
OBIT DEVELOPMENT MEMO SERIES NO. 44 1

Simplified EVLA OTF Interferometry
W. D. Cotton (NRAO) November 11, 2016

Abstract—Snapshot imaging of “On-the-fly” (OTF) interfer-
ometry with short delay updates such that negligible rotation
in parallactic angle occurs can ignore pointing variations and
incorporate them into the beam used in mosaicing. This technique
is explored and scripts developed for its implementation and
are applied to test EVLA VLASS data in Obit. RMS values
in the images of the order of 150µJy/bm are typical in test
data at 40◦ declination and 180µJy/bm at 0◦ declination which
are more strongly affected by geosynchronous satellites. The
sampling of the antenna pattern by the OTF scanning pattern
may adequately reduce the off–axis instrumental polarization
allowing it to be ignored although accurate on-axis polarization
calibration is critical. Timing tests leads to estimates of the
imaging and mosaicing times for Stokes I, Q, and U of≈ 35×

observe time on a single well equipped workstation using RAM
disk and should scale to a diskless cluster. VLASS S band data
could possibly be processed in near real time on a modest cluster
and commensal VLITE observations may be tractable on a single
workstation.

Index Terms—Radio Interferometry

I. I NTRODUCTION

RAPID imaging using radio interferometers can be per-
formed in “On the Fly” (OTF) mode in which the

antennas are smoothly driven in pointing and the delay and
phase tracking centers are periodically stepped. This mode
is preferable over the “point and click” mode if the desired
integration time per pointing is not significantly longer than
the time for the antennas to move to a new tracking position
and for oscillations to damp out. Imaging with the inclusion
of pointing corrections can be quite expensive in computing
resources. However, if all antennas observe the same positions
and if the delay center updates are sufficiently often that time
smearing during that interval is negligible, a more efficient
approximate imaging technique can be employed. The tech-
nique discussed here is implemented in the Obit package ([1],
http://www.cv.nrao.edu/∼bcotton/Obit.html).

II. “A USSIE MODE” OTF INTERFEROMETRY

Consider the (simplified) response of an interferometer to a
sky composed ofn point sources:

vk,t =

n∑
i=0

bi,k,t si e−2πj(uk∗xi+vk∗yi) (1)

wherebi,k, is the antenna gain of the antennas at timet and
in the direction of sourcei; si, xi andyi are the flux density
and position of sourcei, and uk and vk are the baseline
coordinates. If the antenna beams are moving on the sky, an
integration over a finite interval will result in the integral of
Eq. 1 over that interval. In general, multiple integrationswill

W. Cotton is with National Radio Astronomy Observatory, 520 Edgemont
Rd., Charlottesville, VA, 22903 USA email: bcotton@nrao.edu

be recorded during the period over which the delay tracking
center is held constant.

If the phase of the response of a source anywhere in the
field of view on a given baseline and frequency varies by no
more than an acceptable amount during the observations of a
given delay tracking center, only the amplitudes are changing
due to the moving antenna pointing. This condition is that:

(uk ∗ xi + vk ∗ yi) ≈ constant (2)

for any sourcei and visibility vk,t.
Under this condition and assuming all antennas point the

same, a dirty image formed from the visibilities with a given
delay tracking center will be the “true” sky dirty image
multiplied by the time averaged primary beam. This can be
seen from the case of a sky model with one component.
Averaging over time, the dirty image derived from the Fourier
transform of Eq. 1 is

Di(x, y) =

∫ ∫
si e−2πj(u∗xi+v∗yi)

∫
bi,tdt

∆t
du dv (3)

where

∫
bi,tdt

∆t
is the average antenna gain over interval∆t

in the direction of source i. Since the image formation given
by Eq. 3 is linear, a similar expression holds for the sum of
all sources in the sky model. The deconvolution of such an
image will give the “true” CLEAN image multiplied by the
time averaged primary beam which needs to be used in the
formation of mosaics.

The condition given by Eq. 2 also implies that the u-
v coverage and thus the dirty beam, during the time of a
given delay tracking center will be nearly constant. In the
CLEAN deconvolution, the flux density of a given component
will be multiplied by the average of the antenna gain over
the entire period whereas the effect of the component in a
given integration will be multiplied by the average beam gain
during that integration. Thus, the subtraction of the CLEAN
component will be in error for each integration but, given the
assumption of a constant dirty beam, this error will average
to zero. In this case, the motion of the antenna beam can
be ignored in the imaging and deconvolution and corrected
when making the primary beam correction. Thus, more-or-less
standard wideband, widefield snapshot images can be made
in all desired Stokes parameters and combined into a linear
mosaic.

Editing of the data must be done with care. If some samples
of a given channel and polarization are removed in a given
delay setting while other are not, the averaging of error to zero
will not occur. Likewise the EVLA data at S band has beam
squint in which the RR and LL data have effectively different
pointing positions. Imaging using “formal I” (requiring both
RR and LL) is needed.

OBIT DEVELOPMENT MEMO SERIES NO. 44 2

The purpose of OTF interferometry is to obtain images over
an extended region so a large number of individual delay
pointing images are combined into a mosaic. For purposes of
this combination, the effective primary beam is the convolution
of the instantaneous beam with its trace on the sky.

I call this “Aussie mode” OTF interferometry as this is
the technique used for the ATCA (although I have found no
documentation of its use).

III. E XAMPLES

A sample region of an image derived by this technique is
shown in Figure 1. This is an EVLA S Band image from
near 40◦ declination where the image RMS is typically around
150 µJy/bm. The wideband imaging used multiple frequency
planes (spectral windows) CLEANed jointly as described in
[2], [3] and [4].

An example of a polarized, extended source is given in
Figure 2. This region is near 0◦ declination and the I,Q
and U RMSes are about 180µJy/bm due to the stronger RFI
environment. In particular, 6 of the 16 spectral windows are
completely lost including the 3 at the top of the band. Much
of the emission in this source may be resolved out as the
NVSS (1.4 GHz) catalog gives 635 mJy flux density (372
mJy extrapolated to 3 GHz) whereas the emission in Figure 2
amounts to 180 mJy.

An example of a polarized source with detectable polarized
flux density in the individual frequency images is shown in
Figure 3. Sources with sufficiently strong polarized emission
for this analysis are relatively rare; 14 such cases were
identified in a20◦2 search area.

A set of sample FITS images of the broadband brightness
in Stokes I, Q and U are given in ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/EVLAOTF/. Rotation measure images are also
given (name includes ’RM’) in which the first plane is the RM
(rad/m2), the second is the angle at zero wavelength (rad), the
third is the error estimate of RM, the fourth the error estimate
of the polarization angle and the fifth theχ2 of the fit. Plots
of EVPA vs. λ2 are also given as gzipped postscript files.

