
OBIT DEVELOPMENT MEMO SERIES NO. 67 1

AVX512: First Look
W. D. Cotton, April 8, 2020

Abstract—Some aspects of the 512 bit version of the “Advanced
Vector eXtensions” (AVX512) are examined in the context of
radio interferometric imaging. These are basically doubling the
vector length to 16 floats and a strengthening of the vector
instruction set. The 16 float vector length is an excellent match
to the 7x7 complex gridding convolution function used in Obit
imaging. The tests presented here show a 15-20% performance
gain of AVX512 (512 bit) over AVX2 (256 bit) in major interfer-
ometry applications.

Index Terms—vectors, interferometry, performance

I. INTRODUCTION

MODERN CPUs can use operands the width of the

memory bus. When the memory bus is wider than

the size of a given data type, this can be used to perform

parallel operations or SIMD = “Single Instruction, multiple

data” essentially forming a vector engine. There were several

incarnations of the SSE instructions for 128 bit buses (4

floats or 2 doubles) and the initial SIMD operations for 256

bit buses (8 float, 4 double) was “AVX” (“Advanced Vector

eXtensions”) and AVX2. For 512 bit memory busses there is

AVX512 with a further strengthening of the instruction set,

this includes “fused multiply/add” instructions which save a

vector store and load for operations like updating the imaging

grid in interferometry. The functionality can be accessed via

1) an optimizing compiler, 2) assembly instructions or 3)

“intrinsics” which are c function calls corresponding to an

assembly instruction. The expensive, but buggy Intel compiler

is good at implementing these features but the freebe gcc lags

substantially. The testing reported here used the “intrinsics”.

A similar memo describing AVX2 is [1].

Vectors of sine/cosine pairs are frequently

used in interferometry, especially in the “DFT”

approximation of a Fourier Transform. Public

domain libraries using SSE/AVX/AVX2/AVX512

for trigonometric functions are available

(https://github.com/juj/MathGeoLib/blob/master/src/Math/

sse mathfun.h, https://github.com/reyoung/avx mathfun) and

https://github.com/aff3ct/MIPP/blob/master/src/src/math/avx512

mathfun.h (and .hxx)). This memo evaluates using these

libraries and other tests of AVX512 in the Obit package [2] 1.

II. AVX512 FEATURES

The enhancements of interest here are the increased vector

length (to 16 floats/8 doubles) and the enhanced instruction

set including “fused multiply/add”. Testing used the sincos

function in both a simple standalone mode and as implemented

in the Obit interferometry software. Also tested was the use

of the enhanced vector length in uv data gridding.

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

TABLE I
SIN/COS TIMINGS

method total Run time Rate
sec.

sinf+cosf 211.5 1.000
sincosf 142.2 1.5
SSE 33.8 6.2
AVX 33.8 6.2
AVX2 16.5 12.8
AVX512 10.4 20.4

III. STANDALONE TESTS

These tests consist of simple c programs performing a

function a large number of times and using the unix time

utility to determine the run and cpu times. The tests were

run on a workstation with twenty–four Intel Xeon Gold cores

running @ 3.0 GHz and which supports SSE, AVX, AVX2,

and AVX512 instructions. However, the standalone tests were

performed single threaded. Compilation used gcc-8.3.1 with

O3 optimization.

A. Sine/Cosine Tests

Usage of sines and cosines in interferometry is relatively

simple and only accurate values are needed. The properties

of continuity, differentiability etc. provided by the standard

c libraries are overkill and the simplified version provided by

(avx)avx512 mathfun.h is quite adequate. As described in [1],

the instruction set in basic AVX is weak enough that it does

not give a substantial improvement over SSE. The test program

is given in Figures ?? and III-A.

The test program was compiled with a number of options

using gcc-8.3.1. All options were tested comparing with the

system library sincosf function and then a number of test

timing runs were made without this comparison; the setup

time is negligible compared to the run time of each test. The

AVX512 comparisons gave an average difference of 1.646e-16,

and RMS difference of 1.366e-11 a maximum error of 5.96e-

08 and sum of the sine residuals of -1.646e-16. Timings are

given in Table I including the ratio of the speed compared

to using the library sinf + cosf routines (“rate”). The poor

performance of AVX appears to be the result of having to

use SSE integer functions with more shuffling data around

between 256 and 128 bit variables. Using AVX512 gives

a 60% improvement over AVX2 and a factor of 20 over

sinf+cosF. Using the library sincosf rather than sinf + cosf

gives a 50% improvement.

