

Radio AstronomyJargon Al Wootten

- Basic radio astronomy
- Antenna fundamentals
- Types of antennas
- Antenna performance parameters

16 June 2003 Summer Student Lecture

<u>Wavelength = 1 m (approx)</u> Hybrid antennas (wire reflectors or feeds)

Consider a simple radio telescope, two bent wires (dipole) attached to a meter, exposed to a point source a large distance away.

The meter responds to the presence of the source. We define $D(v,\theta,\phi)$ = meter deflection, where θ and ϕ are the sky coordinates of the point source, and v the frequency of observation.

For some orientation of source and dipole the meter deflection will be maximum. Define $D_{max}(\nu,\theta,\phi) = D(\nu,\theta_{max},\phi_{max}) \text{ and } P(\nu,\theta,\phi) = P(\nu,\theta,\phi) < 1.$ $D_{max}(\nu,\theta,\phi) = P(\nu,\theta,\phi) < 1.$ B

 $P(v,\theta,\phi)$ is the **Beam Pattern**

P(ν,θ,φ) has a 'zeroth' moment: $\Omega_A = \iint_{\text{all sky}} P(v, \theta, \phi) d \Omega$ where

 Ω_A is the **Beam solid angle**. Then define D=4 π/Ω_A is the **Directivity or Gain** of the antenna. Generally, maximizing D is good, and to accomplish it we fashion cunningly shaped pieces of metal around the basic antenna.

100-meter Green Bank Telescope

GBT Dedicated in 2000

BASIC ANTENNA FORMULAS

Effective collecting area $A(\nu, \theta, \phi) m^2$

On-axis response $A_0 = \eta A$ η = aperture efficiency

Normalized pattern (primary beam) $P(\nu,\theta,\phi) = A(\nu,\theta,\phi)/A_0$

Beam solid angle $\Omega_{A=\underset{all sky}{=}sky} P(\nu,\theta,\phi) d \Omega$

A₀ Ω_A = λ^2 Also Main lobe solid angle Ω_M = $\int \int P(\nu, \theta, \phi) d\Omega$ and **Full Half Power Beamwidth 'FWHP'** $\eta_{\rm B} = \Omega_{\rm M} / \Omega_{\rm A} < 1$ the Beam Efficiency **Reciprocity** the power pattern of a transmitting antenna is identical to that of a receiving antenna. Suppose there are two identical antennas. In the transmitting antenna A we generate a current flow I_A we will measure a current flow I_B at antenna B and vice versa.

Now consider the antenna as an electrical system, equivalent to a source of fluctuating voltage V characterized by $\langle V^2 \rangle$ the mean square voltage, and some characteristic resistance. Nyquist showed that a resistance R_A at a temperature $R_A \langle V^2 \rangle$

Nyquist showed that a resistance R_A at a temperature T_A will produce a constant noise power per unit frequency interval. Therefore we define the fluctuating voltage in the antenna as arising from some characteristic temperature of its characteristic resistance:

$$\langle V^2 \rangle = 4k T_A \Delta v R_A$$

The power emitted into some frequency interval is $P_{em} = k T_A \Delta v$ For a receiving antenna we connect a receiver (R_{LOAD})

and draw power $P_{LOAD} = \langle V^2 \rangle R_A / (R_A + R_{LOAD})^2$

R_{LOAD}

The maximum power drawn is obtained by matching the receiver to the Antenna, which requires setting $R_A = R_{LOAD}$ and we find that $P_{abs} = P_{LOAD}(max) = \langle V^2 \rangle R_A / (2 R_A^2)$. Now, from reciprocity, identify the $\langle V^2 \rangle$ arising in the receiving antenna with the $\langle V^2 \rangle$ in the transmitting antenna and by Nyquist's law $P_{abs} = k T_A \Delta v$.

We have identified the power stimulated in the antenna by the presence of a source with that obtained by heating the characteristic antenna resistance to some temperature T_A . This is the Antenna Temperature.

In reality, T_A refers to anything in the beam—source, sky, birds, etc. The noise power associated with T_A is combined with that from the receiver and what we actually measure is

 $T_{SYS} = T_{LOAD} + T_A$, or **System Temperature**. In many cases, T_A is small compared to the other terms. Note that by cooling the receiver, we can make the load temperature, and the system temperature, smaller.

Radiometer Equation

Now $\langle V^2 \rangle$ is the mean sum of potentials arising from collisions among the thermally agitated electrons in the system. The number of collisions n_c will be proportional to the system temperature. To measure n_c we count collisions for a time. For a total of N counts, then the uncertainty in n_c will be:

$$\frac{\Delta n_{c}}{n_{c}} = \frac{1}{N}$$

While the collisions are nearly instantaneous, the detector has a finite bandwidth Δv and its response to an individual collision has a time constant, $1/\Delta v$. Therefore in an integration of τ seconds, one obtains N= $\Delta v \tau$ independent counts.

$$\frac{\Delta n_{c}}{n_{c}} \propto \frac{1}{\Delta \nu \tau} \qquad \Delta T_{sys} = \frac{K}{\Delta \nu \tau} \frac{T_{sys}}{\Delta \nu \tau} \qquad \text{the Radiometer Equation}$$

Where K, near unity, depends on the receiver and the mode of observation.