IV. L IMITATIONS

The technique described above is an approximation and
some level of artifact is unavoidable; in particular residual
pointing errors may cause problems. Atmospheric phase fluc-
tuations can be removed using phase self calibration with
a solution interval of the entire scan. Some amount of the
residual pointing errors can be removed using amplitude and
phase self calibration when the source is strong enough - again,
with a solution interval of the entire scan. An example of
this is shown in Figure 4 for EVLA S band observations.
The residual artifacts are clearly related to the dirty beam
and would be reduced by a variation in parallactic angle. In
a given observation, the same position is observed multiple
times but over a short time interval minimizing the range of
parallactic angle. Amplitude and phase self calibration reduced
the artifacts to of order a few parts per thousand or less.
Artifacts around complex regions will appear due to the limited
uv coverage.

Another limitation is the limited depth of the CLEAN re-
quired by the snapshot imaging. Since each location on the sky
is sampled many times in various places in the antenna pattern,
the final mosaiced image will be more sensitive that the
individual snapshot images; thus snapshot deconvolution will
not remove sidelobes as effectively as a joint deconvolution.
The good wideband snapshot coverage of the EVLA helps
with this although it may be a problem with the poorer uv
coverage of the VLITE array.

V. OFF–AXIS BEAM EFFECTS

Position dependent beam effects have the potential to ad-
versely affect wide–field imaging. With alt–az mounts such as
the VLA has, the beam pattern will rotate on the sky with
parallactic angle; the resultant averaging will reduce these
effects. Snapshot imaging uses a single parallactic angle and
off–axis effects are not reduced. OTF imaging consists of
multiple snapshots but essentially all at the same parallactic
angle.

One of the more serious off–axis beam effects is position
dependent instrumental polarization which can be several per-
cent in the usable part of the antenna pattern. This is frequently
comparable to, or larger than, the source polarization at 3 GHz
and has the potential to totally corrupt polarization measure-
ments. A narrow band study made during the final days of the
old VLA correlator [5] demonstrates this effect and a method
to correct it. Unfortunately, the more recent wide–band beam
holography measurements have yielded polarization results
which are yet to be understood.

The scanning pattern of OTF observing, while wide–
band and at a single parallactic angle, still allows relatively
widespread sampling of the antenna pattern, hence averaging
of the off–axis beam effects. Moreover, data obtained when
a given source is closer to the pointing center (where beam
effects are less) is given higher weight. As part of the VLASS
test observations, a set of standard observations pointed to-
wards the brighter sources in one of the Stripe 82 and Cepheus
fields. These measurements of a source on–axis, and with
longer integration can be compared against OTF images of
the same sources to look for residual beam effects. Such a
comparison is shown in Figure 5.

The two sets of data points basically follow each other
except for two outliers in Q. For one of these, the difference
amounts to 0.3% of Stokes I which may just represent the
limitations of the technique. The difference for the other is
about 1% of Stokes I and is cause for concern. The polarization
for this source observed in the two modes is shown in
Figure 6. The two measures of the rotation measure (RM) are
essentially identical but there are small (∼ 10◦ differences in
the phases. Differences in RFI editing lead to slightly different
λ2 coverages.

The offset seen in Figure 5 appears to be more of a dif-
ference in calibration than a residual instrumental polarization
problem. The instrumental polarization is a strong function of
distance from the pointing center and the 100% bandpass of
the data leads to strong wavelength dependent beam location
for a given source. Strong wavelength dependent effects as

OBIT DEVELOPMENT MEMO SERIES NO. 44 3

Fig. 1. Reverse grayscale of a particularly populous regionof an OTF image made with the EVLA at S band. The displayed pixel range is -2 to +5 mJy/bm
and the RMS is 150µJy/bm. The region displayed is 13.’5 x 15.’9. The brightest source in the field is 11 mJy.

OBIT DEVELOPMENT MEMO SERIES NO. 44 4

Extended, polarized source
0 5 10 15

D
ec

lin
at

io
n

 (
J2

00
0)

Right Ascension (J2000)
20 03 41 40 39 38 37 36 35 34

00 28 15

00

27 45

30

15

00

26 45

30

15

Fig. 2. Reverse grayscale of a extended polarized source from test VLASS data. The displayed pixel range is -2 to +20 mJy/bm(scale bar at top) and
the RMS is 180µJy/bm. Contours are of Stokes I and are powers of two from 2 mJy/bm. Vectors show the orientation of the polarization “E-vectors” with
amplitudes proportional to the polarized flux density. The 3”restoring beam is shown in the lower right corner.

expected from off–axis instrumental polarization are not ap-
parent in Figure 6.

VI. D IFFICULT AREAS

Complex, extended regions cause problems for snapshot
imaging if the sky is more complex than is adequately sam-
pled in the data. A particularly troublesome region from the
Cepheus region is compared with the NVSS image in Figure
7. In the NVSS image (45” resolution, 1.4 GHz) the integrated
flux density is∼1650 Jy whereas in the VLASS test image
(3” resolution, 3 GHz) the sum of the CLEAN components is

about 4 Jy. The vast majority of the emission is resolved out
leaving serious artifacts. In the default imaging, the amplitude
and phase selfcalibration caused a serious distortion of the
data. The VLASS image in Figure 7 was processed using
600 CLEAN components (standard 150 components) with
ccfLim=0.65 (standard 0.35) and only phase self calibration.
Only visibilities with amplitudes in excess of 8 Jy were
flagged. The standard processing is described in Section VII.
Automated windowing in Obit gave results comparable to hand
boxing.

OBIT DEVELOPMENT MEMO SERIES NO. 44 5

J2022+006 20 24 22.727 00 27 53.28, RM=-76.87 (2.75)

E
V

P
A

 (
de

g)

1.0 1.5 2.0
(x10-2)

80
10

0
12

0
14

0

λ2 (m2)

fr
ac

. p
ol

.

1.0 1.5 2.0
(x10-2)

0.
0

0.
1

0.
2

0.
3

0.
4

Fig. 3. Top gives the polarization angle v.λ2 of a source. Solid line represents fitted RM whose value (rad/m2) and error are given in the title. Error bars
are derived from the image RMS and do not include calibration errors.
Bottom The fractional polarization as a function ofλ2. The Stokes I flux density is 145 mJy/bm and the I, Q and U RMSes 180 µJy/bm.

Fig. 4. Region around 300 mJy calibrator source in negative grayscale showing residual artifacts. Image noise is about 150µJy/bm. Multiple overlapping
images have been combined. Left has phase self calibration andright amplitude and phase self calibration. The pixel range displayed is -2 to +5 mJy/bm.

