

Atacama Large Millimeter Array

Science Requirements and Outline of Performances

Alain Baudry TFB Card PDR Meeting Bordeaux, October 18-20, 2004

Science Requirements (1)

- Only Requirements with potential impact on the Tunable Filter Bank (TFB) and Correlator are to be considered
 - All top level requirements are met by Correlator with TFB cards
 - » Will be confirmed during this meeting
 - TFB enhances ALMA capabilities
- Frequency Requirements
 - It shall be possible to tune ALMA completely across the observable windows i.e. reach a spectral line transition at any arbitrary observable frequency. [SCI-90.00.00.00-00020-00]
 - It shall be possible to configure the correlator to achieve sufficient resolution (0.01 km/s) at 100 GHz to resolve thermal line widths. [SCI-90.00.00.00-00030-00]
 - It shall be possible to retune ALMA to a new frequency in a different band that is currently on standby ("warm") in a time not greater than 1.5 seconds. [SCI-90.00.00.00-00050-00]

Science Requirements (2)

- Sensitivity Requirements
 - ALMA shall be comprised of 64 12-m antenna. [SCI-90.00.00.00-0100-00]
 - The full 8 GHz IF bandwidth per polarization per antenna must be processed by the entire signal chain, from the front end element (mixer) through to the correlator. [SCI-90.00.00.00-0180-00]
 - Correlator and electronic losses shall not exceed those expected for two bit correlation after a filter, or 13.3 %. [SCI-90.00.00-0190-00]
- Imaging Requirements
 - Both total power and interferometric data must be collected. All antennas must be capable of collecting total power data, and at least 4 antennas must be equipped with wobbling subreflectors in order to do atmospheric emission cancellation. [SCI-90.00.00.00-0230-00]
- Polarization Requirement
 - It shall be possible to measure all polarization cross-products simultaneously. [SCI-90.00.00-0310-00]
- Sub-arraying Requirement
 - It shall be possible to have at least four subarrays where the observing frequency and antenna control in each is completely independent of the others. [SCI-90.00.00.00-0390-00]

Science Performances (1)

- Driven by main properties of the Tunable Filter Bank (TFB) which permits the Lag Correlator to work as a digital hybrid correlator
 - *(i)* In frequency division mode => 32 sub-channels per 2 GHz Baseband
 - FXF correlator <=> number of sub-channels goes as number of antennas
 - (ii) Sub-channels are tunable over Baseband
- *(i)* & *(ii)* provide Enhanced Spectroscopic capability and Flexibility in line or line versus continuum studies
 - More channels in broad bandwidth modes
 - => impact on nearby or distant Extragalactic studies & on Galactic studies of objects with broad line emission processes
 - Grouping different sub-channels permits simultaneous observation of different lines with high spectral resolution and broad band continuum
 - => Flexible observation of complex multi-line sources (see example later)

Science Performances (2)

- Tunability of sub-channels (digital LOs and mixers) is essential
 - For spectral flexibility
 - To eliminate sub-channel edge effects and provide seamless coverage
- Two kinds of sub-channel edge effects are eliminated when sub-channel are overlapped (critical because stop-band attenuation is not infinite)
 - Aliasing of spectral lines in sub-channel of interest
 - Avoid line intensity reduction or line profile distortion of lines or profiles falling on sub-channel edges

Spectral Flexibility (1)

- Example of 13 lines arbitrarily distributed in 2 GHz
 - Actual 'Line Forest' sources exhibit even more lines ~ 20 to 25 lines per GHz -eg Orion-
- With TFB cards these 13 lines can be analyzed simultaneously with different spectral resolutions

Spectral Flexibility (2)

- With 8 sub-channel filters one can have (see Mode Tables)
 - Correlated BW = 500 MHz
 - Spectral resolution = 0.976
 MHz with all 4 X-products and smooth result to get effective resolution of 1.95
 MHz

Spectral Flexibility (3)

- Use just another sub-channel filter to obtain high frequency resolution at appropriate IF frequency around 840 MHz
 - Correlated BW = 62.5 MHz
 - Spectral resolution ~ 120 kHz with all 4 X-products
- One still has several filters and spectral channels available for other scientific purposes