Radiation, Intensity, Flux Density

Consider radiation incident upon the antenna, as represented by the specific intensity $I_v(\theta, \phi)$. Then the power passing through an area dA, directed into solid angle d Ω is:

 $dP_{\text{incident}} = I_{\nu}(\theta, \phi) \cos \theta \, dA \, d\Omega \, d\nu$

And the total power incident upon the antenna is then:

$$P_{\text{incident}} = \int_{\nu}^{\nu + \Delta \nu} \int_{4\pi} d\Omega \int_{ant} dA \cos \theta I_{\nu}(\theta, \phi)$$

Where the source may be extended and its intensities may be added linearly. For Δv small, I_v is constant, and if we point the telescope at the source, $\cos \theta = 1$ so that

 $P_{\text{incident}} = \Delta v \int_{4\pi} A I_{v}(\theta, \phi) d\Omega \text{ where A is the physical telescope area.}$ $A_{e}(\theta, \phi) = A_{e} P(\theta, \phi) \text{ and } A_{e} \text{ is the effective area of the telescope.}$ $\eta_{A} = A_{e}/A \text{ is the aperture efficiency of the telescope. Also,}$ $S_{v} = \int_{0}^{0} d\Omega I_{v}(\theta, \phi) \text{ is the flux density of the source.}$ Of course, $P_{incident}$ and $P_{absorbed}$ are usually not equal. Often, a receiver is sensitive to only one polarization of the incoming energy and $P_{absorbed} = 0.5 \Delta v A_e S_v$ and so using the relation $\lambda^2 = A_e \Omega_A$ (cf. Kraus' *Radio Astronomy* Chapter 6, esp 6-2 & 6-7). Then $D = 4_{\Pi} A_e / \lambda^2$ $T_A = \lambda^2 / 2k \Omega_A \iint_{4_{\Pi}} d \Omega P(\theta, \phi) I_v(\theta, \phi)$ a good statement of our measurement.

Now, for a blackbody, $I_{\nu}=2h\nu^{3}/c^{2} (e^{h\nu/kT}_{B}-1)^{-1}$ and for $h\nu \ll kT_{B}$ then $I_{\nu} \approx 2kT_{B} / \lambda^{2}$ Or $J(T_{B}) \equiv \lambda^{2} I_{\nu}/2k$ the Radiation Temperature Or, since $h\nu \ll kT_{B}$ generally holds for centimeter frequencies, $T_{B} \equiv \lambda^{2} I_{\nu}/2k$ the Brightness Temperature Beware that at millimeter wavelengths this is <u>not</u> true and $T_{B}=h\nu/k (e^{h\nu/kT}_{B}-1)^{-1}$

Now we have $T_A = 1/\Omega_A \iint_{4\pi} d\Omega P(\theta, \phi) T_B(\theta, \phi)$. For a source smaller that the beam, we have

 $T_A = \Omega_S / \Omega_M T_B$ where Ω_S / Ω_M is called the dilution factor. For a larger source, $T_A = \Omega_M / \Omega_A T_B = \eta_B T_B$; η_B is called the Beam efficiency.

Equation of Transfer

 $dI_v = j_v ds - k_v I_v ds$ where j_v and k_v are volume emission and absorption coefficients, which depend upon physical conditions along the line of sight, ds. Then

 $dI_{v}/ds = j_{v} - k_{v}I_{v} \text{ and defining optical depth } \tau = k_{v} ds$ $dI_{v}/d\tau = j_{v}/k_{v} - I_{v} \text{ which we can integrate from } \tau_{1} \text{ to } \tau_{2}$ $I_{v}(\tau_{2}) = I_{v}(\tau_{1})e^{-(\tau_{2}-\tau_{1})} + \int_{\tau_{1}} d\tau_{v}(j_{v}/k_{v})e^{-(\tau_{2}-\tau_{v})}$

Define τ_1 = 0, $J(T_B)$ = $\lambda^2~I_\nu/2k$, and $J(T_S)$ = $\lambda^2/2k~(j_\nu/k_\nu)$ where

