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ABSTRACT

Traditional calibration methods based on scalar self-calibration rely on a linearised quasi-scalar approximation.
Several underlying assumptions will no longer hold for the phased-array telescopes being considered in this conference.
The reason is that the element antennas will show a strong instrumental polarization, that is moreover strongly
dependent on the pointing of the array. Scalar selfcal cannot be used for calibrating such an array.

This paper o�ers a rigourous description, based upon 2�2 matrices, that fully accounts for polarisation phenomena
in an interferometer. It then translates the traditional selfcal algorithm into this matrix language by exploiting the
analogies between scalar and matrix multiplications.

It is shown that the matrix algorithm does not yield a complete calibration: It only aligns all antenna-based
errors by suppressing the scattering of radiation away from source components to places in the image that should be
empty. In doing so, it satis�es the requirement for a high dynamic range.

However, it admits an unknown uniform in-place transformation, the poldistortion, of the matrix brightness.
In terms of Stokes brightness parameters, the polvector (Q,U,V) in Stokes-vector space is rotated in an unknown
way and there is an unknown mutual polconversion between Stokes I and the polvector. One must eliminate this
poldistortion to make the image a faithful rendition of the source.

Unpolarized sources can be used as calibrators to suppress the polconversion e�ect, after which prior statistical
knowledge about the orientations and ellipticities of the antenna elements serves to eliminate most of the polrotation,
much in the same way as in the quasi-scalar method. For homogeneous arrays of identical elements, one supplementary
phase measurement of some sort is required; for heterogeneous arrays this is not even necessary.

In the absence of unpolarized calibrators, polconversion must be eliminated by other means. There are no obvious
ways of achieving this: Developing suitable calibration techniques will be a major challenge for the new generation
of telescopes.

In the concluding section, the consequences of my �ndings for the design of phased-array aperture-synthesis
telescopes are explored.
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1. INTRODUCTION

The twenty-�rst century is likely to become the era of arrays built of mass-producible elements that have few of no
moving parts. The transition from (arrays of) steerable paraboloids to this new type of telescope will bring about
many changes, some of which are being explored in this conference. There are the more or less obvious changes
in production, testing, maintenance and operational methods, the volume of the data and the complexity of its
processing.

In addition to this, there is the very important question whether the usual approximations underlying our current
thinking about radio interferometry will remain tenable. As I shall show, the answer is a categoric 'no': At a
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fundamental level, the polarization that is an unalienable property of both the electromagnetic �eld and our telescopes
cannot adequately be represented by scalar equations. The approximations of the past century will no longer do.
Instead, we need a theory that acknowledges the vector nature of the radiation �eld from the very start.

The theory to be presented here is based on 2 � 2 coherency and transfer ('Jones') matrices that replace the
traditional scalars. It bears a strong formal resemblance to the familiar scalar one and may, to some extent, look
deceptively simple. Clearly, both the noncommutativity of matrix multiplication and the fourfold content of the
matrices introduce a number of new degrees of freedom which give rise to a range of important phenomena that have
no scalar analogue; these will be discussed.

Apart from that, we have to revise our basic notions about how e.g. an antenna is to be described. It is customary
to think to �rst order of the beam of a paraboloid as a scalar function of angular position. To second order, this
description must be re�ned by introducing a (usually direction-dependent) instrumental polarization e�ect that is
known as cross-polarization. The distinction between the two e�ects is a rational one because the latter is small and
can for many purposes be neglected. As a matter of fact, our antennas conform so well to this description that we
are easily led to believe that it is a universal one representing general antenna physics. This is not true, as can easily
be demonstrated for a simple example.

Consider a phased array of crossed error-free short dipoles in a horizontal plane. If we assume ideal ampli�cation,
phasing and summation of their signals, the polarisation properties of the array beam are identical to those of the
individual dipole pairs. Consider radiation incident in the vertical plane of the x dipole at a zenith angle �. The
component intercepted by the x dipole will be attenuated by the projection factor cos�, that picked up by the y
dipole will remain unattenuated. For this direction, the beam is strongly polarized and the scalar approximation
makes little sense. The same is true for any other direction away from the zenith (except perhaps near the vertical
planes at 45 degrees to both dipoles).

