
15 MAY, 2001  1

Theory and Statistics of Radio Interferometer Array  

Point Spread Functions  
David Woody1 

Abstract— This paper relates the optical definition of the PSF 
to radio interferometer arrays without reference to any image 
processing algorithm used to derive images from the measured 
visibilities.  Array configurations are characterized by their 
magnification, defined as the ratio of the primary beam from an 
individual element to the synthesized beam, to facilitate 
comparison of arrays having equal image resolution.  The 
statistical properties of the PSF including the effect of missing 
UV data are derived as a function of the number of antennas, 
magnification and the large-scale UV distribution.  The effect of 
earth rotation synthesis on the PSF is also calculated.      

The concept of a pseudo-random array is introduced as an 
array whose large-scale average distribution matches an 
idealized continuous antenna or UV distribution.  The small-
scale difference between the actual discrete distribution and the 
idealized continuous distribution produces far sidelobes in the 
PSF.  It is shown that the statistical distribution of the sidelobes, 
s, of pseudo-random arrays of N antennas with sparse UV 
coverage is given by )exp()( NsNsP −= .  The average 
sidelobe is 1/N and the standard deviation is also 1/N.  Note that 
the single antenna measurements are included in the 
formulation of the PSF used in this work. 

Various configuration strategies are discussed in terms of the 
statistical properties of their PSFs so as to illuminate the 
tradeoffs between different configuration strategies.  The 
pseudo-random array provides a benchmark against which 
proposed configurations can be compared.  

I. INTRODUCTION 

The point spread function, PSF, is very useful and 
convenient for evaluating the performance of an imaging 
system [1].  The PSF is the response of an imaging system to 
a point source and the “raw” image produced by the system is 
the true image convolved with the PSF.  Thus the PSF is a 
good measure of the errors and artifacts that will appear in 
the raw image. 

The PSF functions for optical instruments are usually of 
sufficient quality that the raw images can be published with 
little or no image processing.  Radio interferometers do not 
directly measure the image, but must reconstruct the image 
from limited visibility measurements.   The response to a 
point source or PSF can still be calculated, but unfortunately 
most existing interferometers have relatively poor PSFs and 
useful images are produced only after applying non-linear 

deconvolution imaging techniques such as CLEAN and 
MEM [2].  The ability of the imaging algorithms to produce 
faithful representations of the true sky brightness distribution 
in the presence of noise is limited by both the near-in and far 
sidelobes of the PSF.  The quality of the PSF in typical radio 
interferometers is indicated by the fact that it is often called 
the “dirty beam”.  The situation improves for interferometers 
with a large number of antennas, such as ALMA, that can 
produce respectable PSFs.  

Most of the imaging quality and UV distribution 
parameters can be identified with features in the PSF.  The 
dynamic range between a strong unresolved source and 
distant noise in the “raw” or “dirty” image is determined by 
the far sidelobes of the PSF.  The near-in sidelobes determine 
the fidelity for imaging extended objects.  Although 
algorithms such as “CLEAN” or “maximum entropy” can 
dramatically decrease the effect of the sidelobes, their ability 
of accomplish this in the presence of noise and imperfect 
knowledge of the phase and amplitude of the aperture 
illumination is limited.  The PSF measures the magnitude of 
the defects that must be corrected by any imaging algorithm 
and arrays with smaller PSF sidelobes should produce more 
accurate images.  Many millimeter and sub-millimeter 
observations will be noise limited and an array with a PSF 
that has sidelobes less than the signal to noise on the 
strongest source will be able to use the raw image directly.  

The task of determining the best array configurations for 
ALMA involves many conflicting requirements ranging from 
imaging performance to geographical limits on where 
antenna can be economically placed.  Although complex 
imaging simulations can be used to evaluate many aspects of 
the imaging performance, it is necessary to have a quick and 
easy method for determining the effect of perturbing the 
configurations.  A simple evaluation metric is very useful 
during both the initial design phase when many different 
configurations need to be characterized and during the 
detailed design phase when practical considerations may 
require moving some of the pad locations.  The PSF serves 
this purpose very well.   