OBIT DEVELOPMENT MEMO SERIES NO. 44 6

Pointed vs Stripe82 flux densities

Pointed I (Jy)

V
LA

S
S

 I
(J

y)

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Min Ipol = 0.02
No. samples = 34

Pointed Q (Jy)

V
LA

S
S

 Q
 (

Jy
)

-2 0 2
(x10-3)

-2
0

2

(x10-3)

Pointed U (Jy)

V
LA

S
S

 U
 (

Jy
)

-2 0 2
(x10-3)

-2
0

2

(x10-3)

Fig. 5. A comparison of I, Q, and U peak flux densities for a numberof sources in the OTF Stripe 82 field with pointed observations.

S82_Pt_019_ 20 08 40.072 -00 15 36.39, RM=-43.91 (1.87) EVPA0 =-49.53 (0.66)

E
V

P
A

 (
de

g)

0.5 1.0 1.5 2.0
(x10-2)

-8
0

-7
0

-6
0

-5
0

-4
0

λ2 (m2)

fr
ac

. p
ol

.

1.0 1.5 2.0
(x10-2)

0.
0

0.
1

0.
2

0.
3

0.
4

J2010-005 20 08 40.098 -00 15 36.71, RM=-44.41 (3.67) EVPA0 =-58.11 (2.10)

E
V

P
A

 (
de

g)

1.0 1.5 2.0
(x10-2)

-9
0

-8
0

-7
0

-6
0

-5
0

λ2 (m2)

fr
ac

. p
ol

.

1.0 1.5 2.0
(x10-2)

0.
0

0.
1

0.
2

0.
3

0.
4

Fig. 6. Source polarization as a function of wavelength squared for a source observed in pointed and OTF mode. In each panel, the upper plot is the polarization
angle and the lower plot the fractional polarization. The left panel is the pointed observation and the right the OTF image. The pointed observation had about
30 sec on source whereas the OTF imaging had the equivalent of 5sec.

OBIT DEVELOPMENT MEMO SERIES NO. 44 7

Fig. 7. Negative gray scale images of a region in Cepheus observed in NVSS (left, 45” resolution, 1.4 GHz) and VLASS (right,3” resolution, 3 GHz). The
size of the region shown in the left figure is 12.5’ on a side andin the right image 4.5’ and is centered on the brighter part of the left image.

VII. VLASS DATA PROCESSING

A scheme for processing VLASS using multiple processing
streams is described in the following.

A. Calibration

Calibration used the standard Obit EVLA calibration scripts
[7] including polarization but deferring imaging target fields.
Task OTFFlag is used on the resultant UV data to assure that
data within a given delay update (scan) are consistently edited.

B. Imaging

Imaging is done using scripts that allow multiple, parallel
processing streams on the same host. The broadband nature
of the data requires wideband-widefield imaging, especially
in Stokes Q and U where variations with frequency are the
primary observable. This is done in Obit task MFImage which
images and deconvolves jointly in a number of frequency bins,
here consisting of spectral windows. The details are given in
[2], [3] and [4]. The scripts implementing these steps are given
in an Appendix. Multiple processing streams may implement
these scripts as limited by the resources on the host. Each
processing script is driven by a list of pointings which is sorted
to give processing in RA order.

Intermediate (delay pointing) images are stored in FITS
images quantized to 50µJy/bm. Zeroing the spectral index
plane and recalculating the image max and min allows most
images to be stored as 16 bit scaled integers. Another factor
of ∼2 can be had by gzipping1 the files, these can be read
directly into the mosaicing software.

The imaging proceeds as follows:

1) Quick Imaging using task MFImage to get an estimate
of the flux density in the field. A narrow field with

1A multithreaded version of gzip, pigz, is available at http://zlib.net/pigz/.

outliers from the NVSS catalog is used with a shallow
CLEAN. This uses the “doPS” option to avoid repro-
cessing pointings already done.

2) Clip UV data. The sum of the CLEAN flux densities
from the previous step is used to flag high flux densities
in the output UV data from the previous MFImage step.
This uses task AutoFlag with a clip level of the greater
of 0.5 and 3× the sum of the CLEAN flux from the
previous step.

3) OTF Editing. Task OTFFlag is used to assure that the
output data from the previous CLEAN are consistently
edited.

4) Deep Image.The edited data from the previous CLEAN
is used to perform a deeper CLEAN on the bulk of
the primary beam. This uses task MFImage with self
calibration in phase for fields with more than 25 mJy/bm
peak and amplitude and phase for fields with peaks more
than 100 mJy/bm. Imaging is done using spectral win-
dows as the frequency binning. If parameter doStokes
= True, I, Q and U images are derived else only I. The
Stokes I images require “Formal I” or both RR and LL
visibilities.

5) Blank spectral index plane. The spectral index plane
in the output image cube was blanked to allow more
efficient quantization of the pointing image. Spectral
window planes with excessive RMSes due to heavy RFI
flagging were also blanked.

6) Reset Image max/min. The output image cube has the
actual range of pixel values determined and entered into
the image header.

7) Quantized FITS. In order to reduce the volume of the
intermediate images, they are written to FITS format as
scaled integers quantized at 50µJy/bm. These images
were further reduced in volume using gzip.

OBIT DEVELOPMENT MEMO SERIES NO. 44 8

C. Mosaic Formation

Mosaic images are formed for each plane of 1.3◦2 images
spaced by 1◦; these are 6000×6000×18 pixels. Mosaics are
formed by:

M(x, y) =

∑n

i=1 Ai(x, y) Ii(x, y)∑n

i=1 A2
i (x, y)

where Ai(x, y) is the effective antenna gain of pointingi
in direction (x, y) and Ii(x, y) is the pointingi pixel value
interpolated to direction(x, y) and M is the mosaiced cube.
Note, the pointing images have already been multiplied by the
antenna gain. The division in the above equation needs to be
restricted to pixels above a value of

∑n

i=1 A2
i (x, y), minWt,

that keeps from excessively amplifying the noise at the edges
of the spatial coverage. Planes in the input pointing images
with RMS values in excess of 10× the RMS in the combined
plane are ignored. This reduces the effect of RFI. After the
image is normalized, the spectrum is refitted in each pixel
giving the flux density at the reference frequency (first plane)
and the spectral index (second plane). Spectral window images
are in subsequent planes. The mosaic formation script using
the Jinc function expected for a 25 m antenna is given as an
appendix.

VIII. T IMING AND DISK REQUIREMENTS

An initial imaging timing test was conducted on zuul05
which has 16× 2 GHz cores, 64 GByte of memory, a very
fast RAID disk and a (minimal) SSD. Data from a VLASS test
observation were used and the first third of a 4 hour session
including 4200 delay centers was imaged in Stokes I, Q and U
using four parallel processing streams with 4 cores per stream.
The elapsed time until the final stream finished was 5.6 days
for an average of 1.9 min per delay center. This extrapolates
to 16.8 days for the full 4 hour observation. Each delay center
image must be kept until it can be accumulated into a mosaic.
As imaged in this test, each delay pointing and polarization
produces a 2400×2400×18 image cube or 0.3862 GByte with
pixels as floats or 0.1931 as scaled 16 bit integer FITS images.
Gzip compression reduces the scaled integer images to≈0.1
GByte. Each 4 hour session has 12600 delay centers and
imaging Stokes I,Q, and U gives 14.3 TByte if images are
stored as floats, 7.1 TByte as 16 bit integers and≈3.7 TByte
compressed. However, the mosaicing need not be delayed until
the imaging is complete. The four hour blocks are logically
organized into 3 patterns covering 2◦

×10◦. If each pattern is
processed in RA order, the mosaics can be formed as the data
are processed and the disk requirements reduced.

