
OBIT DEVELOPMENT MEMO SERIES NO. 49 1

AVX2: First Look
W. D. Cotton, August 7, 2017

Abstract—Some aspects of the second version of the “Advanced
Vector eXtensions” (AVX2) are examined in the context of radio
interferometric imaging. These are basically a strengthening of
the vector instruction set. The newly included integer instructions
are a big win in a public domain trigonometric vector library
but the “gather” function is substantially slower than its more
primitive counterpart. Two version of gcc are also compared.

Index Terms—vectors, interferometry, performance

I. I NTRODUCTION

M ODERN CPUs can use operands the width of the
memory bus. When the memory bus is wider than

the size of a given data type, this can be used to perform
parallel operations or SIMD = “Single Instruction, multiple
data” essentially forming a vector engine. There were several
incarnations of the SSE instructions for 128 bit buses (4
floats or 2 doubles) and the initial SIMD operations for 256
bit buses (8 float, 4 double) was “AVX” (“Advanced Vector
eXtensions”). AXV2 is an enhanced version of AVX; the
improvements of interest here are a stronger set of integer
operations and a “gather” function to fill a vector register
with data from non contiguous locations in memory. The
functionality can be accessed via 1) an optimizing compiler, 2)
assembly instructions or 3) “intrinsics” which are c function
calls corresponding to an assembly instruction. The expensive
Intel compiler is good at implementing these features but the
freebe gcc lags substantially. The testing reported here used
the “intrinsics”.

Vectors of sine/cosine pairs are frequently used in
interferometry, especially in the “DFT” approximation
of a Fourier Transform. Public domain libraries using
SSE/AVX/AVX2 for trigonometric functions are available
(https://github.com/juj/MathGeoLib/blob/master/src/Math/
sse mathfun.h, https://github.com/reyoung/avxmathfun).
This memo evaluates using these libraries in the Obit package
[1] 1. This analysis also compares gcc-4.4.7 and gcc-4.9.1.

II. AVX2 F EATURES

The enhancements of interest here are the improved integer
support and the gather function. The new integer features
are supported by the avxmathfun.h library of trigonometric
functions. Testing used the sincos function in both a simple
standalone mode and as implemented in the Obit interferome-
try software. The gather function was evaluated in a standalone
test.

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

TABLE I
SIN /COS TIMINGS

method total Run time CPU time
sec. sec.

SSE 4.19 4.19
AVX 3.91 3.91
AVX2 1.75 1.75

III. STANDALONE TESTS

These tests consist of simple c programs performing a
function a large number of times and using the unix time
utility to determine the run and cpu times. The tests were
run on a laptop with two Intel i5-4300M cores running at 2.6
GHz and which supports SSE, AVX and AVX2 instructions.
Compilation used gcc-4.9.1 with O3 optimization.

A. Sine/Cosine Tests

Usage of sines and cosines in interferometry is relatively
simple and only accurate values are needed. The properties
of continuity, differentiability etc. provided by the standard
c libraries are overkill and the simplified version provided
by (sse)avxmathfun.h is quite adequate. The test program is
given in Figure III-A.

The test program was compiled with a number of options
using gcc-4.9.1. All options were tested comparing with the
system library sincosf function and then a number of test
timing runs were made without this comparison and the tim-
ings averaged. All comparisons gave an average difference of
5.78705e-16, and RMS difference of 2.36859e-11 a maximum
error of 5.96046e-08 and sum of the sine values of 5.78705e-
16. Timings are given in Table I. The AVX rate was only 7%
faster than SSE while the AVX2 time is 2.4 times faster than
SSE and 2.2 times faster than AVX. The poor performance of
AVX appears to be the result of having to use SSE integer
functions with more shuffling data around between 256 and
128 bit variables.

B. Gather Tests

The tests of the AVX2 “gather” function used the program
in Figure III-B. This was compiled with either the “Manual”
vector load or the “Gather” vector load sections commented
out and the execution timed. The loaded vector was “stored”
to keep the operation from being optimized away. Results are
in Table II. While puzzling, these results appear correct; the
gather function seems like a bad idea.