OBIT DEVELOPMENT MEMO SERIES NO. 67 2

/* Test AVX2/512 improvements */

#include "ObitSinCos.h"

void sincosf(float x, float *sin, float *cos);

/* use library sinf & cosf */

void sincos1(ollong n, ofloat *x, ofloat *s, ofloat *c);

/* use library sincosf */

void sincos2(ollong n, ofloat *x, ofloat *s, ofloat *c);

int main (int argc, char **argv)

{

ofloat sss,ccc, d, dmax;

ofloat phase, randnorm, fazRange;

ofloat a[50000], c[50000], s[50000];

odouble sum, sum2, count, rms;

ollong i, j, m, n;

gboolean doCompare = FALSE; /* Do comparison with standard library */

n = 9000000000; m = 5000;

sum = sum2 = count = 0.0;

dmax = 0.0;

fazRange = 100.0;

randnorm = fazRange / RAND_MAX;

/* Fill array */

for (j=0; j<m; j++) {

/* Random phase between fazMin, fazMax */

phase = (rand()-RAND_MAX/2)*randnorm;

a[j] = phase;

}

/*n=0; *//*debug*/

sum = 0.0; j=0;

for (i=0; i<n; i+=m) {

/* Compute vector */

ObitSinCosVec (m, a, s, c);

/*sincos1 (m, a, s, c); sinf + cosf */

/*sincos2 (m, a, s, c); sincosf */

/*for (j=0; j<m; j++) sum += s[j];*/

sum += a[j]; /* Don’t optimize away */

/* Compare */

if (doCompare) {

for (j=0; j<m; j++) {

sincosf(a[j], &sss, &ccc);

d = (sss-s[j]);

dmax = MAX (dmax, fabs(d));

sum += d;

sum2 += d*d;

count++;

d = (ccc-c[j]);

dmax = MAX (dmax, fabs(d));

sum += d;

sum2 += d*d;

count++;

}

sum /= count;

sum2 /= count;

rms = sqrt (sum2 - sum*sum);

}

}

Fig. 1. Sine/Cosine Test Program, part 1

OBIT DEVELOPMENT MEMO SERIES NO. 67 3

if (doCompare)

fprintf (stdout,"Avg difference %lg rms %lg max err=%g\n", sum, rms,dmax);

fprintf (stdout,"sum=%g\n", sum);

return 0;

} /* end main */

/* use library sinf & cosf */

void sincos1(ollong n, ofloat *x, ofloat *s, ofloat *c) {

ollong i;

for (i=0; i<n; i++) {s[i]=sinf(x[i]); c[i]=cosf(x[i]); }

} /* end sincos1 */

/* use library sincosf */

void sincos2(ollong n, ofloat *x, ofloat *s, ofloat *c) {

ollong i;

for (i=0; i<n; i++) {sincosf(x[i], &s[i], &c[i]);}

} /* end sincos1 */

Fig. 2. Sine/Cosine Test Program cont’d

TABLE II
GATHER TIMINGS

method total Run time CPU time
sec. sec.

manual 38.9 38.9
gather 27.1 27.1

B. Gather Tests

The tests of the AVX512 “gather” function used the program

in Figure III-B. This was compiled with either the “Manual”

vector load or the “Gather” vector load sections commented

out and the execution timed. The loaded vector was “stored” to

keep the operation from being optimized away. The AVX512

gather function is substantially faster (40%) than the “manual”

version.

C. Interferometry Tests

Interferometry tests were performed in Obit using various

combination of compiler and AVX options on the same

workstation as used for the standalone tests. This machine

has an SSD disk which was used for all input files and 256

GByte of memory 150 GByte of which was used as RAM

disk for output and scratch files. This workstation also has a

GPU (NVIDIA GeForce RTX 2040 TI with 13,056 cores).

All programs were allowed to use tthe twenty-four threads

for multi-threaded operations. Many routines which had been

adapted to use AVX/AVX2 were also modified to use AVX512,

expecially the gridding and SkyModelMF (degridding) rou-

tines. More functionally was vectorized in the gridding and

degridding routines as the residual scalar operations were

becoming a larger fraction of the total run time.

Obit implements segments of code using

AVX512/AVX2/AVX/SSE using #ifdef statements giving

preference in that order. Compiling Obit software enabling

AVX needs compiler options “-DHAVE AVX=1 -mavx”,

TABLE III
UVSUB TIMINGS

method REAL time CPU time
sec. sec.