The only way to avoid this e�ect with static antenna elements would be to make their E- and H-plane responses
closely identical (as one does with the feeds of parabolic dishes) over the direction range of interest. This may be
possible in principle, but it would require elements considerably more complex than a simple dipole. Such complexity
seems undesirable because it probably implies higher costs and certainly a greater sensitivity to production tolerances
and other sources of error, such as mutual coupling of the elements. At any rate, feasible designs are still likely at
best to represent crude approximations to the desired ideal, and to be beset with a degree of polarization that is
large compared to our current standards.

The bottom line is that, with some exceptions, we must ban scalars from the theory of interferometry and put
2� 2 matrices in their place. The 'new' e�ects that this leads to are not really new in the sense that they did not
exist before. Matrix theory just brings them out more clearly and provides a full view of things that were obscured
or hidden by the traditional quasi-scalar approach. Rather than complicate matters as it may seem to do at �rst, it
helps us to see interferometers as they really are and to fully exploit their possibilities.

A number of important statements will be made and theorems stated without proof. A full account of the theory
is to be found in a series of papers published elsewhere 1;2;3;4. Most if not all of the proofs omitted here are provided
in the latter of these papers.

1.1. Terminology and notation

Since I will be discussing scalar selfcal and its full-polarization analogue side by side, it is necessary to put a precise
terminology in place.

The analogue of the scalar visibility is the coherency, a tensor that I represent in the form of a 2� 2 matrix. It
consists of four components that I shall occasionally refer to as visibilities.

The device that converts the electromagnetic �eld vector into a pair of voltages is called a feed ; it consists of
two receptors that are usually (but not necessarily) sensitive to nominally opposite polarizations. In a homogeneous
array all feeds are nominally identical; in a heterogeneous array they di�er.

The imaging process that I consider consists of the observations proper followed by a process of self-calibration.
In the latter, models of the instrumental errors and the source brightness distribution are developed jointly in an
iterative procedure. It is assumed to have converged when the models together correctly represent the observed
coherencies within the noise. The image is the pictorial representation of the source model; the two words are almost



synonymous. The model itself may take various forms; its essential property is that it can be used to predict model
coherency values that can be compared to those actually observed in order to estimate instrumental errors.

Vectors are denoted by bold lowercase symbols; bold uppercase represents matrices. Constant scalars and vectors
are shown in roman, variables in italic font. A unit vector in the direction x will be denoted by 1x. The 'dagger'
superscript y stands for hermitian transposition or conjugation, i.e. transposition plus complex conjugation.

Primes are generally used to distinguish observed or �tted values from true ones; occasionally they will also be
used to distinguish input and output of a transformation or values of one variable under di�erent conditions.

Quantities in the signal domain carry a single antenna subscript j or k; those in the coherency domain get an
interferometer subscript jk. An additional subscript t will be used to indicate successive integration intervals or
'time slices'. The array consists of N antennas and an observation comprises M integration intervals.

2. COHERENCY-MATRIX FORMULATION OF INTERFEROMETRY

2.1. The scalar/matrix analogy

Scalar form Matrix form Section(s)

Arbitrary scalar a Arbitrary 2� 2 matrix A

Unity = 1 Identity 2� 2 matrix = I

Phase factor exp i� Unitary 2� 2 matrix X
Unimodular unitary 2� 2 matrix Y

Positive real number jaj Positive hermitian 2� 2 matrix G
Unimodular pos.-herm. 2� 2 matrix H

Polar representation a = a exp i� Polar representation A = a exp i�HY 6.1

Complex conjugation a� Hermitian transposition Ay � A�T

Multiplication c = ab = ba Multiplication C = AB 6= BA

Field or voltage transfer e0
j
= gjej

gj = (complex) gain
Field or voltage vector transfer e0

j
= J jej

J j = (complex) Jones matrix
2.3

Visibility ejk =< eje
�
k
> Coherency Ejk =< eje

y

k
> 2.2

Visibility transfer e0
jk

= gjejkg
�
k

Coherency transfer E0
jk

= J jEjkJ
y

k
2.3

Table 1. Analogies between scalars and 2� 2 matrices, their algebraic properties and their application in interfer-
ometry. Particulars are to be found in the sections listed.

The algebraic properties of scalars and matrices are very similar. Every elementary property of scalars has an im-
mediate matrix counterpart, with one very important exception, viz. that matrix multiplication is non-commutative.

The analogy extends further. There is, for example, a matrix counterpart of the polar representation a = jaj exp i�
of complex numbers. An overview is given in Table 1.