OBIT DEVELOPMENT MEMO SERIES NO. 49 2

#include "ObitSinCos.h"
void sincosf(float x, float *sin, float *cos);
int main ( int argc, char **argv )
{
ofloat sss,ccc, d, dmax;
ofloat phase, randnorm, fazRange;
ofloat a[1000], c[1000], s[1000];
odouble ssum,sum, sum2, count, rms;
olong i, j, m, n;
gboolean doCompare=FALSE;/* Compare w/ library */
n = 900000000;
m = 1000;
/*fact = 2 * 3.1415926 * 5 / (ofloat)n;*/
sum = sum2 = count = 0.0;
dmax = 0.0;
fazRange = 100.0;
randnorm = fazRange / RAND_MAX;
/* Fill array */
for (j=0; j<m; j++) {

/* Random phase between fazMin, fazMax */
phase = (rand()-RAND_MAX/2)*randnorm;
a[j] = phase;

}
ssum = 0.0;
for (i=0; i<n; i+=m) {

/* Compute vector */
ObitSinCosVec (m, a, s, c);
ssum += s[0]; /* Don’t optimize away */

/* Compare */
if (doCompare) {
for (j=0; j<m; j++) {
sincosf(a[j], &sss, &ccc);
d = (sss-s[j]); dmax = MAX (dmax, fabs(d));
sum += d; sum2 += d*d; count++;
d = (ccc-c[j]); dmax = MAX (dmax, fabs(d));
sum += d; sum2 += d*d; count++;

}
sum /= count; sum2 /= count;
rms = sqrt (sum2 - sum*sum);

}
}
if (doCompare)

fprintf (stdout,"Avg difference %lg rms %lg max err=%g\n",
sum, rms,dmax);

fprintf (stdout,"sum=%g\n", ssum);
return 0;

} /* end main */

Fig. 1. Sine/Cosine Test Program



OBIT DEVELOPMENT MEMO SERIES NO. 49 3

#include <immintrin.h>
typedef __m256 v8sf; // vector of 8 float (avx)
typedef __m256i v8si; // vector of 8 int (avx)
int main ( int argc, char **argv )
{
float a[8000], dump[800];
long i, j, m, n;
/* reordering - Multiply x 10 to keep in separate 256 bit mem reads*/
long re[8] = {5*10,2*10,1*10,3*10,6*10,7*10,0*10,4*10};
v8si order;
v8sf vector, vector2;
n = 9000000000; m = 800;
order = _mm256_set_epi32(re[0], re[1], re[2],re[3], re[4], re[5], re[6], re[7]);
/* Fill array with random numbers */
for (j=0; j<m*10; j++) {

/* Random vaue between fazMin, fazMax */
a[j] = (rand()-RAND_MAX/2)*100. / RAND_MAX;

}
/* loop loading in reverse order */
for (i=0; i<n; i+=m) {

for (j=0; j<m; j+=8) {
/* Manual
vector = _mm256_set_ps(a[j+re[0]], a[j+re[1]], a[j+re[2]], a[j+re[3]],

a[j+re[4]], a[j+re[5]], a[j+re[6]], a[j+re[7]]);
_mm256_storeu_ps(&dump[j], vector);*/
/* Gather */
vector2 = _mm256_i32gather_ps(&a[j], order, 4);
_mm256_storeu_ps(&dump[j], vector2);

} /* end inner loop */
} /* end outer loop */
return 0;

} /* end main */

Fig. 2. Gather Test Program

TABLE II
GATHER TIMINGS

method total Run time CPU time
sec. sec.

manual 2.77 2.77
gather 5.17 5.17

C. Interferometry Tests

Interferometry tests were performed in Obit using various
combination of compiler and AVX options on the same laptop
as used for the standalone tests. This machine has an SSD
disk which was used for all files and 8 GByte of memory.
All programs were allowed to use two threads for multi-
threaded operations. Other than compiler options, the only
change to the Obit was the avxmathfun library enabling use
of AVX2. Obit implements segments of code using AVX (or
AVX2) using #ifdef statements allowing SSE to be used when
AVX(2) is not available (SSE has been around forever). Com-
piling Obit software enabling AVX needs compiler options “-
DHAVE AVX=1 -mavx” and for AVX2, “-DHAVE AVX2=1

-mavx2”.
In principle, the compiler could also use AVX2 (or AVX)

functions in its optimization when this was turned on. Com-
paring execution times in programs that do not explicitly use
AVX with different version of the compiler will test for this.