AVX2 972 21238
AVX512 819 17007
GPU 101 not measured

for AVX2, “-DHAVE AVX2=1 -mavx2” and for AVX512,

“-DHAVE AVX512=1 -mavx512f”

D. UVSub

Task UVSub subtracts the Fourier transform of a CLEAN

model from a visibility data set and is used heavily for “de-

gridding”. If this is done using the Cmethod=’DFT” method,

the processing for a large CLEAN model is dominated by

the calculation of sin/cos pairs and is a good test of the

avx/avx512 mathfun libraries. The data set used for this test

was 9 hours of MeerKAT (57 antenna) data in continuum

mode. The data set used had 1,369,266 visibilities each with

952 channels and dual polarization although roughly half the

data are flagged. The CLEAN model subtracted had 1934

wideband CLEAN components. AVX2 and AVX512 were used

as was the GPU and the results shown in Table III.

As expected from Section III-A, the AVX512 results are

better than the AVX2 results by ∼20% but by less than the

difference between the pure sincos tests indicating that the

residual scalar operations are taking significant time. The GPU

based run was far faster than either AVX2 or AVX512 as

almost all of the calculations had been offloaded onto the GPU

(see [3]).

E. MFImage

Imaging is a more general test with I/O dominated, scalar

and a variety of vector operations. For problems with large

datasets (e.g. MeerKAT) the run time is dominated by the

OBIT DEVELOPMENT MEMO SERIES NO. 67 4

#include <immintrin.h>

#include <stdio.h>

typedef __m512 v16sf; // vector of 16 float (avx512)

typedef __m512i v16si; // vector of 16 int (avx512)

int main (int argc, char **argv)

{

float a[16000], dump[1600], sum=0;

long i, j, m, n;

/* reordering - Multiply x 10 to keep in separate 256 bit mem reads*/

long re[16] = {5*10,2*10,1*10,3*10,6*10,7*10,0*10,4*10,

13*10,10*10,9*10,11*10,14*10,15*10,8*10,12*10};

v16si order;

v16sf vector, vector2;

n = 90000000; m = 1600;

order = _mm512_set_epi32(re[0], re[1], re[2],re[3], re[4], re[5], re[6], re[7],

re[8], re[9], re[10],re[11], re[12], re[13], re[14], re[15]);

/* Fill array with random numbers */

for (j=0; j<m*10; j++) {

/* Random values */

a[j] = (rand()-RAND_MAX/2)*100. / RAND_MAX;

}

/* loop loading in reverse order */

for (i=0; i<n; i++) {

for (j=0; j<m; j+=16) {

/* Manual*/

vector = _mm512_set_ps(a[j+re[0]], a[j+re[1]], a[j+re[2]], a[j+re[3]],

a[j+re[4]], a[j+re[5]], a[j+re[6]], a[j+re[7]],

a[j+re[8]], a[j+re[9]], a[j+re[10]], a[j+re[11]],

a[j+re[12]], a[j+re[13]], a[j+re[14]], a[j+re[15]]);

_mm512_storeu_ps(&dump[j], vector);

/* Gather

vector2 = _mm512_i32gather_ps(order, (float*)&a[j], 4);

_mm512_storeu_ps(&dump[j], vector2);*/

sum+= dump[j];

} /* end inner loop */

} /* end outer loop */

fprintf (stderr,"sum=%f\n",sum);

return 0;

} /* end main */

Fig. 3. Gather Test Program

gridding and degridding operations. The wide-band imager

MFImage was used for these tests with different AVX/GPU

and compiler options to do a shallow CLEAN on a MeerKAT

dataset.

The initial AVX implementation was described in [4]. The

gridding convolution kernal primarily used in Obit imaging is

a 7×7, separable, prolate spheroid and the segments updated

in the uv grid are 8 (for end effects) real/imaginary pairs of

floats. The AVX2 implementation uses a pair of 8 float vectors

for the grid update; for AVX512, this becomes a single 16

float vector and the gather/scatter functions were used. Thus,

the inner gridding loop should be twice as fact in AVX512

as AVX2. However, with the increased speed of the inner

loop, the previously scalar operations became the dominant

cost (Amdahl’s Law). More of the previously scalar operations

were vectorized for both AVX2 and AVX512 which reduced

the cost of the scalar parts but they are still a major contributor

to the run time.

This test used the visibility data set used in the UVSub

test and created a 4822x4822x16 image using 109 facets.

The MFImage test makes extensive use of both gridding

and degridding, gridding is only implemented in the CPU

(AVX/AVX512) but the degridding is also implemented in the

GPU, see section III-D.