Processing of the second two thirds of a four hour obser-
vation producing only Stokes I took 123.5 hours = 5.1 days
using 4 processing streams. This scales to 7.7 days for the full
four hour session.

Mosaic formation was also tested on zuul05. Using 2 pro-
cessing streams seems to give the most robust timings. Thirty
1.3◦× 1.3◦ mosaics were formed using 2 parallel streams with
an average of 4.6 hours each (or 2.3 hr per mosaic). This scales
to 138 hr (=5.75 days) per polarization for the 60 mosaics
produced by a 4 hour observation.

The estimated imaging plus mosaicing time for a four hour
session for Stokes I, Q and U is 34 days or 204× observe
time. Processing only Stokes I is estimated at 13.4 days per
four hour session or 81× observe time. These are the times
for single good workstation and do not include calibration and
editing and image analysis.

As processed here, the mosaics are 1.3◦
×1.3◦ (6000×6000)

pixels spaced every 1◦; there will be 60 of these per polar-
ization covering the region surveyed in the 4 hour session.
If these are to be combined with subsequent observations of
the same region, the full (18 channel) resolution needs to be
kept. Stokes I images can be decomposed into flux density
and spectral index and Q+U to rotation measure, polarized
flux density and polarization angle. At full resolution the 60×3
(I,Q,U) mosaic images take 0.75 TByte; for only Stokes I 0.25
TByte.

IX. SSD/RAM DISK

The fundamental limitation on the timing results given in
the previous section is I/O speed. The volume of visibility data
used in any given pointing is modest but due to the resolution,
the volume of image data is more substantial. The multiple
processing streams needed collide in disk access. This is even
true using RAID or SSD disk systems as in the previous
discussion. The linux file system tries to cache as much of
the sections of the file system being used as it can in memory
which can reduce the actual I/O but this technique has limits.
Since the processing consists of a large number of relatively
modest jobs; higher performance I/O solutions with modest
storage capacity are possible.

One of these is solid state disk (SSD) which uses semi-
conductor memory rather than spinning oxide platters. The
seek time of an I/O operation is greatly reduced and the
transfer rate increased. These devices cost a few hundred
dollars for units of a quarter to one terabyte capacity.

Even faster but with lower capacity is RAM disk in which a
portion of the machine’s memory is configured as a disk. Data
on RAM disk resides in memory so there is no seek or transfer
to memory time. However, memory allocated to RAM disk is
not available for program memory or the linux disk cache and
disappears on reboot.

In the following, timing tests of snapshot imaging and
mosaicing are reported in which the intermediate files are all
1) on RAID disk, 2) in SSD or 3) in RAM disk. These tests
were performed on smeagle which had a software RAID-5
disk system, 1/2 TByte SSD, 64 GByte of memory and 16
× 3.1 GHz cores. Creating RAM disk requires super human
powers but is done by:

sudo mkdir /mnt/ramdisk;
sudo chmod 777 /mnt/ramdisk
to create 8 GByte RAM disk
sudo mount -t tmpfs -o size=8G tmpfs \

/mnt/ramdisk
Set up AIPS directories, etc
mkdir /mnt/ramdisk/RAMDISK
touch /mnt/ramdisk/RAMDISK/SPACE
to delete

OBIT DEVELOPMENT MEMO SERIES NO. 44 9

sudo umount /mnt/ramdisk

A. Snapshot Imaging 6 Stream

The first timing test consisted of six parallel imaging
streams, each imaging 42 delay centers or in aggregate 1/50
of those in a 4 hour observing block. Each stream was given a
separate “AIPS disk” directory to prevent conflicts in the file
system and was allocated a maximum of 2 processing cores
and 30 of the 64 GByte of memory was allocated to RAM disk
for the RAM disk test. Final images were written as scaled
integer FITS files and gzipped using pigz. The results are given
in Table I. Use of RAM disk ran over 4 times faster than the
RAID disk and more than twice as fast as SSD. This imaging
represents a factor of 2 improvement over the results quoted
in Section VIII.

B. Mosaic Formation 4 Stream

This timing test consisted of four parallel streams, each
forming a single mosaic 1.3◦×1.3◦ in a single Stokes param-
eter. Each stream was allocated a maximum of 4 processing
cores and 30 of the 64 GByte of memory was allocated to
RAM disk for the RAM disk test. The results are given in
Table II. Using the RAM disk produces run times a factor of
nearly 6 shorter than using SSD and nearly 8 shorter than using
the RAID disk. The I/O system was simply not up to handling
the traffic using either RAID or SSD disk and showed serious
I/O conflicts amoung the processing streams.

The results for the RAM disk test represents a factor of 2.9
improvement over the results quoted in Section VIII. When
scaled to a four hour observing block, the RAM disk I, Q, U
imaging and mosaicing tests would predict a total processing
time of 342 hours or 86 times the observe time.

C. Snapshot Imaging 12 Stream

Previous tests were limited by the amount of memory avail-
able in smeagle (64 GByte). Smeagle’s memory was upgraded
to 256 GByte and the RAM disk timing tests repeated with
twice the number of processing streams. 100 GByte was
allocated to RAM disk and 12 imaging streams each given 100
delay pointings were run in parallel. Each stream was allocated
a maximum of 2 (of 16) processing cores. In agregate, this
is nearly 1/10 of the pointings in a 4 hour VLASS session.
The average for the 12 streams was 11.0 hours or scaled to

TABLE I
IMAGING TIMING WITH 6 STREAMS

Disk St. 1 St. 2 St. 3 St. 4 St. 5 St. 6 Avg
hr hr hr hr hr hr hr

RAID 16.2 16.6 16.3 16.1 16.5 16.2 16.3
SSD 9.0 9.1 9.0 8.9 9.0 9.0 9.0
RAM 3.90 4.04 4.02 4.02 4.02 3.99 4.00

the full data set 29.2× the observe time. The intermediate
snapshot images were quantized at 200µJy/beam, written as
scaled short integer FITS images and gzip compressed. The
total volume produced was 147 GByte (average file size 42.6
MByte). Scaled to a full VLASS session, this would be 1.4
TByte of temporary data.