The next section develops the basic foundation for 
calculating the PSF for a radio interferometer array while 
adhering closely to the optical terminology.  The 
formulations presented in this section are well known, but it 
is useful to explicitly restate them here for use in later 
sections.  Section III evaluates the near-in sidelobes produced 
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by various large-scale antenna distributions.  Section IV 
introduces the pseudo-random array whose large-scale 
distribution matches an idealized continuous distribution but 
has small-scale deviations.  The effect of these small-scale 
deviations is measured by the difference between the actual 
PSF and the PSF of the idealized distribution.  The statistics 
of this difference PSF are derived in this section.  Various 
other considerations, such as earth rotation synthesis and the 
implications of obtaining nearly complete UV coverage, are 
discussed in section V.  The implication of these results are 
discussed in section VI followed by the conclusion in section 
VII. 

A companion paper titled “Point Spread Functions for 
Pseudo-Random Interferometer Arrays” presents the PSF for 
several sample configurations.  The paper also demonstrates 
different methods for presenting the PSF that make it easy to 
discern the differences between various configurations.   

II. INTERFEROMETER POINT SPREAD FUNCTION 

The definition of the PSF for interferometers should be 
consistent with the PSF defined for optical telescopes to 
allow similar interpretation of the resulting images.   

A. Optical PSF 
The PSF is widely used for characterizing the performance 

of optical telescopes.  The PSF given for radio 
interferometers should be consistent with this usage.  The 
PSF for optical telescopes is the image intensity distribution 
of the focal plane image of a plane wave incident on the 
aperture.  The intensity is the square of the field magnitude 
while the field at the focal plane is the Fourier transform of 
the field amplitude and phase across the aperture.    

An array of N small apertures produces a focal plane 
voltage that can be written as the sum of the focal plane 
voltage fields from the individual apertures, 
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pv is the position vector on the sky and )(pEn
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beam pattern for aperture k.  nrv  is the location vector for the 
center of the nth aperture.  The PSF for an array of N identical 
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2)()( pEpB vv =  is the primary beam power pattern for a 
single aperture in the array.   

The Wiener-Khintchine relations can be used to write the 
PSF as the Fourier transform of the autocorrelation of the 
total aperture field pattern.  This autocorrelation is called the 
Optical Transfer Function, OTF, in optical systems [3] or the 

UV coverage for radio interferometers.  The OTF for an array 
is given by 
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where b
v

 is the vector position in the UV plane and nmb ,
v

 is 

the baseline vector connecting the mth and nth elements.  

)(bA
v

 is the autocorrelation of the field pattern, or OTF, for a 
single element in the array.  The double summation over both 
indices explicitly includes the single aperture measurements 
and ensures that the PSF is positive everywhere. 

B. Radio interferometer formulation 

Radio interferometers measure the visibility or complex 
product of the voltages received by pairs of antennas and do 
not directly produce images in a focal plane.  The measured 
visibility is the Fourier transform of the sky brightness times 

)( pB v
 [ref TMS #].  The same PSF formulation given in equ. 

1 can be arrived at for a radio interferometer by calculating 
the cross coupling or orthogonality of the measurements of 
two point sources.  The measurement vector, )pM(v , is the set 
of measured visibilities plus the single antenna power 
measurements.  The lth component corresponding to 
measuring the visibility on baseline )( nml rrb vvv

−=  of a point 

source at pv  is  

)exp()()( ll bpkipBpM
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A snapshot with an N element array will produce N2 
components when the Hermitian conjugates and single 
element measurements are included.  The cross coupling 
between measurements of a point source at pv  and a 
neighboring point at pp ∆+v

 is given by the dot product of 
the measurement vectors 
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A cross coupling of zero means that two point sources as pv  
and pp vv ∆+  can be uniquely measured with no confusion, 

while a large cross coupling means that the sources are 
difficult to distinguished.  Equ. 5 reduces to equ. (2) when 

0=pv , i.e. a point source at field center.   
Equ. 5 can be used to define the PSF for a point source at a 

point pv  away from the field center as a function of the offset 
distance pv∆  to a neighboring point, 

)()(),( pMppMppPSF
vvvvvvv •∆+=∆ . (6) 

There will be a family of PSFs, a different PSF for each pv . 
The maximum sidelobe as a function of distance from the 
point source is of interest in evaluating an array’s imaging 
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performance and is given by the upper envelope of the family 
of PSFs.  A single plot can show this maximum for all point 
source positions by using a modified primary beam pattern  

]),()(max[)( ppBppBpB vvvvv ∆+=∆′ . (7) 

The max function returns the maximum of the product as a 
function of pv .  The modified beam pattern is a wider version 
of the single antenna primary beam.  A Gaussian primary 

beam remains Gaussian but becomes 2  wider.  The worst 
case PSF’ is given by 
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The corresponding OTF for a single element, )(bA
v

′ , is the 

Fourier transform of )(pB v′ .  
Data weighting or additional measurements are easily 

incorporated into this formulation of the PSF.  Added data 
from other configurations or arrays just increases the number 
of vector components.  Component coefficients can be used 
in equ. 8 to account for different noise levels in each visibility 
or to improve the sidelobes.  This approach can also be used 
to evaluate an array’s ability to distinguish or identify sources 
that are not point like by appropriate calculation of the 
measurement vectors. 

