Testing the ALMA WVR's on the Submillimeter Array

Richard Hills on behalf of the AWVR testing collaboration:

P.G.Anathasubramanian¹, R.E.Hills, K.G.Isaak², M.Owen, J.S.Richer, H.Smith, A.J.Stirling³, R.Williamson⁴, Cavendish Lab, Cambridge, UK, V.Belitsky, R.Booth, M.Hagström, L.Helldner, M.Pantaleev, L.E.Pettersson, Onsala Space Observatory, Sweden, and T.R.Hunter, S.Paine, A.Peck, M.A.Reid, A.Schinckel, K.Young, Harvard-Smithsonian Center for Astrophysics, Submillimeter Array Project.

¹ Raman Research Institute, India, ² University of Cardiff, UK, ³ Meteorological Office, UK, ⁴ Columbia University, NY, USA. The SMA is a joint project of the Smithsonian Astrophysical Observatory, Cambridge, Mass, USA, and ASIAA, Taipei, Taiwan

ALMA radiometers on SMA - it works!

Interferometer (blue), Radiometer (pink) and Difference (yellow)

Why is this hard?

- Goal is to measure path fluctuations to ~15 to 50 microns (50 to 160 fs!) for total water vapour of 0.5 to 4mm (~3 to 25 mm of total path), so << 1% of total.
- Essentially making two absolute measurements and then taking the difference.
- So radiometers have to be very sensitive (~ 60mK with 1 second integration) and stable, but also match each other very well in calibration, channel frequencies, coupling to sky...
- Saving grace is that we only need short term fluctuations and values over a small region of sky.

Steps along the way:

- Lab testing: stability, beams, frequency response...
- Side by side tests on Mauna Kea
- Sky dips
- Interferometry:
 - Deglitch
 - Unwrap
 - Sidebands
- Radiometers:
 - Convert brightness temperatures to path
 - Timing, "Tune-up", de-spike.

First test Radiometers OFF the antennas

• IF atmosphere is stable can do sky dips to check the calibration, etc. Looked fine.

Compare Radiometers looking at same sky

• Good – not perfect due to different beams?

Then install on telescopes

- Radiometers pick off the beam from the sky by using a polarizing grid plus (lots of) optics see Ross Williamson's talk at this meeting.
- Need to check losses and spill-over. Use sky dips find some elevation dependence – see Scott Paine's talk at this meeting.
- Also had to cut out LO leakage into astronomical receivers – additional grid. Some offsets from reflections.

Interferometer Data

Dropouts seen. Theses are caused by reading out every 2.6 secs which is faster than software designed to do. Edit these out.

Phase fluctuation > 180 degrees at end

Phase Unwrapping

• Plot Phase and Amplitude as complex quantity

• Join up the dots! Only an issue when phase very bad

Interferometer has 2 independent sidebands

• Convert these to path. Differences indicate noise.

rms 295 microns: difference 15 !

Radiometer Data

• We want the differences between the two radiometers:

Conversion from Brightness Temp to Path

- First option is to fit a simple model to the outputs of the 4 (or 8) temperatures seen in the 4 filters. Possibilities:
 - fit only total water
 - water plus temperature, or
 - 2 layers with some water in each and different temperatures
- Then find path for that model (remember that water-topath conversion depends on temperature).
- Find that you have to be careful in fitting too many parameters to each individual set of data.

Conversion from Brightness Temp to Path 2

• Simplified approach:

 $T_b = T_{atm} (1 - e^{-\tau}), \quad \tau \sim E w \text{ and } p \sim R w$ where w is the amount of water and p the path, E is the emissivity and R is the refractivity

- For fluctuations this leads to $\Delta T_b = E (T_{atm} T_b) \Delta w$ and so $\Delta p = R \Delta T_b / E (T_{atm} - T_b)$
- Do this for each channel individually to give 4 estimates of the path fluctuation. Take weighted mean taking account of sensitivity and noise.

Weights for the channels

Can discriminate against thin cloud

- Effectively taking difference on and off the line
- Some sacrifice of sensitivity in doing this

Channel Weights Cloud

Noise level of Radiometers

• Each radiometer has 2 sets of 4 channels – reduce independently:

rms 283 microns: difference 19!

Remember what we had from the Interferometer

rms 295 microns: difference 15 !

So now put these together

rms of residual 82 microns

Remove samples taken during Calibrations

Interferometer (blue), Radiometer (pink) and Difference (yellow)

rms of residual 78 microns

Adjust Scale Factor to optimum – 1.13

Interferometer (blue), Radiometer (pink) and Difference (yellow)

rms of residual 70 microns

Optimum weights instead of model

Interferometer (blue), Radiometer (pink) and Difference (yellow)

rms of residual 69 microns

So why don't we do better?

- NOT noise
- Instrumental effects in Interferometer not at this level
- Instrumental effects in Radiometer can't think what
- Single temperature assumption need to check
- Mismatch of WVR and Interferometer beams perhaps
- Uncorrelated dry component seems most plausible
- <u>But still doing pretty well.</u> Coherence in this data at 1.3mm observing wavelength goes from ~14% to ~90%!

Another Example – Evening

• Here total rms = 83 microns residual = 27 microns

noise contribution ~ 12 microns

Very stable conditions – Night-time

• Total path rms 37 microns, residual 27, noise ~15

Clear excess noise on Interferometer

Thin Cloud Passing Over

• Total path fluct 80 microns, residual 49, noise ~ 14

Some question whether this is all sky

Conclusions

- Correction is meeting the ALMA specifications under good conditions. It should do better when various interferometer problems have been fixed.
- Factor of ~4 reduction in phase variations seems to be about the best we can do so far. (But this is a factor ~16 reduction in the amount of de-correlation loss).
- When wet clouds are present we definitely do less well.
- Hope (!) that ice clouds are less of a problem.
- Key question outstanding is whether we can "carry" the wvr correction from a source to a nearby reference.