D. UVSub

Task UVSub subtracts the Fourier transform of a CLEAN
model from a visibility data set. If this is done using the
Cmethod=’DFT” method, the processing for a large CLEAN
model is dominated by the calculation of sin/cos pairs and
is a good test of the avxmathfun library. The VLA data set
used had 18,122 visibilities each with 1024 channels and dual
polarization. The CLEAN model subtracted had 900 CLEAN
components. Each compiler/AVX option was run several times
and the average results shown in Table III. As expected from
Section III-A, the AVX2 results are substantially better than
for either of the AVX results, 50% faster than the gcc-4.4.7
time and 30% faster than gcc-4.9.1. The gcc-4.9.1 compiler
optimizer resulted in a 15% improvement over gcc-4.4.7. The
improvement is probably NOT in the avxmathfun library as



OBIT DEVELOPMENT MEMO SERIES NO. 49 4

TABLE III
UVSUB TIMINGS

method REAL time CPU time
sec. sec.

AVX gcc-4.4.7 96.3 188.9
AVX gcc-4.9.1 84.1 165.8
AVX2 gcc-4.9.1 64.8 126.8

TABLE IV
MFIMAGE TIMINGS

method REAL time CPU time
sec. sec.

AVX gcc-4.4.7 285.3 390.5
AVX gcc-4.9.1 218.0 282.4
AVX2 gcc-4.9.1 226.7 275.4

the timing for Section III-A showed no significant difference
for the two compilers.

E. MFImage

The wide-band imager MFImage was also tested with
different AVX/compiler options. This used the visibility data
set used in the UVSub test and created a 3000x3000x11 image
using seven facets. CLEANing proceeded for 500 CLEAN
components; results for the various tests were essentially
identical. This program has extensive AVX sections especially
for gridding and UVSub like model calculations. Average
execution times are given in Table IV.

In this test, the fraction of the time spent calculating sin/cos
pairs is relatively small and the AVX2 timing is a bit (4%
but outside the scatter) worse than AVX only using the same
compiler. However, the gcc-4.9.1 compiled AVX version ran
31% faster than the gcc-4.4.7 version.

F. HGeom

HGeom will interpolate an image onto the celestial grid
defined by another image. It is compute intensive and multi-
threaded but has no explicit AVX component. Timing tests
used a 3000x3000x11 image and a 5×5 convolution kernel in
a Lagrangian interpolation. Average execution times are given
in Table V. There were no significant differences among the
various tests.

TABLE V
HGEOM TIMINGS

method REAL time CPU time
sec. sec.

AVX gcc-4.4.7 26.5 51.7
AVX gcc-4.9.1 26.4 51.1
AVX2 gcc-4.9.1 26.0 50.6

IV. D ISCUSSION

Tests were presented comparing the use of new AVX2
features with AVX. The new integer operations make a big
difference in the sine/cosine calculation from the avxmathfun
library. This difference is largely due to the poorer than
expected performance using only AVX. The addition of the
“gather” functionality in AVX2 is very curious given that it
runs at half the speed of the more “primitive” alternative.

Implementation of the AVX2 features in the avxmathfun
library into the Obit package was shown to make a sizable
impact on operations dominated by the DFT Fourier transform
of CLEAN models such as UVSub. In the case of the AVX
intensive interferometric imager MFImage, AVX2 made it
marginally slower whereas switching from gcc-4.4.7 to gcc-
4.9.1 decreased the run time by 30%. The CPU intensive but
AVX impoverished program HGeom showed no timing effects
from either AVX/AVX2 or which compiler was used.

ACKNOWLEDGMENT

I would like to thank Tracy Halstead for help with various
compiler issues.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.