Many Correlator Mode Options

- *Frequency division mode* (max of 8192 spectral points in 1 Baseband per Quadrant) or *Time division mode* (64 spectral points in 1 Baseband per Quadrant)
- Several Modes
 - Select Number of Sub-channels <=> Correlated Total Bandwdth
 - Select Efficiency
 - » Sample Factor: Nyquist or Twice Nyquist (with twice less spectral points)
 - » Improve further Efficiency: 4-bit x 4-bit Quantization (less spectral points)
 - Select Polarization <=> 1 Baseband or 2 Basebands without or with (full Stokes analysis) polarization cross-products
- *Resources are exchangeable* among
 - Basebands = 1 or 2 max per Correlator Quadrant
 - FIR filters = 32 max per Baseband
 - X-products 4 max

Example of Correlator Modes (no polarization X-products)

Γable 2 M od e chart with on	e ba se ban	d chan nel	p er quad rant	b e ing
orocess ed				

Number of	T o ta l	N u mb er	S p e ct r al	V el o ci ty	C or re lat io n	Sam ple	Sensitivity *
sub- ch ann el	Bandwidth	of	R es ol ution	resolution		Fac tor	
f il te rs		Spectral		at 2 3 0 G H z			
2.2	2.6.11	Points	24411	0.2.21		NT 1	0.0.0
32	2 G H Z	8192	244 KHZ	0.3 2 K m /s	2 - b it x $2 - b$ it	N yquist Twiw	0.88
32	2 G H Z	4096	488 KHZ	0.64K m/s	2-bit x 2-bit	N vanist	0.94
3 2	2 G Hz	2048	976 kHz	1.2.8 k m/s	4-bitx4-bit	N yquist	0.9.9
16	1 G Hz	8192	122 kHz	0.16k m/s	2 -b it x 2 - bi t	N yquist	0.88
1 6	I G HZ	4096	244 KH Z	0.32K m/s	2-01tx2-01t	N y quist	0.94
16	1 G Hz	2048	488 kHz	0.64km/s	4 -b it x 4 - bi t	N yquist	0.9.9
16	1 G Hz	1 0 2 4	976 kHz	1.28k m/s	4 -b it x 4 - bi t	T w i ce	0.99
						N yquist	
8	500M Hz	8192	61 k H z	0.08k m/s	2 -b it x 2 - bi t	N yquist	0.88
8	500M Hz	4096	122 kHz	0.16km/s	2 -b it x 2 - bi t	Twice	0.94
						N yquist	
8	500M Hz	2048	244 kHz	0.32km/s	4 -b it x 4 - bi t	N yquist	0.99
8	500M Hz	1 0 2 4	488 kHz	0.64 k m/s	4-bitx 4-bit	Twice	0.99
						N yquisi	
4	250M Hz	8192	30 kHz	0.04 k m/s	2 -b it x 2 - bi t	N yquist	0.88
4	250M Hz	4096	61 k H z	0.08k m/s	2 -b it x 2 - bi t	T w i ce	0.94
4	25010 11	2040		0.1.(1	4 1 14 4 114	N yquist	0.0.0
4	250M Hz	2048	122 kHz	0.16k m/s	4 -b 1t x 4 - b1 t	N yquist	0.99
4	2 3 0 WI 11 Z	1024	244 K II Z	0.52K III/S	4-0 It x 4-0It	Nyquist	0.99
2	125M Hz	8192	15 kHz	0.02km/s	2 -b it x 2 - bi t	N yquist	0.88
2	125M Hz	4096	30 kHz	0.04 k m/s	2-b 1t x 2-b1 t	T w ice	0.94
2	125M H 7	2048	61 kH z	0.0.8 k m/s	4 - h it x 4 - hi t	Nyquist	099
2	125M Hz	1024	122 kHz	0.1 6k m/s	4 -b it x $4 - b$ it	Twice	0.9.9
	-	-				N yquist	
1	62 5 MH z	8192	7.6 kHz	0.0.1 k m/s	2 -h it x 2 - hi t	Nyquist	0.8.8
1	6 2. 5 MH z	4096	15 kHz	0.02 k m/s	2 -b it x 2 - bi t	Twice	0.94
						N yquist	
1	62.5MH z	2048	30 kHz	0.04 k m/s	4 -b it x 4 - bit	N yquist	0.99
1	62.5 MH z	1 0 2 4	61 k H z	0.08 k m/s	4 -b it x 4 - bi t	T w i ce	0.99
						N yquist	
1	31.25 M Hz	8192	3.8 kHz	0.005 km/s	2 -b it x 2 - bi t	T w i ce	0.94
						N yquist	
1	31.25 M Hz	2048	7.6 kHz	0.01km/s	4 -b it x 4 - bi t	Twice	0.99
						N yquist	
Time Division	2 G Hz	64	31.25 M Hz	40.8 k m/s	3-bitx3-bit	N yquist	1.00
M ode							

* Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

Example of Correlator Modes (full Stokes analysis)

Table 4 Mode chart with two baseband channels per quadrant processed with polarization cross products.

Number of sub-channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Sensitivity*
32	2 GHz	2048	976 kHz	1.28 km/s	2-bit x 2-bit	Nyquist	0.88
16	1 GHz	2048	488 kHz	0.64 km/s	2-bit x 2-bit	Nyquist	0.88
16	1 GHz	1024	976 kHz	1.28 km/s	2-bit x 2-bit	Twice Nyquist	0.94
	500) U	2040	044111	0.22.1	01:4 01:4		0.00
8	500 MHz	2048	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	0.88
8	500 MHz	1024	488 kHz	0.64 km/s	$2-bit \ge 2-bit$	Twice Nyquist	0.94
8	500 MHz	512	976 kHz	1.28 km/s	4-bit x 4-bit	Nyquist	0.99
	250 3 51	2010	100.111	0.161	0.1.5	37.1.1	0.00
4	250 MHz	2048	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	0.88
4	250 MHz	1024	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	0.94
4	250 MHz	512	488 kHz	0.64 km/s	4-bit x 4-bit	Nyquist	0.99
4	250 MHz	256	976 kHz	1.28 km/s	4-bit x 4-bit	Twice Nyquist	0.99
2	125 MHz	2048	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	0.88
2	125 MHz	1024	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	0.94
2	125 MHz	512	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	0.99
2	125 MHz	256	488 kHz	0.64 km/s	4-bit x 4-bit	Twice Nyquist	0.99
	(* *) (T)			0.041.4			0.00
1	62.5 MHz	2048	30 kHz	0.04 km/s	$2-bit \ge 2-bit$	Nyquist	0.88
1	62.5 MHz	1024	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	0.94
1	62.5 MHz	512	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	0.99
1	62.5 MHz	256	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	0.99
1	31.25 MHz	2048	1.5 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	0.94
1	31.25 MHz	512	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	0.99
1	51.25 10112	512	UT KTIZ	0.00 MH/5	i on A i on	I wice I tyquist	0.77
Time Division Mode	2 GHz	64	31.25 MHz	40.8 km/s	2-bit x 2-bit	Nyquist	0.88

* Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

Some Science Applications

- Example of Line and Dust Study in Young Stellar Objects
 - 1 sub-array of 16 antennas for CO line observation (230 GHz) in 62.5 MHz bandwidth (~ 80 km/s velocity coverage) with high spectral resolution (7.6 kHz or 0.01 km/s)
 - 2 other sub-arrays of 24 antennas each in 2 other frequencies to provide spectral imaging of other weaker lines in narrow total BW ((~ 80 km/s) and accurate spectral index measurement of dust in broad 'continuum' bandwidths
- Line Survey & Imaging in Massive Star Forming Regions (Orion-like sources)
 - Requires both broad & narrow BWs ... now possible with many more channels

Some Science Applications

- High number of channels in broad BWs essential to search for **new molecular species** ... glycine
- Broad BWs with several spectral channels and different receiver bands useful to measure **unknown** *z* **in distant CO galaxies**
- Large fraction of projects (~ 40%) in Design Reference Science Plan requires resolution better than 1 km/s
 - => TFB ideal and achieves better than 5 kHz max resolution as required
- Send 16 (or 8) antennas of ACA to one sub-array of Correlator with TFB capability to **improve imaging** of main array or perform FX (ACA) versus FXF **comparison** of high spectral resolution modes
 - => patch panel(s) permitting main array and ACA antennas exchange
 - Science/ calibration benefits ... important during these 'rebaselining days'