T_S is the Source Radiation Temperature. Then

 $T_{B}(\tau_{2}) = T_{B}(0)e^{-\tau^{2}} + \int_{0}^{\tau} T_{S}(\tau)e^{-(\tau_{2} - \tau_{\nu})} d\tau$ $j_{\nu}/k_{\nu} \text{ is the Source Function and may be uniform along the path—that is,}$ $T_{S}(\tau) = \text{constant. If so, then}$ $T_{B}(\tau_{2}) = T_{B}(0)e^{-\tau^{2}} + T_{S}(1 - e^{-\tau_{2}})$ For $\tau_{2} \gg 1$ then $T_{B}(\tau_{2}) \approx T_{S}$ (optically thick) And $\tau_{2} \ll 1$ then $T_{B}(\tau_{2}) \approx T_{B}(0) + T_{S}\tau_{2}$ (optically thin)

Single Antenna

Single Antenna + Focal Plane Receivers

R.D. Ekers

Single Antenna Made of Many Panels

Antenna of Panels

Antenna of Antennas

Dish of Dishes Free space Guided

The Very Large Array - VLA

Dedicated in 1980

ALMA at Chajnantor

Radio Astronomy Examples

Jupiter – a disk about 1 arcminute (1') in diameter, most of its radiation is re-emitted solar radiation, with some derived from gravitational contraction; the temperature of its disk is about $T_B \sim 200$ K is the . $T_B \equiv$ **Brightness Temperature**. For a perfect telescope with a beam with size 1' or less the antenna temperature will approximate this—recall that for a source smaller that the beam, we have

 $T_{A} = \Omega_{S} / \Omega_{M} T_{B}$ where Ω_{S} / Ω_{M} is called the dilution factor. For a larger source, $T_A = \Omega_M / \Omega_A T_B = \eta_B T_B$; η_B is called the Beam efficiency. Take, typically, $\eta_{\rm B}$ =60%. Now recall that for a blackbody, $I_{\nu}=2h\nu^{3}/c_{c}^{2}$ ($e^{h\nu/kT}_{B}$ -1)⁻¹ and for $h\nu \ll kT_{B}$ then $I_{\nu}\approx 2kT_{B}/\lambda^{2}$ So $S_{n} = \iint d \Omega I_{n}(\theta, \phi)$ is the flux density of the source. $S_{\nu} \approx 2kT_{\rm B} d\Omega / \lambda^2$. So we know how bright Jupiter is, how long does it take to detect it with various telescopes at various wavelengths? We need to know the sensitivity, **System Temperature** and the sensitivity of our system from the Radiometer Equation $\Delta T_{sys} = \frac{K T_{sys}}{\Delta v \tau}$

Then at $\lambda = 1$ cm, for Jupiter,

 $S_v \approx 2kT_B d \Omega / \lambda^2 = 2(1.38x10^{-23})(200) (8.46x10^{-08})/(.01)^2$

 $S_{\nu}{\approx}$ 4.67 x 10^{-26} Wm^{-2} Hz^-1 sr^-1 = 467 Jansky (Jy). At ${\lambda}{=}3mm$,

 $S_{v} \approx 5189$ Jy and at $\lambda=0.3$ mm $S_{v} \approx 518900$ Jy. Note that as long as the source fills the beam, T_{B} remains constant, while S_{v} increases with decreasing wavelength, as it follows the long-wavelength tail of the Planck blackbody function.

Beware that at millimeter wavelengths $hv \ll kT_B$ this is <u>not</u> true and $T_B = hv/k (e^{hv/kT_B}-1)^{-1}$ so this approximation fails into the submillimeter! Now let's assume $T_{sys} = T_{rx} = 50$ K, resonable at 1cm, ignoring the atmosphere. Let's integrate for 1 second, and for a bandwidth what is reasonable??? Say 50 MHz to be conservative, though $\Delta v/v=30\%$ for a state-of-the-art high frequency receiver. Then for K=2 (position switching) we have $\Delta T_{sys} = 0.014$ K—a signal-to-noise ratio of 8600 in one second!

Wow! Jupiter is bright! Can we see Jupiter around another star???

Once we dreamed... now we can detect them!