D. Mosaic Formation 8 Stream

Similarly, the timing test for the mosaic formation was
repeated using 8 parallel streams, each forming a single mosaic
1.15◦×1.15◦ (5500×5500 pixels) in a single Stokes parameter.
The eight mosaics represent 4.4% of the 180 produced by a 4
hour VLASS session. Each stream was allocated a maximum
of 2 processing cores. The average time for mosaic formation
was 3.63 hours; scaled to the full 4 hour VLASS observing
session this is 20.4× the observe time. With the 12 stream
imaging this gives a total of 49.6× the observe time for I, Q
and U mosaics.

E. GZip image compression

The bulk of the intermediate delay pointing snapshot images
are greatly reduced using lossless, gzip (or pigz) compression.
However, when a small number of cores are used in each
stream, the computing cost of this compression becomes a
significant part of the total processing. It is therefore worth
exploring the tradeoff between speed and compression ratio
allowed by the various levels of compression allowed by
gzip/pigz. The speed and compression depend on the statistics
of the contents of the file being compressed and are thus best
evaluated using a sample data image.

A random delay snapshot FITS image (48 MByte) was
compressed with different levels of compression using pigz
with one core (gzip gives similar results). The results are given
in Table III; column “cl” is the gzip compression level, “run
time” is the wall clock time as determined by unix utility time,
“time 9” is the ratio of the run time with that for compression
level 9, size9 is the ratio of the resultant file size with that
for compression level 9 (maximum), and “compression” is
the overall compression ratio of the image file. The higher
compression levels take considerably longer for negligible
reduction of file size. A compression level of 4 seems a good
compromise and is over an order of magnitude faster that
compression level 9 used in previous tests. Compression level
4 is used in the folowing tests.

TABLE II
MOSAIC TIMING WITH 4 STREAMS

Disk St. 1 St. 2 St. 3 St. 4 Avg
hr hr hr hr hr

RAID 24.5 24.5 24.7 24.8 24.6
SSD 18.5 18.6 18.9 18.9 18.7
RAM 2.98 3.03 3.28 3.30 3.15

OBIT DEVELOPMENT MEMO SERIES NO. 44 10

F. Snapshot Imaging 16 Stream

The previous imaging tests did not completely use the
computational power available as much of the processing is
scalar. A final set of tests was performed using 16 streams
allocated one core each. The imaging test used 8 lists of 100
pointings each with one stream starting from each end. The
depth of the Stokes Q and U CLEANs were reduced from the
Stokes I CLEAN. The average stream time was 5.52 hours
which scaled to a full VLASS session predicts 62.1 hours or
15.5 times the observe time.

G. Mosaic Formation 16 Stream

Sixteen parallel streams were used in the mosaic testing,
each forming a single 1.15◦×1.15◦ in a single Stokes param-
eter. Each stream used a single core. The average time for
mosaic formation was 5.52 hours; scaled to the full 4 hour
VLASS observing session this is 15.5× the observe time. With
the 16 stream imaging this gives a total of 33.8× the observe
time.

X. D ISCUSSION

The short delay center update cycle of the EVLA OTF in-
tegration enables a simplified approximation in the processing
allowing something close to a tradition snapshot imaging and
mosaic with the major modification being the effective primary
beam. This is called “Aussie mode” as this is how the ATCA
OTF is done. Test EVLA data in VLASS mode has been
calibrated, imaged and mosaiced in Obit. RMS values in the
images of the order of 150µJy/bm are typical in test data
at 40◦ declination and 180µJy/bm at 0◦ declination which
are more strongly affected by geosynchronous satellites. This
noise level could possibly be improved somewhat by more
clever RFI flagging as of order half the data is lost to RFI.

It is worth noting that while the actual beam pattern of
real antennas are not completely azimutually symmetric and
have off axis variations in the instrumental polarization,these
effects are greatly reduced by the observing pattern which
samples a given source in many widely spaced locations in
the beam. The sum of the weights in the imaging mosaicing

TABLE III
PIGZ COMPRESSIONTIMING

cl run time time 9 size 9 compression
sec

1 2.81 0.051 1.215 0.276
2 3.12 0.057 1.179 0.268
3 4.83 0.088 1.086 0.247
4 4.39 0.080 1.072 0.244
5 8.25 0.151 1.048 0.238
6 15.07 0.275 1.011 0.230
7 20.82 0.380 1.006 0.229
8 50.30 0.919 1.001 0.228
9 54.73 1.0 1.0 0.227

step for the VLASS data imaged is about 5; meaning that the
total observation was the equivalent of 5 snapshots centered
on a given position; this value is very constant across a given
mosaic indicating very uniform sensitivity. This value also
indicates that the snapshot noise RMS is a bit more than twice
the combined mosaic value so the limited depth of the snapshot
CLEAN is not a serious problem.

Timing tests of test VLASS data leads to estimates of the
imaging and mosaicing times for Stokes I, Q, and U of≈ 35×
observe time for a single well equipped workstation using
RAM disk. The improved I/O performance of RAM disk
allowed more simultaneous processing streams. RAM disk
should also allow usage of diskless cluster nodes using the
lustre system for distribution of data and collection of results.
A modest cluster should allow processing times keeping up
with observing. Scaling to multiple cluster nodes has not been
tested but using RAM disk confines most I/O in each node so
the residual I/O contention may not swamp the distributed file
system.

The survey as observed by the commensal VLITE system
which will have a factor of about 40 fewer delay centers and
only Stokes I should be feasible on a single workstation. This
testing used an effective primary beam calculated from the
Jinc function expected for a 25 m antenna which is not quite
correct but will not affect the results given here. The very
limited uv coverage for the VLITE array may cause trouble
for the technique described in this memo.

The density of sources with polarised intensity sufficiently
strong to determine a rotation measure is of the order of
0.7 source or component every 1◦2. Proper test data is
needed to determine if imaging with VLITE on 30 sec
intervals gives usable results. Stokes I, Q and U results from
120◦2 of test data from the Stripe 82 field are given in
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/EVLAOTF/. Another
80◦2 of Stokes I in the Cepheus field is also given.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

[2] ——, “High dynamic range wideband imaging.”Obit Development
Memo, no. 19, 2008. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/MFImage.pdf

[3] ——, “Wideband phase and delay calibration.”Obit Development
Memo, no. 20, 2008. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/SelfCalWB.pdf

[4] ——, “Polarization Calibration and Imaging:Hercules A EVLA Data,”
Obit Development Memo, no. 34, pp. 1–11, 2013. [Online]. Available:
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/HercAPCal.pdf

[5] W. D. Cotton and R. Perley, “EVLA Off-axis Beam and Instrumental
Polarization,”Obit Development Memo, no. 17, pp. 1–22, 2010. [Online].
Available: ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/EVLABeam.pdf

[6] R. A. Perley and B. J. Butler, “Integrated Polarization Properties of 3C48,
3C138, 3C147, and 3C286,”ApJS, vol. 206, p. 16, Jun. 2013.