2.2. The coherency matrix

The proper way to represent the electric �eld of radiation moving in the z direction of a cartesian coordnate frame
is by a vector

e =

�
ex
ey

�



The equivalent of the scalar visibility is the coherency tensor. It may be represented in various ways; the
representation I use here is the coherency matrix 4;5:

Ejk =< ej e
y

k
>=

 
< ejxe

�
kx

> < ejxe
�
ky

>

< ejye
�
kx

> < ejye
�
ky

>

!
(1)

2.3. The interferometer equation

The elements in the signal path in one antenna linearly transform the electric �eld or voltage vector. The transfor-
mations may be represented by equations of the form

wj = J jej

where J j is called a Jones matrix. It is then readily seen that an interferometer with Jones matrices J j and Jk

transforms the coherency matrix according to

W jk = J jEjkJ
y

k
(2)

Coherency and Jones matrices having the same form, it should be clear from the context which is which, just
as in the scalar domain. In addition, note that Jones matrices carry the single index of an antenna whereas the
coherency matrices have a double, interferometer index. This di�erence will remain also when we later add another
index t for sampling time.

I note in passing that in the particular case of a single dish, j = k and Eq. (2) reduces to

W = JEJy (3)

which is known as a congruence transformation. We will see in Sect. 5.1 that this same transformation describes a
'self-aligned' synthesis array.

3. APERTURE SYNTHESIS

3.1. The van Cittert-Zernike theorem

Aperture synthesis is based on the van Cittert-Zernike theorem 5;6;7, which (in its original form) states that there is
a Fourier-transform relation between the scalar brightness B(l), a function of sky direction l, and the scalar visibility
v(r) which is a function of vector separation or baseline r. � The visibility is de�ned as the spatial autocorrelation
of the electric �eld:

v(r) =< e(r0) e
�(r0 + r) > (4)

where r0 is an arbitrary reference position. We may approximate the van Cittert-Zernike relation by the sum

v(r) =
X

w(r; l)B(l) (5)

where the w(r; l) are the values assumed by the Fourier kernel.

Rather than scanning B in the conventional way with an antenna beam, in aperture synthesis we sample the
visibility by literally following the prescription of Eq. (4): Two antennas sample the �eld at positions separated by
r and after ampli�cation the samples are correlated and averaged in time. Collecting samples for many di�erent
values of r, we may eventually reconstruct v(r) and hence the brightness B(l).

The reconstruction problem is often an ill-conditioned one and we have to constrain the solution with prior
knowledge to obtain a credible result. The most important constraint is that the sky is 'mostly empty', i.e. contains
(like the visible sky) much empty space between isolated sources. I shall use this constraint but not discuss the way
in which it is actually applied.

�One may note that it is the exact spatial analogon of the Wiener-Khinchin theorem that relates a signal's power spectrum
and temporal autocorrelation.



3.2. Matrix brightness

The van Cittert-Zernike theorem can readily be generalised to show that each element of the coherency matrix is the
Fourier transform of the corresponding element of a brightness matrix

E(r) �

�
exx(r) exy(r)
eyx(r) eyy(r)

�
FT
 ! B(l) �

�
Bxx(l) Bxy(l)
Byx(l) Byy(l)

�
(6)

In describing the observing process, I introduce a third index t to represent the successive integration intervals.
Since the Earth is rotating, the successive intervals are associated for each interferometer with di�erent baseline
vectors rjkt, so the coherencies Ejkt that we measure are samples E(rjkt) of the continuous coherency function
E(r). In selfcal theory the integration intervals are assumed to coincide for all interferometers.

Each sample is an appropriate Fourier integral over B(l). Aanlogously to Eq. (5) I write

Ejkt =
X
l

w(rjkt; l) B (l); j; k = 1; : : : ; N; t = 1; : : : ;M (7)

where the w(rjkt; l) are again values of the Fourier kernel.

3.3. Stokes brightness

The Stokes brightness 4;5;6 (I;Q; U; V ) is also a function of l, de�ned by the transformation

B =

�
I +Q U � iV
U + iV I �Q

�
= I I+QQ+ U U+ V V (8)

where

I =

�
1 0
0 1

�
; Q =

�
1 0
0 �1

�
;U =

�
0 1
1 0

�
; V =

�
0 �i
i 0

�
(9)

The matrices I, Q, U and V are known in physics as the Pauli (spin) matrices.