CLEANing proceeded for 5000 CLEAN components; re-

sults for the various tests were essentially identical; however,

CLEAN is nonlinear and minor variations in numerical noise

caused different numbers of major cycles which affects the

runtime. To evaluate the relative speeds of the gridding, the

real time for the first set of beams and images (“1st image”)

OBIT DEVELOPMENT MEMO SERIES NO. 67 5

TABLE IV
MFIMAGE TIMINGS

method REAL time CPU time Maj. cycles
min min

AVX2 126.9 1756.0 13
AVX512 104.3 1430.9 13
AVX512 icc 80.7 1130.5 11
AVX2+GPU 106.5 1257.0 13
AVX512+GPU 69.1 799.5 11
AVX2 1st image 27.4
AVX512 1st image 23.9
AVX512 icc 1st image 23.1

are also compared.

Some testing was done using the Intel compiler (icc

19.1.1.217) in addition to AVX as this compiler should be

more aware of the hardware capabilities than gcc. Unfortu-

nately, this version of icc is also buggy and full optimization

causes MFImage to produce very bad results. This behavior

was localized to module ObitUVGrid which produces good

results with the “-O1” optimization option. This module is

relatively high level and mostly calls other modules to do the

heavy lifting so a lower level of optimization is less significant.

Execution times are given in Table IV. All tests used gcc

except “AVX512 icc” and “AVX512 icc 1st image” which

used icc. The “method” column gives the version of AVX

and whether or not the GPU was used.

IV. DISCUSSION

Tests were presented comparing the use of the 512 bit (16

float) AVX512 with 256 bit (8 float) AVX2 vector operations.

Many of the cpu intensive modules with relatively simple loops

were upgraded to use AVX512 as a compile time option when

available.

Stand alone tests were performed timing sin+cos perfor-

mance using the mathfun vector libraries and of the gather

operation in AVX512. The AVX512 version of the sincos

test ran 1.6 × faster than the AVX2 version and 20 × faster

than calling the library sinf and cosf routines. The AVX512

“gather” test ran 1.4 times faster than the older “manual”

method of loading arbitrary words from memory.

Testing of a sky model calculation (AKA “degridding”)

using the DFT method used Obit task UVSub on a largish

MeerKAT dataset. AVX2, AVX512 and GPU based versions

were compared. The AVX512 version ran 1.19 × faster than

the AVX2 version but still took 8 × longer than the GPU

based version. This test is an illustration of Amdahl’s Law

that as you speed the vector part of your problem, the scalar

parts become more dominant. Prior to these tests, much of

the previously scalar parts of the model calculations were

vectorized. As essentially all of the calculation was done in

the GPU when it is used, it is effectively totally parallel.

A comparison of the imaging tests are somewhat mud-

dled by the nonlinear nature of CLEAN causing a range of

numbers of major cycles which significantly affected the run

times. GPU enhanced runs clearly were faster in the cases

which allow a simple comparison. To avoid this problem,

the runtimes of the first set of images and dirty beams

were compared. This step is linear and should be the same

for all implementations and is dominated by the gridding

process. The AVX512 implementation was 1.15 × faster than

AVX2 which increased to 1.19 × using the Intel compiler.

An interesting comparison is between the AVX512+GPU and

AVX512 icc tests which had the same number of major cycles;

the AVX512 icc implementation was 86% the speed of the

GPU based version which is quite different from the factor of

8 in the UVSub test using the same dataset. This is another

case of Amdahl’s Law as in this shallow CLEAN the ratio of

gridding to degridding was rather large and the greater speed

of the GPU less important.

On the basis of tests presented here, the use of AVX512

gives a 15-20% performanence enhancement in interferometry

applications over AVX2.

ACKNOWLEDGMENT

I would like to thank Tracy Halstead for help with various

compiler issues.

REFERENCES

[1] W. D. Cotton, “AVX2: First Look,” Obit Development Memo Series,
vol. 49, pp. 1–4, 2017. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/Obit/AVX2.pdf

[2] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

[3] W. D. Cotton, “Comparison of GPU and Multithreading for
Interferometric DFT Model Calculation,” Obit Development Memo Series,
vol. 35, pp. 1–5, 2014. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/Obit/GPUDFTv2.pdf

[4] ——, “Comparison of GPU, Single- and Multi-threading for
Interferometric Gridding,” Obit Development Memo Series, vol. 36,
pp. 1–14, 2014. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/Obit/GPUGrid.pdf