[7] W. D. Cotton, “EVLA Continuum Scripts: Outline of Data Reduction and
Heuristics.”Obit Development Memo, no. 29, pp. 1–29, 2016. [Online].
Available: ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/EVLAObitScripts.pdf

OBIT DEVELOPMENT MEMO SERIES NO. 44 11

APPENDIX

Imaging Stream Driver
The following has the script giving the details of a given processing stream.

OTF data imaging from a list
Loop over list, first imaging to get rough total flux density
Then clipping
Full Stokes I,(Q,U) imaging
Save /quantize images
Cleanup

from EVLACal import EVLAGetSumCC
import UV, Image
Parameters
Aname = ’EVLAOTFB’ # AIPS name of input uv data
Aclass = ’UVAvS’ # AIPS class of input uv data
idisk = 2 # AIPS disk of input uv data
disk = 1 # AIPS disk temporary files
seq = 1 # AIPS sequence of input uv data
noScrat = [1,3,4,5,6,7,8,9] # AIPS disks to avoid for scratch
nThreads = 4 # Max number of threads
quant = 0.0002 # Quantization level
Stream = 1 # Stream number
StreamID = ’Stream’+str(Stream)
faillog = StreamID+’Fail.log’ # Failure log
outDir = ’./Results/’ # directory for images
outDirt = ’/mnt/ramdisk/RAM’+str(Stream)+’/’ # working directory
doStokes = True # Image Q, U?

#example points = [’0037470+413416’, ’0038192+413416’, ’0042202+413416’,]
execfile("pointS"+strStream+".py")
execfile("pass2s1.py") # Pointing list
execfile("SISetup.py") # Setup script
execfile("SILoop.py") # Looping script

OBIT DEVELOPMENT MEMO SERIES NO. 44 12

APPENDIX

Imaging setup
The following has the imaging setup script.

import OSystem, Image
uv = UV.newPAUV(’Data’,Aname, Aclass, disk, seq, True,err)

First MFImage to measure flux density
mft = ObitTask("MFImage"); setname(uv,mft)
mft.doPS = True # use PS table to tell what has already been done
mft.doCalib = 2; mft.doBand = 1; mft.flagVer = 2
mft.xCells = 0.6; mft.yCells = mft.xCells; mft.doFit=False
mft.outDisk = disk; mft.out2Disk = disk; mft.outSeq = 1; mft.out2Seq = 1
mft.outClass = ’ITmp’; mft.out2Class = ’Temp’; mft.Stokes = ’F’; mft.maxFBW = -0.05
mft.FOV = 0.05; mft.minFlux = 0.25; mft.Niter = 50; mft.noScrat = noScrat
mft.OutlierDist = 0.35; mft.OutlierFlux = 0.1; mft.PBCor = False; mft.dispURL = ’None’
mft.targBeam = [3.0,3.0,0.0]; mft.nThreads = nThreads; mft.prtLv=1
if doStokes:

mft.doPol = True; mft.PDVer = 1;
else:

mft.doPol = False;

Second MFImage to do real imaging
mf = ObitTask("MFImage"); setname(uv,mf)
mf.inClass = ’Temp’; mf.inDisk = disk; mf.inSeq = mft.out2Seq
mf.xCells = 0.6; mf.yCells = mf.xCells; mf.doFit=False
mf.doCalib = 0; mf.doBand = 0; mf.flagVer = 1
mf.outDisk = disk; mf.out2Disk = disk; mf.outSeq = 2; mf.out2Seq = 2
mf.outClass = ’I’; mf.out2Class = ’Final’; mf.maxFBW = -0.05
mf.FOV = 0.20; mf.minFlux = 0.0005; mf.Niter = 200
mf.OutlierDist = 0.35; mf.OutlierFlux = 0.005; mf.PBCor = False; mf.dispURL = ’None’
mf.targBeam = [3.0,3.0,0.0]; mf.Beam = [3.0,3.0,0.0]; mf.nThreads = nThreads; mf.prtLv=1
mf.refAnt = 16; mf.minSNR = 3.5; mf.avgPol = True; mf.noScrat = noScrat
mf.maxPSCLoop=1; mf.minFluxPSC=0.025; mf.solPInt=0.5; mf.solPType=’L1’; mf.solPMode=’P’
mf.maxASCLoop=1; mf.minFluxASC=0.10 ; mf.solAInt=0.5; mf.solAType=’L1’; mf.solAMode=’A&P’
if doStokes:

mf.Stokes = ’FQU’;
Less aggressive CLEANing
NiterQU = mf.Niter/3; minFluxQU = mf.minFlux*2
addParam(mf,"NiterQU", paramVal=NiterQU, shortHelp="Niter for Q,U,V", \

longHelp=" NiterQU.....Niter for Q,U,V\n")
addParam(mf,"minFluxQU", paramVal=minFluxQU, \

shortHelp="minFlux for Q,U,V", \
longHelp=" minFluxQU...minFlux for Q,U,V\n")

else:
mf.Stokes = ’F’;

AutoFlag
af = ObitTask("AutoFlag"); af.DataType=’AIPS’; af.inClass=’Temp’;
af.inSeq=1; af.inDisk=disk
af.flagTab = 1; af.nThreads = nThreads; af.noScrat = noScrat;

OTF flag
otf = ObitTask("OTFFlag"); otf.DataType=’AIPS’; otf.inClass=’Temp’;
otf.inSeq=1; otf.inDisk=disk otf.flagTab = 1; otf.flagVer = 1;
otf.nThreads = nThreads;

OBIT DEVELOPMENT MEMO SERIES NO. 44 13

Imaging Setup continued
Get rid of wild points, reset max,min
mangle = ObitTask("BASMangle"); mangle.DataType = ’AIPS’;
mangle.inClass = ’I’; mangle.inSeq = mf.outSeq; mangle.inDisk = disk
mangle.nSigma = 20; mangle.nThreads = nThreads
if doStokes:

mangle.nStokes = 3
else:

mangle.nStokes = 1

Threading
OSystem.PAllowThreads(nThreads)

import OData, Table
def isDone(uv, point, err):

"""
Check a PS Table to see of a pointing has been done

Returns True if found and STATUS is "Done"
uv = OData with PS table
point = name of pointing
err = Obit Error/message stack
"""
#---
ver = uv.GetHighVer("AIPS PS")
if ver<1:

return False
pstab=uv.NewTable(Table.READONLY,"AIPS PS", 1, err)
nrow = pstab.Desc.Dict[’nrow’]
pstab.Open(Table.READONLY, err)
pt = point.strip()
done = False
for irow in range(1,nrow+1):

psrow = pstab.ReadRow(irow,err)
if psrow[’FIELD NAME’][0].strip()==pt:

done = psrow[’STATUS’][0].strip()==’Done’
break

pstab.Close(err)
return done

end isDone

OBIT DEVELOPMENT MEMO SERIES NO. 44 14

APPENDIX

Imaging loop
The following has the imaging looping script.