The Stokes parameter I is the total brightness or intensity. For (Q;U; V ) a proper name is the 'polarized-
brightness vector'; more conveniently, I call it the polvector. The dichotomy between I and the other Stokes pa-
rameters can be understood as a consequence of the Pauli matrix I being the identity matrix. The domain of the
polvector is closely related to that of the Poincar�e sphere 5.

It is convenient to introduce a symbolic shorthand for Eq. (8):

B(l) = [ I(l) + p(l) ] (10)

where p � (Q;U; V ) is the polvector.

4. SELF-CALIBRATION

The invention of self-calibration 6;7 marks a watershed in the history of radio astronomy. It is a data processing
technique that enabled us in a single stroke to turn inherently unstable interferometer arrays into superb imaging
instruments whose dynamic range is measured in the hundred thousands. (And it is hoped that it can be stretched
cosiderably further.)

To get the maximum out of the expensive steelware of N antennas, radio astronomers build correlator systems
that implement most or all possible interferometers, their number totalling a maximum of N(N�1)=2. With modern
electronics and digital techniques, these correlators are virtually error-free. It follows that all the gain and phase
errors in the system are attributable to the individual antennas. Thus, their e�ect is present in the interferometers
in a highly redundant form, albeit in combination with the actual visibilities of the source observed.

Self-calibration or selfcal is a (hitherto scalar) method of solving simultaneously for the source brightness B(l)
and the antennas' complex-gain errors. It is an iterative method alternating between two stages:



� Use the current estimate of the brightness distribution and the observed visibilities to improve the current
estimate of the antenna errors.

� Use the current estimate of the antenna errors to correct the observed visibilities and improve the current
estimate of the brightness.

It is not diÆcult to imagine that this kind of procedure will converge to some limiting image, but we have no
formal proof that this limit is unique. Cases can be invented where this would clearly not be the case. The extensive
experience built up over two decades shows, however, that the method is usually quite robust. Except for the
overall brightness scale which selfcal leaves unde�ned, the astrophysically interesting features come out the same,
independently of e.g. the way selfcal is initialised or twiddled through its steering parameters.

Scalar selfcal can be applied only with homogeneous arrays. In such arrays, the receptors form two independent
subsets (X and Y or L and R) whose responses to the polarized radiation �eld can be described by scalar equations.
The view that I shall take here of scalar selfcal is primarily aimed at providing for a generalisation to the matrix
case. At the same time, it will provide another argument (but again: not a proof) for the uniqueness of the �nal
solution. As such, it is interesting in its own right.

4.1. Scalar self-calibration

*

jktej
e

e

g g

v jkt

jt kt

k

Figure 1. Model for a scalar interferometer. The complex gains gj ; gk may be in error; the correlator is assumed
to be ideal.

Selfcal works on the basis of two assumptions:

� All instrumental e�ects are antenna-based ; the correlator is error-free (�g. 2). Thus our observed visibility is
given by

v(rjkt) = gjt e(rjkt) g
�
kt

(11)

� The sky is 'relatively empty': The source brightness is nonzero only in a minor fraction of the observed �eld,
the source's support. (In practice, it turns out that the support need not be known a priori, but can be found
and successively re�ned by inspection of provisional 'dirty' images.)

In the convergence limit, selfcal seeks to match the combination of complex antenna gains g0
jt

and visibilities

e0(rjkt) to the observations. Obviously, one possible match is provided by the true gains and visibilities. Admitting



the possibility of other solutions, let us allow the �tted gains g0
jt

to di�er from the true ones: g0
jt

= gjtx
�1

jt
, and

require the �tted visibilities to satisfy the equations

gjt x
�1
jt e0(rjkt) x

��1

kt
g�
kt

= v(rjkt) = gjt e(rjkt) g
�
kt

(12)

where v(rjkt) are the measured visibilities.

A solution is given by any set of values for the xjt with a corresponding set of visibility samples

v0(rjkt) = xjt v(rjkt) x
�
kt
; (13)

These visibilities in turn correspond to a source model B0 through Eq. (5):

xjt v(rjkt) x
�
kt
=
X
l

w(l; rjkt) B
0 (l); (14)

If the source support is limited as assumed, the sum contains only a limited number L of terms for which B0(l)
can di�er from zero. For a properly conditioned observation, the number of visibility samples is much greater than
that of unknowns: MN values of the xjt plus L values of B0(l).