III. LARGE-SCALE DISTRIBUTION 

The central beam and near sidelobes for an array 
consisting of a large number of antennas will be determined 
by the large-scale distribution of antennas.  These features of 
the PSF can be investigated by evaluating the PSF for 
different candidate continuous functions.  A sample of 
continuous antenna distributions is shown in fig. 1.  The 
autocorrelations corresponding to the UV coverage of the 
distributions are shown in fig. 2 while their PSF’s are 
presented in fig. 3.  The distributions were scaled to produce 
the same FWHM central beam.   

As expected, the size of the near sidelobes decreases as the 
antenna distributions become smoother and more bell shaped.   
The tradeoff between sidelobe level and maximum baseline 
length for a given resolution is also apparent from these 
figures.  The thin ring array requires the shortest maximum 
baseline and produces the most uniform UV coverage, but at 
the cost of sidelobes as large as 16%.  The uniform antenna 

distribution has a first sidelobe of ~1.6%. The 2cos  bell 
shaped distribution has no sidelobes above 0.1%.  The basic 
large-scale distribution can be selected based upon the 
acceptable sidelobe level, desired resolution, and available 
real estate. 
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Fig. 1.  Five possible large-scale antenna distributions.  
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Fig. 2.  The UV distribution or OTF for the five distributions shown in fig. 1.  
The line style and colors are the same as for fig. 1.  
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Fig. 3.  The PSF for each of the five antenna distributions shown in fig. 1.   
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The distributions in fig. 1 are circularly symmetric.  The 
actual configurations as seen from the star’s point of view 
will be slightly elongated, but the PSFs will be very similar to 
the plots in fig. 3.  It should also be noted that the near 
sidelobes are complete rings and earth rotation synthesis will 
not appreciably change or reduce them.  

IV.  SMALL-SCALE DISTRIBUTION AND STATISTICS OF THE 
DIFFERENCE PSF 

Matching a large-scale distribution with a finite number of 
antennas will necessarily leave small-scale deviations from 
the target distribution.  The deviation or difference between 
the actual UV sample distribution and the ideal target 
distribution is  

)()()( bIbSbD
vvv

−= .  (9) 

The UV distribution, )(bS
v

, for N antennas is the same as the 
OTF given in equ. 3.   

Fourier transforming the UV functions in equ. 9 gives their 
corresponding PSFs 
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We will assume that the actual distribution closely matches 
the large-scale structure of the ideal distribution and hence 
the error beam is close to zero near the center of the beam 
and equal to the actual PSF in the far sidelobes.  Alternatively 
you can define the idealized continuous distribution as the 
actual distribution smoothed on a suitable large-scale.  Note 
that single dish measurements from the N antennas as well as 
the Hermitian conjugate UV samples are included in this 
formulation and the actual PSF function from an array as well 
as the ideal PSF derived from a positive real aperture field 
distribution is positive and real.  

1)  Average sidelobes 

The integral of the actual far sidelobes is closely given by 
the integral of the difference beam.  This in turn is equal to 
the difference between the idealized distribution and the 

actual UV sampling at 0=b
v

, 
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This uses the fact that N single antenna measurements 
contribute to )0(S .  )(bI

v
 and )(bA

v
 are normalized to have 

an integrated volume of unity and hence )0(I  and )0(A  are 
inversely proportional to the area encompassing the array and 
the area of a single telescope respectively.  The area 
encompassing the array must necessarily be significantly 
larger than the total antenna collecting area and the first term 
in the second line of equ. 11 will dominate. 

The average of the PSF sidelobes is obtained by dividing 
the integrated sidelobes by the area of the primary beam, 
which is equal to )0(A , conveniently yielding 
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The actual average for the PSF sidelobes can be altered by 
varying the number of single antenna measurements 

contributing to the 0=b
v

 sample.  In MMA memo 218, 
Kogan shows that in the absence of single antenna 
measurements the average sidelobe is zero and the peak 
negative sidelobes are equal to 1/N [4]. 