Loop over pointings
import FArray, OErr
OErr.PInit(err, taskLog =StreamID+’.log’)
OErr.PLog(err, OErr.Info, " Start processing "+StreamID);
import FArray
points.sort() # Do in RA order
for p in points:

Already done:
if isDone(uv, p, err):

print p," Already done"
continue

try:
name12 = p[0:12]; name8 = p[0:8];
mft.Sources[0] = p; mft.g
do anything?
if mft.nImaged<=0:

print p," Already done"
continue

Get clean flux for clip level
xt = Image.newPAImage(’temp’, name12, mft.outClass, \

mft.outDisk, mft.outSeq, True, err)
maxVal = EVLAGetSumCC(xt, err)
clip = max(0.5, 3*maxVal)
print "Clip level", clip, "maxVal",maxVal
zap(xt); del xt

clip
af.inName = name12
af.IClip = [clip,0.05];
if doStokes:

af.XClip = [clip,0.05];
af.g

OTF flag
otf.inName = name12; otf.g

Full Image
mf.outName = p[8:12]; mf.out2Name = p[8:12]
mf.inName = name12; mf.Sources[0] = p; mf.g

Get rid of wild points
mangle.inName = name12;
mangle.g

OBIT DEVELOPMENT MEMO SERIES NO. 44 15

Imaging Loop continued
save images, quantize at quant
xt = Image.newPAImage(’tempI’, name12, "I"+mf.outClass[1:], \

mf.outDisk, mf.outSeq, True, err)
xf = imtab(xt, outDir+p+"_I.fits", 0, err, quant=quant); del xf
if doStokes:

xtq = Image.newPAImage(’tempQ’, name12,"Q"+mf.outClass[1:], \
mf.outDisk, mf.outSeq, True, err)

xf = imtab(xtq, outDir+p+"_Q.fits", 0, err, quant=quant); del xf
xtu = Image.newPAImage(’tempU’, name12,"U"+mf.outClass[1:], \

mf.outDisk, mf.outSeq, True, err)
xf = imtab(xtu, outDir+p+"_U.fits", 0, err, quant=quant); del xf

GZip with nThreads threads to ramdisk
f = "pigz -4 -p "+str(nThreads)+" "+outDirt+p+"_*.fits"
print f
os.system(f)
f = "mv "+outDirt+p+"_*.fits.gz "+outDir # move to hard drive
os.system(f)

cleanup
uvt = UV.newPAUV(’temp’, name12, mft.out2Class, mft.out2Disk,\

mft.out2Seq, True, err)
zap(uvt); del uvt
uvt = UV.newPAUV(’temp’, name12, mf.out2Class, mf.out2Disk, \

mf.out2Seq, True, err)
zap(uvt); del uvt
xt = Image.newPAImage(’tempI’, name12, "I"+mf.outClass[1:],mf.outDisk, \

mf.outSeq, True, err)
zap(xt); del xt
if doStokes:

xt = Image.newPAImage(’tempQ’, name12,"Q"+mf.outClass[1:], mf.outDisk, \
mf.outSeq, True, err)

zap(xt); del xt
xt = Image.newPAImage(’tempU’, name12,"U"+mf.outClass[1:], mf.outDisk, \

mf.outSeq, True, err)
zap(xt); del xt

except:
print "Processing failed for",p
if (faillog):

f=open(faillog,’a’)
line = "Processing failed for "+p+"\n"
f.writelines(line)
line = " exception "+str(e)+"\n"
f.writelines(line)
f.close()
AIPSDir.PAllDest (disk,err,Atype=" ",Aname=name12,Aclass=’ ’,Aseq=0)

end loop

OBIT DEVELOPMENT MEMO SERIES NO. 44 16

APPENDIX

Image Mosaic formation
The following scripts generate mosaics combining pointingimages in a list (pointings) overlapping a list of positions(targets).
Also needed are a template image (tmpl.fits) with the same geometry and other information as a pointing image and an effective
beam image (see appendix “Create Effective Primary Beam”).Input and output images are FITS and AIPS used as internal
accumulators.

Script to make mosaic of EVLA test OTF data
Images made with MFImage, make mosaics on each pointing adding all overlapping

import os
List of pointings
execfile("pointAllC.py")
target = ’list’ # Point to mosaic
IStream = 1 # Processing stream
execfile(’Targ’+str(IStream)+’.py’) # Stokes and mosaic names/positions

##
strId = ’S’+str(IStream)+stktrans # Stream Id, unique, <= 5 char
ch0 = 0 # restart first at channel ch0
minWt = 0.35 # Minimum weight
doGPU = False # Use GPU?
minCh = 1 # Minimum channel number
maxCh = 18 # Maximum channel number

datadisk = 0 # disk for data (FITS)
fitsdir = "../Results/" # FITS data directory
accumdisk = 1+IStream # RAM disk for accumulators
accumseq = 10 # seq for accumulators
isCont = True # Continuum?
f = ’/mnt/ramdisk/OTFBeamQuant.fits’ # Effective primary beam
BeamImage = Image.newPFImage("Beam", f, 0, True, err)

nThreads = 4 # How many threads
size = 5500 # size of master
cells = 0.75 # cellsize
print "Target=",targets[0][0],"restart=",restart,"ch0=",ch0,"minWt=",minWt
execfile("mosaicBasic.py")

OBIT DEVELOPMENT MEMO SERIES NO. 44 17

mosaicBasic.py
Basic mosaicing functions
import Image, ImageDesc, MosaicUtil, OSystem, OErr
from OTObit import imlod
err = OErr.OErr()

OSystem.PAllowThreads(nThreads)
def separ(p,pos):

""" get crude separation between p and pos

EVLA OTF-like pointing names
p pointing name as hhmmsss+ddmmss
pos mosaic position as (RA, Dec) in deg
"""
rh = int(p[0:2]); rm = int(p[2:4]); rs = 0.1*int(p[4:7]);
sign = p[7:8]
dd = int(p[8:10]); dm = int(p[10:12]); ds = float(p[12:])
ra = (rh + rm/60. + rs/3600.)*15.0
dec = dd + dm/60. + ds/3600.
if sign==’-’:

dec = -dec
delta = ((pos[0]-ra)**2 + (pos[1]-dec)**2)**0.5
return delta

end separ

def StitchF (nameList, stktrans, SumWtImage, SumWt2, BeamImage, err, restart=0,):
""" Mosaic looping over planes of a list of cubes

nameList = list of source names
stktrans = Stokes, e.g. "ICube"
SumWtImage= Image*wt accumulator
SumWt2 = Wt**2 accumulator
OTFRA = Array of RA offsets in deg not corrected for Declination
OTFDec = Array of Declinations offsets in deg, same size as OTFRA
err = Obit err stack
restart = restart channel no. 0-rel