The system is overdetermined; yet we have already seen that it admits of at least one solution. That solution is
actually a member of a whole family: Indeed, if all the xjt equal one value x, Eq. (14) can be rewritten as

x v(rjkt) x
� =

X
l

w(l; rjkt) x B(l) x�

which de�nes a brightness solution

B0(l) = x B(l) x� (15)

The �tted source model B0 is identical to B except for a positive scale factor, and is obviously con�ned to the
support of B. The selfcal method is indi�erent to this scale factor and a practical algorithm will insert an arbitrary
value. The proper scale must be determined by other means.

Other solutions are unlikely to exist. If we should allow the xjt to take independent values, this would result
in scattering of brightness away from the source to other parts of the image. It is reasonable to conjecture that it
is impossible for any 'wild' combination of xjt values to produce a false brightness image that nonetheless vanishes
everywhere outside the source support. Practical experience of two decades supports this conjecture, | but I reiterate
that a formal proof is lacking and the solution may not always be robust against the e�ect of noise.

4.2. Calibration versus alignment

The solution being non-unique, self-calibration is actually a misnomer: To really calibrate the image we need an
independent �x of the brightness scale. What selfcal does achieve is to reduce all the errors xjt in the individual
visibility measurements to a single value x: It lines up the measurements, forcing them all to conform to one
common unknown scale factor. As a result, extremely high dynamic ranges can be attained even though the absolute
brightness scale is unknown.

Self-alignment describes more accurately what the procedure actually achieves. The distinction is a bit academic
here, but becomes signi�cant in the matrix version of 'selfcal'.

5. MATRIX SELF-ALIGNMENT

5.1. Self-alignment

The argument of the preceding section carries over in its entirety to the matrix domain. We may follow through the
same steps, simply replacing all scalar gains and visibilities by the corresponding 2� 2 matrices. We must now solve
the matrix equivalent of Eq. (12):

J jtX
�1
jt E0(rjkt) X

��1

kt
J�

k
= Jjt E(rjkt) J

�
kt

(16)



and the �nal result is the analogue of Eq. (15)

B0(l) =XB(l)Xy (17)

This equation is known as a congruence transformation. I shall follow mathematicians in referring to Eq. (17)
as 'the congruence transformation X', i.e. using the name of X as a synonym for the transformation that it e�ects:
The source model B0 is related to the true source B by an unknown congruence transformation X.

Like Eq. (15) for scalar selfcal and with the same proviso, this is a basic relation that any matrix self-alignment
solution must satisfy. And as for the scalar case, the appearance of this unknown transformation X is fundamental
and unavoidable. I call it the poldistortion.

Although this result is formally the same as for scalar selfcal, it is worth some thought. As in scalar selfcal,
all the, probably time-varying, errors in the observation have given way to a single poldistortion representing a set
of unknown errors that is constant over the observation. In matrix self-alignment, the time-varying errors to be
converted into unknown constants include

� Time-variable complex antenna gains.

� The variation in orientation of the antenna feeds relative to the object observed ('parallactic angle') that occurs
in alt-az antennas. (Normally one would not rely on self-alignment to eliminate these, but rather 'predict' and
correct for them on the basis of a geometric model.)

� Variations in the feed parameters (mainly the 'leakage' or 'D' terms in the quasi-scalar jargon)

� Variations in ionospheric Faraday rotation.

Moreover, all this is true not only for a single observation contiguous in time, but also for a set of observations spaced
over a time interval in which the source does not change.

A schematic of the combined self-alignment and poldistortion elimination procedure is shown in �g. 1. As in
scalar selfcal, we may �rst correct for the errors that we know of. My argument does not require this; however,
the actual selfcal algorithm starts with an initial image, to be made from the raw observations, that must be good
enough to extract a reasonable initial source model from it. If such a model can be obtained otherwise, e.g. from
prior knowledge about the source, the initial corrections may just as well be omitted: They will automatically be
subsumed in the corrections to be derived in self-alignment.

Whether or not we apply the prior corrections is likely to a�ect the poldistortion in the �nal solution, but not
our ignorance about its value. No matter how we arrive at a self-aligned image, we must assume that it contains an
unknown poldistortion and undertake to eliminate it. This problem will be discussed below.

As an aside, I observe that Fourier transforming Eq. (3) for a single dish, one obtains an equation of the same
form as Eq. (17): The self-aligned array is equivalent to a single dish with unkown Jones matrix.