Da3443 🤞	• • • • • • • • • • • • • • • • • • •		
D46975	a 25 M		
Diariza	• 0.53 M		
D179949	0.00 kg		
D209458	0.63 M.		
D-103166	• 0.48 M		
ивсо 🥇	• 41M.		
075289	• 0.46 M		
Pea 🥇	a 45 M.		
sAnd (• 0.64 M. • 1.9 M.	• 4.2 N.	
168746	• 0.24 M.		
162020	• 13 M.		
217107	■ 12 M.		
130322	• 11M.		
108147 🧃	• 0.34 M.		
86 🤇	• 42 N.		
Спс 🤞	• 0.93 M.		
38529	● 0.76 M.		
876C 🤇	• 0.55 M,		
195019 🤾	<mark>) ■</mark> 3.5 M,		
192263 🧃	🕘 🔹 0.81 M,		
6434 🤇	🔶 🔹 0.48 M,		
876 🤇	💛 🖷 🛎 🕺 0.6 & 1.9 M,		
οΟτΒ 🤅	🕘 🔹 0.99 M ,		
168443 🤇	7.6 Å,		■ 17 M ₂
121504 🤇	🔶 🔹 0.89 M,		
16141 🤇	🕘 🔹 0.21 Ň,		
114762 🤇	 to. M, 		
Vir 🤇	💛 🔹 7,4 M,		
52265 (• 1.1 M,		
1237 🤅 🌔	🔶 🔹 3.4 MJ,		
37124 🤇	• 1.1 M ₂		
202206	<u> </u>		
12661 🤇	👱 🔹 2.8 M,		
134987 🤇	<u> </u>		
169830	2.9 M ₂		
89744	<u> </u>		
192788	<mark>. ● 3.8 M</mark> ,		
ance (<u> </u>		
177830	• 1.2 M,		
210277	• 12 M,		
2/442	• 1.4 M,		
02343	<u>2.3 M</u>		
1222002 (<u> </u>	1	
OveR	×	1.9 M,	
urgo (2	• I.D.N.,	
10607	×	2.0 Mg	
10007	.	• D.U M ,	
Hor	×	= 0.UM	408
eEni	.		• 4.0 MJ,
	· · · · · · · · · · · · · · · · · · ·		= 0.87
	0 1	2	3
	v 1	2	5
	Orbital Semi	major Axis	; (AU)

Radial velocity surveys are sensitive to ~Jupiter/Saturn mass planets.

Epsilon Eridani a nearby star with planets AND a dusty debris disk...

 $S_{\nu} \approx 2kT_{\rm B} d\Omega / \lambda^2$ where d Ω is the solid angle, and Jupiter filled the beam. Jupiter's radius is 70,000,000 m. In the previous slide we saw that Epsilon Eridani had a Jovian sized planet at a distance of 3.3AU from its solar-type stellar host, so its brightness temperature is probably similar. Epsilon Eridani lies at 3.2 pc = 10^{17} m, so approximately $S_{EpEri} = \pi (7x10^7 \text{ m}/10^{17} \text{ m})^2 S_{Jupiter} = 10^{-7} \text{ Jy even at 3mm!}$ Even at 0.3mm, this planet only provides a few microJy. Or, in terms of brightness temperature, $T_A = \eta_B T_B \approx \Omega_{EpEri} / \Omega_M T_B \approx 10^{-18} T_B!$ Clearly we win by making the beam as small as possible but even for ALMA this would take many many weeks!

But wait a minute...what about the dust disk in the last slide????

The problem is the beam-filling factor—for an extended disk (and a 100 AU solar system at that distance is about 30"), even for very low masses, current instruments can detect about a lunar mass of *extended cold* dust (say 50K), but with resolution of only 8" in the submillimeter region, or \sim 1" in the millimeter.

Extended sources are easier—protoplanets or dust disks best
 Cooler objects easier than hot objects, to some limits
 Resolution is the key—confusion (the dust disk as ~1mJy of flux, hence 1000 times the signal!)

 \succ From the emissivity of the dust, we can measure the mass of dust directly.

ε Eridani JCMT

ALMA Simulation

x10

Present mm-wave cameras provide only a few pixels, ALMA imaging will rival HST.

PRC99-03 • STScI OPO • B. Smith (University of Hawaii), G. Schneider (University of Arizona), E. Becklin and A. Weinberger (UCLA) and NASA

AIPS User 1134 MUNDY DEBRIS DISK

Debris Disks

- These provide a challenge to ALMA imaging because:
 - They are faint about nearby stars 1mJy is about half a lunar mass at 12 pc
 - They are extended about nearby stars—several fields of view at 12 pc for instance
 - They emit most strongly in the submillimeter, where imaging is the greatest challenge.
 - But they can provide best evidence for planetary

Using trace molecules, mm-wave astronomy can probe these regions directly.

Alves et al. 2001

Scenario largely from indirect tracers.

Adapted from McCaughrean

5 Astronomical Units (AU = Earth-Sun Distance)

How large are these disks in Orion?

About 2x Sun-Pluto, or 1-2" on the sky.

SUBARU imaging (a) $\lambda = 1$ mm \longrightarrow D > 1 km!

National Astronomical Observatory of Japan Nobeyama Radio Observatory

Nobeyama Millimeter Array

with the new 10 m submillimeter telescope (ASTE)

Current arrays are small and situated at relatively low elevations.

CARMA = OVRO + BIMA

Plateau de Bure

Protoplanet Formation

- Disks are observed about young stars, but with poor resolution
- ALMA will provide the resolution and the sensitivity to detect condensations, the cores of future giant planets
- As the planets grow, they clear gaps and inner holes in the disks
- On the right are models of this process, and on the left simulations of ALMA's view showing that condensations, gaps and holes are readily distinguished