2) Missing UV samples and standard deviation of sidelobes 
It should be possible to match the ideal large-scale 

distribution reasonably well in regions where the UV samples 
are separated by less than the antenna diameter d , especially 
if the ideal distribution is derived from the autocorrelation of 
a feasible antenna distribution.  But for the larger 
configurations there will be regions where the UV samples 
are separated by more than d  and the contrast between the 
areas where there are no samples and the discrete samples 
will produce relatively large deviations from the ideal 
distribution.  The effect of these regions on the PSF will be 
estimated in this section.    

The difference distribution, )(bD
v

, becomes a two valued 
function in the regions of sparse coverage if we approximate 
the antenna OTF, )(bA

v
, by a top hat of height )0(A  and 

diameter )0(2 Ad π=′ .  The two values of )(bD
v

 are )(bI
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and ))()0(( 2 bINA
v

− .  The assumption that the actual and 
ideal distributions match on the large scale implies that the 
UV samples cover a fraction of the UV plane given by 
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The mean square value of a function that takes on the value 
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The second term in the second line is negligible and can be 
safely ignored.  Parseval’s theorem tells us the integrated 
square of the difference PSF is equal to the integrated square 
of the difference OTF.  A lower limit to the integrated square 
of the difference PSF is obtained by integrating equ. 14 over 

the regions where fractional coverage, )(bf
v

, is less than one.  
As with the calculation of the average value of the PSF, the 
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average square of the difference PSF is obtained by dividing 
by )0(A .  Hence a lower limit to the standard deviation of the 
difference PSF is  

2/1
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This reduces to a particularly simple result for very large 

configurations where 1)( <bf
v

 over the full UV plane 
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Using the actual single antenna OTF instead of the assumed 
top hat function complicates the derivation, but the results 
shown in equ. 15 and 16 are still valid. 

Evaluating equ. 15 for smaller configurations requires 
knowing the idealized distribution.  The standard deviations 
of the difference PSF for 64 antenna arrays with bell shaped 
and uniform UV distributions are plotted as a function of the 
array magnification in fig. 4.  The magnification is the ratio 
of the primary beam to the synthesized beam.  The lower 
limit for the standard deviation for the bell shaped 
distribution of N antennas increases linearly for 
magnifications up to ~N and saturates at a value 1/N for 
magnifications >2N.  The uniform UV distribution has 
complete coverage up to a magnification of ~N and hence no 
lower limit to the standard deviation of the difference PSF 
until the magnification exceeds this magnification. 

3) Statistical distribution of sidelobe peaks 
Any detectable pattern in the antenna distribution will 

result in noticeable features in the OTF and in the PSF 
sidelobes.  A random antenna distribution that statistically 
matches the desired ideal distribution is expected to produce 
the minimum sidelobes over the full primary beam.  The full 
statistical distribution of sidelobes can be calculated for such 
pseudo-random arrays operating at large magnification or 
sparse UV coverage. 

Equ. 1 shows that the complex voltage in the image plane 
is the result of adding N complex numbers or steps of 
magnitude NpE )( v

 with different phases.  The phase of the 

lth complex number for the PSF at pv  is prk l
vv • .  Away from 

the central peak in the PSF this phase is many turns and each 
step has an essentially random phase relative to the other N-1 
steps.  Each point in the PSF is then essentially a 2-D random 
walk of N steps.  The variance of each component of the 
individual steps is  
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The variance for the sum of N of these components is  
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Fig. 4.  Approximate lower limit  to the standard deviation of the difference 
PSF as a function of the array magnification for an array of 64 antennas.  The 
red curve is for a bell shaped distribution, while the blue cure is for a uniform 
UV coverage. 

Although the components of each step do not have a 
Gaussian distribution, the central limit theorem tells us that 
the distribution of a sum of a large number of steps will 
approach a Gaussian distribution.  Thus we can apply the 
results obtained for the noise from a cross correlator [5, 6] 
and the magnitude of the resultant vectors follows a Rayleigh 
distribution 

( )2exp2)( NvNvvg −= .    (19) 

where v  is the magnitude of the sum of the N steps of length 
1/N and random phase.   

The PSF is the magnitude squared of the complex voltage 
in the image plane.  The distribution of the PSF sidelobes, 

2vs = , is given by 
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This distribution yields the same the sidelobe average and 
standard deviation derived in equs. 12 and 16 above.  