5.2. Scattering dynamic range and polarimetric �delity

The solutions Eqs. (15) and (17) of the selfcal/self-alignment problem represent in-place transformations of the
brightness: A simple uniform scaling in the scalar case, a uniform poldistortion in the matrix case. Their common
characteristic is that they do not scatter radiation out of any point of the source into any other position in the image.
In the scalar case, the scaling being the same for the entire image means that our image is a faithful (although scaled)
replica of the source: Dynamic range is conserved, - and it is this feature that makes selfcal such an important and
valuable tool.

In the matrix case, image �delity and dynamic range are no longer synonymous. Self-alignment suppresses spatial
scattering in the image; the residual scattering de�nes to what extent weak structures remain recognisable in the
presence of strong features elsewhere in the source. The concept of dynamic range is appropriate to describe this
e�ect. As in the scalar case, it is no more than a semi-quantitative measure of the quality of the image, and I do not
bother to give a formal de�nition.

On top of the e�ect of scattering comes the poldistortion that is independent of it. Even if we were to produce
a truly scatter-free image it would still misrepresent the source in an unknown way: As a complement to dynamic
range we must consider the question of the polarimetric �delity of the image.



5.3. Example: Faraday rotation

The concepts developed above and the bene�ts of the matrix approach can be neatly illustrated on the example
of ionospheric Faraday rotation. This rotation changes the observed position angle of linear polarization. Over a
synthesis observation, it varies and this results in scattering of linearly polarized brightness in the �nal image.

Corrections for the e�ect are generally based on external data: Ionosphere models and ground- and satellite-based
measurements 6. Often the results leave much to be desired. In some cases, the external correction can be improved
upon by noting the apparent rotation of linear polarization during the observation. One might call this Faraday
self-aligment. Obviously, it can only eliminate variations in the rotation; to �nd the true position angle of linear
polarization one must determine the Faraday rotation's zero point by other means.

In the matrix approach, the adjustment of Faraday rotation is no longer a separate operation: It is subsumed in
the overall self-alignment process. A scatter-free image results directly. The absolute rotation and position angle of
linear polarization remain undetermined: This indeterminacy is now recognised as part of the poldistortion that is the
unavoidable by-product of self-alignment. Obtaining a good dynamic range and correct rendition of the polarization
appear as two distinct problems that must be independently addressed.

6. THE POLDISTORTION

6.1. Polrotation and polconversion

An arbitrary square matrix X can be subjected to a polar decomposition

X = xHY = xY H 0

where

� x is a complex constant;

� Y is a unimodular unitary matrix (i.e. Y Y y = I and detY = 1);

� H is a unimodular positive hermitian matrix (i.e. H =Hy, detH = 1 and Tr H > 0); so is H 0.

Applying the polar decomposition to Eq. (17) we get

B0 = xx�H (Y BY y) Hy (18)

The positive scaling factor is the same as in scalar selfcal and we may ignore it for the same reasons. Apart from it,
B0 is derived from B through a succession of two speci�c transformations.

The �rst is the unitary transformation Y . Its e�ect is to leave the intensity unchanged (naturally, since Y IY y = I)
and to rotate the polvector in its three-dimensional space. In the notation of Eq. (10)

[ I 0 + p0 ] = [ I +Rp]

where R is a rotation operator. I call Y the polrotation (transformation). It can be characterised by its Gibbs
polvector

1y sin �;

where y is the direction of the rotation axis in polvector space and 2� the rotation angle. Obviously, any multiple of
the Gibbs vector is an eigenvector of the transformation: R 1y = 1y.

Like the polrotation, the positive hermitian transformation H is characterised by a Gibbs polvector

1h sinh 


The transformation exchanges brightness between the intensity and that component of the polvector that is parallel
to h; any perpendicular component is not a�ected and is therefore an eigenvector. I call H the polconversion. We
may summarise the above by stating that the self-aligned source model B0(l) is related to the true brightness B(l)
by an in-place poldistortion transformation that is the product of a polrotation, a polconversion and a positive scale
factor.

The poldistortion X is far more complicated than a simple scale error. As we have seen, polrotation and
polconversion each contain three unknown parameters (the cartesian components of their Gibbs vectors) which,
together with the scale factor, make a total of seven.
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Figure 2. Flow diagram of the self-alignment and poldistortion calibration procedure. The crux of the matter
resides in the self-alignment: It e�ects a split between the true coherencies and the time-variable part of the observing
errors. The price to be paid is the insertion of an unknown constant error artefact, the poldistortion, in the estimated
coherencies and its inverse in the estimated Jones matrices. To eliminate it, we must compare these estimates with
a priori instrumental and astronomical information.



