
OBIT DEVELOPMENT MEMO SERIES NO. 57 1

Efficacy of Double Buffered I/O
W. D. Cotton April 27, 2018

Abstract—Much of the data processing for radio interferome-
try involve large amounts of data with relatively small amounts
of processing each of multiple passes through the data. It is
important to overlap the I/O with the processing to the greatest
extent possible to minimize the total run time. The classical
technique for this is “multiple buffering”; operating on one
buffer while I/O is being done to others. The Linux file system
attempts this by caching parts of the file system in unused
memory enabling read–ahead and write–behind. This works
well on local file systems where the OS knows all the traffic
to a given file but the performance is less clear for remote
file systems such as NFS or lustre. This memo describes a
comparison of single buffered use of the linux file system with
double buffered reads. In none of the tests performed did double
buffering make a significant improvement. Some machine/disk
combinations showed a 30% run time performance from linux
overlapping I/O and computation yet other cases showed no
improvement.

Index Terms—interferometry, double buffering

I. I NTRODUCTION

OVERLAPPING I/O with computing is desirable for
good performance in processing radio interferometry and

related data. Large data sets and image cubes must be read
and written in multiple passes. Multiple buffering, operating
on one data buffer while doing I/O to another is a classic
solution to this problem and is employed in AIPS. The linux
file system is expected to help with this on local files when
adequate memory is available and it can anticipate the I/O
access pattern. Obit has depended on the Unix file system for
good performance. The situation is less clear when the entire
problem does not fit in memory or a remote file system is
used. This memo discusses a comparison of single and double
buffered I/O in a number of cases using the Obit package [1]
1.

II. D OUBLE/SINGLE BUFFERTEST

The test case is reading an image cube approximately 8k×

8k × 400 pixels and doing a fixed amount of computing on
each plane using a fixed number of threads. The cube is stored
as scaled shorts and is≈54 GByte. I/O is a plane at a time in
which each pixel is scaled to a float. The computational load
consists of evaluating the RMS of each plane by a histogram
analysis some number of times using a given number of
threads. Single buffering consists of simple calls to Obit
Image function GetPlane to an open file; double buffering calls
GetPlane in a thread created for each plane to read the next
image plane. Implementation is in a python routine using the
Obit software interface and is shown in Figure 1

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

III. T EST CASES

Tests were performed on a number of machines and file
systems in otherwise empty machines. Some of the tests used
the lustre file system for which the load from other computers
was unknown but the tests were performed outside of peak
hours. These tests were conducted with a number of computing
repeats including 0 to determine to pure I/O time as well as a
“no I/O” test to determine the time needed for the computation.
Tests were performed using a FITS file and cfitsio.

• panther
This is a laptop with 2× 2.6 GHz cores, AVX and 8
GByte of RAM. An SSD as well as a simple hard drive
are included.

• zuul02
This is a workstation with 16× 2.4 GHz cores and 64
GByte of RAM. There are no local high performance
disks but has a good connection to lustre.

• gollum
This is workstation with 8× 2.27 GHz cores and 24
GByte of RAM. A local software RAID disk is available.

• zuul05
This is a workstation with 16× 2.0 GHz cores and 64
GByte of RAM. A local, fast hardware RAID disk, SSD
and a fast lustre connection are available.

• smeagle
This a workstation with 16× 3.1 GHz cores with AVX
and 256 GByte of RAM A local, software RAID disk,
SSD and a slow lustre connection are available.

The various tests run are summarized in Table I. In none
of the tests in this table did double buffering improve the
performance (column “ratio”) and in many cases slightly
degraded the performance. However, the double buffering
implementation may be sub-optimal. In the following only the
single buffered tests will be considered.

A further question is how much did the unix file system
manage to overlap IO with the computation. To investigate
this, the tests were rerun with only the first plane of the image
actually being read but the same computations done as for
the full 401 planes with repeats per plane. These timings are
shown in Table II. If there were no overlapping of the IO and
computation, the I/O only and CPU only timings would equal
the total time (“single” in Table I). The fraction of the I/O
time “hidden” behind the computation is given by:

fract =
(i + c − t)

i

where i is the I/O only time,c is the CPU only time andt
is the total for both I/O and computation. These results are
given in Table III. Only the gollum and zuul02 tests showed
an improvement and that of 30%.

OBIT DEVELOPMENT MEMO SERIES NO. 57 2

TABLE I
TOTAL TIMING TESTS

machine disk nThread nRepeat single CPUs double CPUd ratio
sec sec

panther SSD 2 0 167 1.00 167 1.00 1.00
panther HD 2 0 548 0.30 541 0.30 1.01
panther SSD 2 1 559 1.46 561 1.46 1.00
panther SSD 2 2 959 1.54 950 1.54 1.01
panther HD 2 2 1339 1.09 1338 1.09 1.00
panther SSD 2 5 2164 1.59 2150 1.59 1.01
panther HD 2 5 2557 1.35 2554 1.35 1.00
panther SSD 2 10 4258 1.60 4167 1.62 1.02
panther HD 2 10 4667 1.44 4620 1.44 1.01
zuul02 lustre 8 0 450 0.79 464 0.77 0.97
zuul02 lustre 8 5 1451 3.54 1471 3.53 0.99
gollum RAID 8 0 393 0.78 406 0.76 0.97
gollum RAID 8 5 1150 2.79 1190 2.71 0.97
zuul05 RAID 8 5 1752 3.37 1813 3.30 0.97
zuul05 SSD 8 5 1831 3.30 1871 3.28 0.98
zuul05 RAID 8 2 751 3.22 807 3.10 1.06
zuul05 RAID 8 2 745 3.23 804 3.12 1.06
zuul05 SSD 8 2 793 3.10 821 3.08 0.97
zuul05 lustre 8 2 815 3.07 868 2.92 0.94
zuul05 RAID 8 0 87 0.88 102 0.94 0.86
zuul05 SSD 8 0 117 0.88 123 0.88 0.95
zuul05 lustre 8 0 167 0.82 194 0.70 0.86
smeagle RAID 8 5 1724 3.17 1829 3.03 0.94
smeagle SSD 8 5 1711 3.19 1669 3.20 1.03
smeagle lustre 8 5 1735 3.16 1949 2.84 0.89
smeagle RAID 8 0 124 1.00 134 1.00 0.92
smeagle SSD 8 0 121 1.00 129 1.00 0.94
smeagle lustre 8 0 127 1.00 131 1.00 0.97