The largest sidelobe in the PSF is an important parameter 
since it represents the largest imaging artifact that a strong 
point source can produce.  The number of independent 
sidelobes is roughly given by the square of the ratio of the 
primary beam to the synthesized beam, i.e. the magnification 

squared, 2mag .  A rough estimate of the largest sidelobe is 

given by maxs such that 
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Hence we expect the peak sidelobe for a pseudo-random 
array configuration to be 
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2
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N
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The same result can also be derived using the approach 
employed to determine VLBI false fringe, maxv , statistics [7]  

[1].   

V. OTHER CONSIDERATIONS 

A. Antennas out of service 

The effect of taking an antenna out of service can be 
conveniently calculated using the formulation of the PSF as 
the magnitude squared of the voltage in the image plane 
given in equ. 1.  Each antenna contributes a vector step of 
length 1/N to the voltage sum.  The maximum affect on a 
typical PSF sidelobe of amplitude 1/N of removing the 
contribution from one antenna is  









±≈








±⇒

NNNN
stypical

21111
2

. (23) 

Thus the typical sidelobe in a 64 antenna array will change by 
less than 25% with the removal of one antenna.  The sidelobe 
average increases by 1.6%.   

Pseudo-random arrays are particularly resilient to removal 
of an antenna, since there is no pattern that can be disrupted 
and all antennas are equally important.  The worst possible 
increment to the maximum sidelobe is 
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A 64 antenna array operating at a magnification of 100 could 
have its peak sidelobe increased by as much as 8%.  

B. Combining configurations 

Many astronomical projects will observe a source for more 
than a few minutes and may combine several UV data sets.  
Additional observations add more coverage of the UV plane 
and can improve the PSF.  Adding UV data is a linear 
operation and the PSF from the different observations are 
also added linearly.  If the sidelobes from the different 
observations are uncorrelated, the standard deviation of the 
resultant PSF decreases as the square root of number of 
configurations. 
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Fig. 5.  Plot of the lower limit to the standard deviation for 

bell shaped (red curves) and uniform UV coverage (blue 
curves) for 64 antenna arrays for snapshot (solid), 6 min 
(dashed) and 1 hr tracks (dotted).  

 
Extended observational tracks present a special case 

because the successive UV data sets are highly correlated and 
the sidelobes do not necessarily decrease.  This is especially 
true for the near sidelobes of the PSF.  Long tracks can be 
handled by scaling the effective number of UV samples and 

replacing 2N  by 2)( Nbg
v

 in equs. 13 and 14, where  
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and θ  is the earth rotation angle.  Equ. 15 becomes 
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Earth rotation can significantly improve the UV coverage 
and even short tracks will decrease the PSF sidelobes.  Fig. 5 
shows the improvement than can be obtained with only 6 min 
and 1 hr tracks.  This analysis assumes a circularly symmetric 
array at the pole observing a polar source.  The long baselines 
sweep over a large area of the UV plane reducing the gaps in 
the UV coverage and significantly decreasing the standard 
deviation of the sidelobes.  Interestingly, the increased 
coverage for the higher magnification configurations more 
than compensates for the reduced snapshot coverage and the 
sidelobe standard deviation decreases as the configuration 
size increases.  Both the bell shaped and uniform coverage 
arrays show similar behavior for large magnifications, but 
there can be significant differences for the small 
configurations.  Because the added coverage is not randomly 
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distributed, the actual decrease in sidelobe standard deviation 
will be much less than shown in fig. 5.    

Earth rotation decreases the standard deviation of the 
intermediate and far sidelobes, but does not change the 
average sidelobe level if the single antenna measurements are 
acquired continuously during the track.  The near-in sidelobes 
caused by the large-scale idealized distribution are typically 
complete rings and earth rotation will not affect them.  
Additionally the UV coverage resulting from earth rotation 
does not correspond to a pseudo-random array and hence the 
sidelobes will not necessarily follow the distribution given in 
equ. 20.   

C. Complete coverage 

Complete coverage can provide unique images but the 
accuracy of the images is still limited by the near-in sidelobes 
caused by the sharp cutoff in the UV coverage at the 
maximum baseline length and by the far sidelobes caused by 
the small-scale variations in the UV coverage.  The principal 
advantage of complete coverage is that there are no gaps or 
holes in the UV coverage and with proper weighting of the 
data a very smooth effective distribution can be produced that 
accurately matches the idealized distribution everywhere.  
This would produce a PSF with negligible sidelobes and 
direct Fourier transform imaging can be used.  A 
configuration with gaps in the UV coverage will produce far 
sidelobes and sophisticated imaging algorithms will be 
required to produce high dynamic range or high fidelity 
images.   