7. CONTROLLING THE POLDISTORTION

With self-alignment only the �rst half of the calibration job is done. To eliminate the poldistortion, we must bring
other information to bear on our problem. It may take the form of either prior knowledge or additional measurements;
both may be used either to constrain the self-alignment algorithm so as to (partly) suppress the poldistortion, or to
remove the poldistortion afterwards.

For example, if we have reason to believe that our source �eld is unpolarized, we can impose this condition on
our image and source model. Alternatively, we may allow self-alignment to produce a polarized image and determine
and remove the polconversion afterwards, on the basis that in the proper image certain sources must be unpolarized.

Apart from the image B0, self-alignment also yields estimates J 0
j
= J jX

�1 of the antenna Jones matrices.

Comparing these with what we know about the true values gives us another handle on X.

Current observational practice suggests that it is not necessary to control poldistortion to the same extreme that
scattering must be controlled. Errors in the order of 0.1 to 1% in the measured relative polvector p=I are good
enough for much meaningful astrophysics. This is fortunate because it may be very diÆcult to do better except in
special cases.

7.1. Polrotation calibration

If one has access to sources known to be unpolarized, poldistortion is easily suppressed by imposing the same
condition upon the corresponding images. Indeed, if the polvector vanishes in both source and image, conversion
from unpolarized to polarized brightness cannot have taken place. Mathematically, this result is easily con�rmed.

To deal with the polrotation, either prior knowledge or special measurements must be invoked. Usually, the
orientations and ellipticities of the feeds are well known (from the geometries and/or lab measurements) and these
can be used to eliminate two components of the polrotation. The remaining one corresponds to a receiver phase
o�set between the X and Y or L and R subsystems in conventional homogeneous arrays such as the ATCA, the VLA
and the WSRT. The only way to �x it is through an additional measurement, either of a known polarized source or
of a man-made pilot signal 2;4;6;7.

7.2. Heterogeneous arrays

An interesting new case arises when we relax the conventional assumption that the array is homogeneous. This
condition is usually ful�lled for obvious engineering reasons and later became a conditio sine qua non for quasi-scalar
self-calibration, but in the matrix formulation it can be dropped. It turns out that in a heterogeneous array the
phase o�set is tightly coupled to the feed properties; thus, constraining the latter to be close to their nominal values,
one also constrains the receiver phases and no separate measurement is needed. The correctness of this assertion has
been tested in simulations, and its practical usefulness is being explored in a special ad-hoc observation made with
rotated feeds by the Westerbork Telescope.

This new result is not entirely unexpected: Indeed, over a quarter-century ago, Weiler 8 showed that an array of
paraboloids with mostly N-S/E-W oriented linear dipole receptors, but with a few of them rotated over 45 degrees,
can be calibrated completely (i.e. including receiver phases) to �rst order by observing an unpolarized calibrator
alone. To support this �nding in the more general form given here, several arguments can be advanced:

Most fundamentally, the nominal receptor characteristics in the heterogeneous case are arbitrarily distributed.
There is no natural way to split the receptors into two disjoint subsets between which an asymmetry such as the
phase di�erence might arise. The only way out is for the di�erence not to exist.

Another viewpoint is that the homogeneous case is, in physical terms, a degenerate one. The degeneracy results
in a decoupling of the feed and phase characteristics which are normally coupled. This viewpoint is supported by
the mathematics of the problem 4.

A third viewpoint is that a set of identical feeds de�nes a preferred direction in polvector space, viz. that of the
polvectors to which the two receptors are matched (e.g. the V axis for circular feeds). This results in an asymmetry
in the characteristics of the instrument that is directly related to the phase-di�erence problem. 'Randomised' feed
characteristics destroy this preferential direction: The phase di�erence evapourates and all polarizations can be
measured equally well, | or equally poorly.



7.3. General poldistortion calibration

What if we have no unpolarized calibrator sources? We have seen how to control polrotation once we have rid
ourselves of poldistortion, but now we have no simple way to do so.

Frequently, the �elds observed do contain background sources or parts of the target source itself that may be
presumed to be unpolarized. In this case, the self-aligned image can be analysed to estimate and eliminate the
poldistortion, after which the polrotation can be dealt with. Matrix theory provides a better framework for doing
this and the Westerbork observation already referred to should provide a good test case.

