak-to-peak over 10 minutes + 10 degree tilts
 - Absolute accuracy: 2 K maximum error
- Prototypes designed and built by Onsala and Cambridge
- Simplified design for production and the manufacture of \approx 60 units by industry partners
- Delivery of first production units to Chile expected toward end Q1–2009

Signal from two prototype WVRs mounted on SMA antennas

From the ALMA WVR prototype testing campaign in 2006

Interferometer path vs. radiometer difference

- July 18 2006 test at the SMA with the ALMA prototype WVRs
- Black line: difference between channels 2 on the two radiometers
- Red line: interferometric path fluctuation

Algorithms for WVR phase correction

- δL change in excess path to antenna
- $\delta T_{\mathrm{B},i}$ change in *i*-th channel sky brightness observed by a WVR
 - w_i weight of *i*-th channel

$$\delta L \approx \sum_{i} w_{i} \frac{dL}{dT_{\mathrm{B},i}} \delta T_{\mathrm{B},i}$$
⁽²⁾

- δT_B : WVR hardware design
 - Low noise
 - High bandwidth
 - High stability

- $w_i \frac{dL}{dT_{\mathrm{B},i}}$: (primarily) algorithm design
 - Optimal use of information
 - Atmospheric models+physics
 - Experience at the site
 - Ancillary' information

Will this work? Optimise $w_i \frac{dL}{dT_{B,i}}$ directly as a test

SMA test data, total fluctuations: σ_L reduced from 271 to 75 μ m

More SMA prototype test observations

B. Nikolic (University of Cambridge)

WVR phase correction for ALMA

- Introduction
- Goals for this talk
- Atmospheric Phase Fluctuations at mm/sub-mm wavelengths

Review of ALMA Phase Correction/Calibration Strategy
 Fast-switching

Phase correction with WVRs

- Water Vapour Radiometry
- Algorithms

Summary

WVR algorithms: available information

- Four absolute measurements of sky brightness:
 i.e., *T*_{B,i} rather than δ*T*_{B,i}
- The observed correlation between δL and $\delta T_{\rm B}$
- Ground-level temperature, pressure, humidity, wind-speed
- Information on the profile of atmospheric temperature with height from a single 60 GHz O₂ sounder at the centre of the array
- Library of radio-sonde measurements
- Short-term meso-scale meteorological forecast

Will we need all of this information?

- We are aiming for very challenging 2% accuracy in $\sum_{i} w_i \frac{dL}{dT_{R_i}}$
- For operational efficiency important to understand how well phase correction will work (also the opacity too of course)

Algorithms

Algorithm framework: Bayesian

We are developing a Bayesian framework to optimally combine all available information together with models of the atmosphere

Why Bayesian?

We are not interested in model parameters such as pressure, temperature, lapse rate, turbulent layer height, etc. All we want are the $\frac{dL}{dT_{\rm b}}$

→ Marginalise all model parameters, get probability distributions for $\frac{dL}{dT_{\rm B}}$.

Framework features

- A model for accuracy of absolute measurements $T_{\rm B i}$
- Incorporate empirical $\frac{dL}{dT_{\rm R,i}}$ as observation
- Other information naturally fit in as priors

Short advertisement & request: ATM

- The work presented here is based only on the 183 GHz line and non-dispersive delay: these are both trivial model
- For predicting dispersive effects and also for absolute calibration, ALMA will use Juan Pardo's ATM
- This version is now available for everybody to download and use under the open-source GPL licence:

http://www.mrao.cam.ac.uk/~bn204/alma/atmomodel.html

 Any comments on accuracy of this code would be greatly appreciated by the project

Algorithms

Prediction of $\frac{dL}{dT_{B,i}}$ from $T_{B,i}$ only

Single, thin layer; non-dispersive water vapour delay only; prototype filter set

B. Nikolic (University of Cambridge)

WVR phase correction for ALMA

0.02

0.02

0.015

0.01

0.005

240

280 300 320 340 T(K)

Algorithms

Prediction of $\frac{dL}{dT_{B,i}}$ from $T_{B,i}$ only Model parameters retrieval *without* priors

P(mbar)

Т

n

Algorithms

Prediction of $\frac{dL}{dT_{B,i}}$ from $T_{B,i}$ only Model parameters retrieval with priors

n

Ρ

Ρ

Т

n

Prediction of $\frac{dL}{dT_{B,i}}$ from $T_{B,i}$ only Retrieved $\frac{dL}{dT_{B,i}}$ (with priors)

B. Nikolic (University of Cambridge)

WVR phase correction for ALMA

Algorithms

Including the empirical correlation between δL and $\delta T_{\rm B}$

- Observed correlation between δL and $\delta T_{\rm B}$ gives us *directly* the information we need to do phase correction
- But, must minimise time spent on this observation instead of science
- ⇒ Use the observed correlation, and a physical model for atmosphere to allow inference of $w_i \frac{dL}{dT_{p_i}}$ at:
 - Different airmass
 - Different total water column
 - ...
- This approach naturally fits into the Bayesian framework

Prediction of $\frac{dL}{dT_{B,i}}$ from $T_{B,i}$ and correlation δL vs δT_{B}

B. Nikolic (University of Cambridge)

WVR phase correction for ALMA

Algorithms

Prediction of $\frac{dL}{dT_{B,i}}$ from $T_{B,i}$ and correlation δL vs δT_{B}

Transferred to an airmass 25% higher

B. Nikolic (University of Cambridge)

WVR phase correction for ALMA

- Goals for this talk
- Atmospheric Phase Fluctuations at mm/sub-mm wavelengths
- Review of ALMA Phase Correction/Calibration Strategy
 Fast-switching
- 3 Phase correction with WVRs
 - Water Vapour Radiometry
 - Algorithms

Summary

- WVRs phase correction has an important role in ALMA phase correction plan
- Initial results from SMA promising
- The algorithm design is challenging but hopefully tractable

But need to :

- Get ALMA phase-stable and observing at sub-mm frequencies at the AOS (the high site)
- Get the WVRs commissioned, integrated into the ALMA system, and the observation and data recording software systems working

And then the real challenges for phase correction start...

Challenges

 15 km baselines with substantial elevation difference between parts of the array

 \rightarrow need different set of $\frac{dL}{dT_{\text{B},i}}$ for each antenna

 In some correlator modes, need to apply correction in semi-real-time

 \rightarrow need to get the $\frac{dL}{dT_{\mathrm{B},i}}$ right

- 'dry' fluctuations: very little direct information, need to rely on correlation with 'wet' fluctuations
- Optimisation of fast-switching and phase transfer calibration stages
- Understanding of atmospheric physics and models