Weighting of the UV samples to produce a smoother 
distribution or to apply an edge taper to the UV coverage 
comes at the cost of decreased point source sensitivity.  The 
paper by Boone presents an algorithm for building arrays that 
give complete coverage while approaching a Gaussian UV 
distribution [8].  Boone also quantifies the tradeoff between 
array size, sidelobe level and sensitivity loss associated with 
weighting the data to give a smooth bell shaped UV 
distribution. This approach will produce high fidelity and 
dynamic range images without the application of special 
imaging techniques. 

VI. DISCUSSION AND CONCLUSION 

The basic result here is that the near-in sidelobes are 
determined by the large-scale distribution of antennas, while 
the far sidelobes depend mostly upon the number of antennas 
and array magnification, assuming the configuration is 
suitably randomized.  For magnifications larger than N the 
standard deviation of the far sidelobes is N1≈Dσ  and if 
the antennas are placed pseudo-randomly the distribution of 
the sidelobe amplitudes is ( )NsNsg −= exp)(  and the peak 

sidelobe should be )ln(2max magNs ≈ .  Placement of the 
antennas with a detectable pattern is likely to worsen the PSF 
while optimization might improve both the distribution and 
the peak sidelobe level. 

The expected standard deviation for the sidelobes is 
proportional to the magnification for magnifications less than 

N, mag∝Dσ , and also decreases significantly when earth 
rotation synthesis is applied.  

Applying an edge taper to the UV can improve the near-in 
sidelobes at the cost of a loss of sensitivity.  The far sidelobes 
can be improved by weighting of the data to produce a 
smooth distribution if the fractional UV coverage exceeds 
unity over most of the UV plane of interest, again at the cost 
of losing point source sensitivity.  But there is not much that 
can be done to improve the far sidelobes for snapshot images 
obtained with the highest magnification sparse 
configurations.   

In general it is reasonable to select a large-scale 
distribution with near-in sidelobes that are at least as small as 
the far sidelobes to give the highest quality images without 
having to weight the data and suffer the associated loss in 
sensitivity.  Using this criterion, ring or donut arrays with 
their more uniform UV coverage may be appropriate for 
arrays of ten antennas or less.  This is the case for existing 
millimeter wave arrays.  An example of this approach is 
presented by Keto [9].  In the case where the sky brightness is 
confined to a region smaller than the angular resolution 
corresponding to the typical separation of the UV samples, 
these configurations effectively give complete UV coverage.      

Large arrays of 50 or more antennas require centrally 
condensed or bell shaped antenna distributions to keep the 
near-in sidelobes below the average far sidelobes.  The 
standard deviation of the far sidelobes also decrease below 
1/N as the array magnification drops below N or when earth 
rotation synthesis is used, further supporting the use of bell 
shaped antenna distributions.   Earth rotation synthesis can 
also significantly reduce the far sidelobes for arrays of less 
than ten antennas.  This would tend to favor bell shaped 
distributions for even the sparsest arrays. 

A case for large arrays having complete UV coverage at 
the highest practical magnification (and therefore nearly 
uniform UV coverage) can be made for observation of very 
bright and complex sources.  Appropriate tapering and 
weighting of the UV data could produce nearly perfect 
images form such a configuration.  Unfortunately there are 
few if any such millimeter or sub-millimeter objects beyond 
our solar system.  

The formulas in this paper can aid in making the tradeoff 
between the size and number of antennas during the initial 
conceptual design of an interferometer array.  Equations 12, 
16, 20 and 22 give a pretty complete picture of PSF sidelobe 
statistics and hence of the image quality as a function of the 
number of antennas.  These equations quantify the improved 
image quality that an array of many small antennas will 
produce over an array of fewer larger antennas with the same 
total collecting area.   

The results obtained are very general and can serve as a 
basis for developing configuration strategies.  The statistics 
of the PSF for an actual or proposed configuration can be 
compared against the above formulas to determine whether it 
performs better or worse than a pseudo-random array.  A 
companion paper will present the results for a few different 
arrays and demonstrate the accuracy and utility of the results 
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given in this paper.  The optimal configuration will depend 
upon the science goals for an array but the concepts and 
results derived here should make it easier to investigate the 
many options.  
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