In VLBI, the �elds observed are small and hardly contain any background sources. At higher frequencies and �ner
resolutions, unpolarized sources become hard to �nd. Instead, observers are pioneering the use of the parallactic-
angle variation in alt-az telescopes as a device to separate poldistorted intensity from true source polarization 9.
Considering this method from the viewpoint of matrix theory, I doubt its robustness, but this tack should also be
pursued in the matrix framework 4.

8. IMPLICATIONS FOR PHASED-ARRAY INTERFEROMETER ARRAYS

It has already been argued that phased arrays of immovable antennas will require a radical departure from our past
and present frame of mind. The notion of basically scalar �elds and antennas in which polarization e�ects represent
small departures must be abandoned and we must embrace the matrix formalism of this paper in its place.

As has been shown, this introduces a new degree of freedom in our designs by allowing for heterogeneous arrays.
In the phased-array instruments that we consider, arraying occurs at two levels that we must consider separately.

8.1. Linearly or circularly polarized receptors?

The case of Faraday rotation discussed in Sect. 5.3 o�ers a good example of the bene�ts that accrue from the matrix
approach. The rotation entails a mixing of the x and y �elds that cannot be described in cartesian coordinates
in terms of a linearising approximation. In the quasi-scalar approach, one introduces a transformation to circular
coordinates 1;3 to diagonalise the rotation matrix, making the rotation �t in the quasi-scalar framework.

This is one of the reasons why many observers hold the view that circularly polarized feeds are superior. This
mistaken view might lead to misguided design decisions. In the LOFAR 10 study group, the issue is being debated at
length (J.D. Bregman, private communication). The view was advanced that, even if linear feeds would be selected for
production/logistics reasons, it would be necessary to convert the signals afterwards to circular polarization in order
that Faraday rotation can be accounted for. This would mean either expensive additional hardware or complications
in the data processing.

In the matrix framework, this entire discussion becomes a red herring. The 'problem' of Faraday rotation is
nothing more that an artefact of an inadequate mathematical model. From source to image, the signals can be
handled in whichever coordinate frame one prefers. Probably the most attractive frame is the one in which the
nominal Jones matrices of the feeds become identity matrices.

8.2. The necessarily homogeneous 'station' tied array

In international Square-Kiolmeter-Array (SKA) terminology, a station is the equivalent of a parabolic antenna in the
existing telescopes. It is a large tied array consisting of receptors whose outputs are added ('tied') together to form
the equivalent of the primary beam in traditional instruments. The pointing direction of this beam is determined by
appropriate delay and phase control of the receptor signals prior to combining them; likewise, the shape of the beam
is controlled by appropriate weighting or 'tapering'.

In this entire process, all receptors to be combined must be made identical in order to pick up the same component
of the vector �eld. Failing to do so results in decorrelation and depolarization; their e�ect can be assessed and
corrected for, but they entail an irrecoverable loss in signal-to-noise ratio. For this reason, station arrays must be
homogeneous. (If they are not, appropriate matrix transformations must be applied on the signals before adding
them; this eems to me to be an undesirable complication that would serve no purpose.)

As a consequence, the phasing/weighting/combining operation can be described in scalar terms; no 'new' mathe-
matical theory is needed. In particular, the scalar adaptive sidelobe-nulling techniques and algorithms that are being
explored and developed 11 remain valid for a homogeneous tied array. Only certain details will have to be worked
out, e.g. whether the two (e.g. X and Y) receptor subsets should have two separate or one joint nulling algorithm.



8.3. The naturally heterogeneous interferometer array

The interferometers are formed from pairs of stations. Naturally, each station will be in its own cd .. local horizontal
plane. It follows that when they all point at the same source, each will be pointing in a di�erent direction in its local
coordinate frame. The receptor's polarization responses to the same observed source will therefore be di�erent, |
the more so the farther the stations are apart.

In other words, an interferometer array built up from tied-array elements will naturally be heterogeneous. Clearly
such heterogeneity could only be avoided at high cost, but there is no reason for trying to. Matrix self-alignment will
handle it gracefully. In fact, it o�ers us the advantage of an inherent phase alignment. To take full advantage of this,
we probably do well to deliberately make the array as heterogeneous as we can, e.g. by 'randomising' the stations'
receptor orientations and by using both linearly and circularly (or veven elliptically) polarized receptor designs.
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