Notes: “nThreads” is the number of threads used in the computation, “nRepeat” is the number of times the plane computation was repeated, “single” is the
time for the single buffered test, “CPUs” is the single bufferCPU/Real time ratio, “double” is the time for the double buffered test, “CPUd” is the double
buffer CPU/Real time ratio, “ratio” is the ratio of single to double real time.

TABLE II
CPU ONLY TIMING TESTS

machine nThread nRepeat real CPU
sec

panther 2 1 404 1.63
panther 2 2 790 1.65
panther 2 5 1981 1.65
zuul02 8 5 1158 4.26
gollum 8 5 887 3.38
zuul05 8 5 1659 3.50
zuul05 8 2 664 3.22
smeagle 8 5 1590 3.34

Notes: “nThreads” is the number of threads used in the computation, “nRe-
peat” is the number of times the plane computation was repeated,“real” is
the run time, “CPU ” is the CPU/Real time ratio,

IV. D ISCUSSION

A number of tests were performed involving both a large
amount of I/O and computation using single and double
buffering. In none of the tests performed did double buffering
make a significant reduction in the run time.

The standard Unix read-ahead was disappointing; this re-
duced the I/O time on zuul02 and gollum by about 1/3 whereas
there was no benefit seen in the other tests. These tests were
dominated by the compute time allowing ample opportunity
to overlap I/O and computation. This result is not understood.

Other observations include:

• The RAID disk on zuul5 outperformed the SSD.

TABLE III
SINGLE BUFFEREDIO ONLY TIMING TESTS

machine disk nRepeat I/O CPU Total fract
sec sec

panther SSD 1 167 404 559 0.072
panther SSD 2 167 790 959 -0.012
panther HD 2 548 790 1338 0.000
panther SSD 5 167 1981 2146 0.012
panther HD 5 548 1981 2554 -0.045
zuul02 lustre 5 450 1158 1451 0.349
gollum RAID 5 393 887 1150 0.331
zuul05 RAID 5 87 1659 1752 -0.070
zuul05 SSD 5 117 1659 1831 -0.470
zuul05 RAID 2 87 664 751 0.000
zuul05 SSD 2 117 664 793 -0.103
zuul05 lustre 2 167 664 815 0.102
smeagle RAID 5 124 1590 1724 -0.081
smeagle SSD 5 121 1590 1711 0.000
smeagle lustre 5 127 1590 1735 -0.142

Notes: “I/O” is the run time for single buffered I/O only, “CPU” is the
CPU only run time, “Total” is the run time single buffered with nRepeat
computations, “fract” is the fraction of the I/O time reduced by overlapping
computation and I/O.

• The pathetic CPU speed on zuul05 is seriously under-
matched to the blazing I/O speed.

• Past speed issues for the lustre file system seem to be
resolved, at least for zuul05 and for these tests.

• The I/O performance of smeagle exceeded expectations,
especially on the lustre file system. However, the CPU

OBIT DEVELOPMENT MEMO SERIES NO. 57 3

speed is far less than expected; the “CPU only” test
took nearly twice the time of the test on gollum with
significantly slower, older cores and with half the memory
bus width.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

OBIT DEVELOPMENT MEMO SERIES NO. 57 4

Fig. 1. Double Buffered Test Routine

def testDouble(inImage, doDouble, nr, err):
"""
Test double buffering

reads cube and determines RMS per plane

* inImage input cube

* doDouble True for double buffering

* nr Number of repeats of RMS

* err Python Obit Error/message stack
"""
inImage.Open(Image.READONLY,err)
t0 = os.times()[4] # Initial time
Create buffers
nplane = inImage.Desc.Dict[’inaxes’][2] # Number of planes
doPlane = [1,1,1,1,1]
buf1 = FArray.FArray("Buff1",inImage.Desc.Dict[’inaxes’][0:2])
if doDouble:

buf2 = FArray.FArray("Buff2",inImage.Desc.Dict[’inaxes’][0:2])
buffers = [buf1,buf2]

else:
buffers = [buf1]

ibuff = 0
th = None
initial read
inImage.GetPlane(buffers[ibuff],doPlane,err)
Loop
for iplane in range(0,nplane):

If double start next read in a thread
if doDouble and iplane<nplane-1:

doPlane[0] = iplane+2; nextBuff = 1-ibuff
th = threading.Thread(target=inImage.GetPlane,\

args=(buffers[nextBuff],doPlane,err))
th.start()

Work
RMS = 0.0
for j in range(0,nr):

RMS += buffers[ibuff].RMS
if not iplane%20:

print ’plane’,iplane, ’RMS’,RMS/max(1,nr),\
’t=%7.1f sec’%(os.times()[4]-t0)

If double, join
if doDouble and th:

th.join()
ibuff = nextBuff; del th; th = None

otherwise read next until last
elif iplane<nplane-1:

doPlane[0] = iplane+2
inImage.GetPlane(buffers[ibuff],doPlane,err)

inImage.Close(err)