"""
How many channels? */
nchan = SumWtImage.Desc.Dict["inaxes"][SumWtImage.Desc.Dict["jlocf"]]
Crude position setup
Mosaic center
mosPos = SumWtImage.Desc.Dict[’crval’][0:2]
How close is close enough for proper test?
mosDelta = abs(SumWtImage.Desc.Dict[’cdelt’][0])*SumWtImage.Desc.Dict[’inaxes’][0]
Loop over images
i = -1;
acc = None; acct = None
for name in nameList:

acc = None; acct = None
i += 1
Quick test
if separ(name,mosPos)>mosDelta:

continue
f = fitsdir+name+’_’+stktrans+".fits"
print f,separ(name,mosPos)
if not os.path.exists(f):

try gzipped
f = fitsdir+name+’_’+stktrans+".fits.gz"
if not os.path.exists(f):

continue

OBIT DEVELOPMENT MEMO SERIES NO. 44 18

mosaicBasic.py continued
acct = Image.newPFImage("accum", f, 0, True, err)
if ImageDesc.POverlap(acct.Desc, SumWtImage.Desc, err):

try:
Get overlap
(blc,trc) = MosaicUtil.PGetOverlap(acct, SumWtImage, err)
#blc=[1,1,1]; trc = acc.Desc.Dict[’inaxes’]
if (trc[0]>blc[0]) and ((trc[1]>blc[1])):

blc[2] = minCh
trc[2] = maxCh # Limit channels
Too big for GPU?
if (trc[0]-blc[0])*(trc[1]-blc[1])>(6000*6000):

useGPU = False
else:

useGPU = doGPU
unzip to ssd/ramdisk (disk 1)
acc = imlod(f,0,name[0:12],stktrans+strId,1,1,err)
Use first plane to normalize RMS factors
Image.PGetPlane (acc, None, [1,1,1,1,1], err)
OErr.printErrMsg(err, "Error reading image for "+Image.PGetName(acc))
factor = 1.0;
RMS = acc.FArray.RMS; # combined plane RMS
maxRMS = 10*RMS # maximum acceptable plane RMS
print "Accumulate",name,"factor",factor, "maxRMS",maxRMS
print "overlap", blc, trc
#print "inaxes",acc.Desc.Dict["inaxes"]
MosaicUtil.PWeightImage(acc, factor, SumWtImage, SumWt2, err,

iblc=blc, itrc=trc, restart=restart, planeWt=True,
hwidth=2, doGPU=useGPU, inWtImage=BeamImage,
maxRMS=maxRMS)

except Exception,exception:
OErr.printErr(err)
print exception
print "Failed"
err.Clear()

if acc:
acc.Zap(err); del acc; acc = None

if acct:
del acct; acct = None

else:
print "Not in mosaic:",name
if acct:

del acct; acct = None
end StitchF

OBIT DEVELOPMENT MEMO SERIES NO. 44 19

mosaicBasic.py continued
Loop over targets
for target in targets:

Make accumulation images from gcenter, cells, size x size
if not restart:

make copy of template file 11 x 11 cells
f = fitsdir+"tmpl.fits"
if not os.path.exists(f):

continue
targ = Image.newPFImage("target", f, 0, True, err)
d = targ.Desc.Dict
si = ObitTask("SubImage")
setname(targ,si)
select central 11 x 11 cells
si.BLC = [int(d[’crpix’][0]-5), int(d[’crpix’][1]-5), 1]
si.TRC = [int(d[’crpix’][0]+5), int(d[’crpix’][1]+5), d[’inaxes’][2]]
si.TRC[2] = min(si.TRC[2],maxCh) # Limit channels
si.BLC[2] = max(si.BLC[2],minCh)
si.outDisk = accumdisk; si.outSeq=accumseq; si.outDType="AIPS"
si.outName = target[0]; si.outClass = stktrans+"Tp";
si.g
f = target[0]
tmpl = Image.newPAImage("tmpl", f, stktrans+"Tp", accumdisk, accumseq, True, err)

d = tmpl.Desc.Dict
d["cdelt"][0]=-cells/3600.; d["cdelt"][1]=cells/3600. # Cellsize
d["crval"][0] = target[1][0]; d["crval"][1] = target[1][1]; # Center
tmpl.Desc.Dict=d;tmpl.UpdateDesc(err)
f = target[0]
SumWtImage = Image.newPAImage("WtI", f, stktrans+"WI", accumdisk, accumseq, False, err)
SumWt2 = Image.newPAImage("Wt2", f, stktrans+"W2", accumdisk, accumseq, False, err)
print "Create accumulators"
MosaicUtil.PMakeMaster(tmpl, [size,size], SumWtImage, SumWt2, err)
Put reference pixel at center
d = SumWtImage.Desc.Dict
d[’crpix’][0] = d[’inaxes’][0]/2; d[’crpix’][1] = d[’inaxes’][1]/2;
SumWtImage.Desc.Dict = d; SumWtImage.UpdateDesc(err)
d = SumWt2.Desc.Dict
d[’crpix’][0] = d[’inaxes’][0]/2; d[’crpix’][1] = d[’inaxes’][1]/2;
SumWt2.Desc.Dict = d; SumWt2.UpdateDesc(err)

else: # restarting
f = target
SumWtImage = Image.newPAImage("WtI", f, stktrans+"WI", accumdisk, accumseq, True, err)
SumWt2 = Image.newPAImage("Wt2", f, stktrans+"W2", accumdisk, accumseq, True, err)
restart = False;ch0 = 0; # Not again

end startup

Do it
OErr.PLog(err,OErr.Info, "Start interpolation"); OErr.printErr(err)
StitchF (pointings, stktrans, SumWtImage, SumWt2, BeamImage, err, restart=ch0)
OErr.PLog(err,OErr.Info, "Finish interpolation"); OErr.printErr(err)

OBIT DEVELOPMENT MEMO SERIES NO. 44 20

mosaicBasic.py continued
Normalize to FITS
print "Normalize",target[0]
f = fitsdir+target[0]+stktrans+’_Mosaic.fits’
mosaic = Image.newPFImage("Mosaic", f, 0, False, err)
SumWtImage.Clone(mosaic, err)
MosaicUtil.PNormalizeImage(SumWtImage, SumWt2, mosaic, err, minWt=minWt)

If continuum (and from MFImage) calculate spectral index plane
if isCont:

import ImageMF
xmf=ImageMF.newPFImageMF(’MF’, f, 0, True, err)
ImageMF.PFitSpec(xmf,err)
del xmf

zap(SumWtImage); zap(SumWt2); zap(tmpl)
del tmpl, SumWtImage, SumWt2, mosaic

end loop

APPENDIX

Create Effective Primary Beam
The following script will create an effective primary beam including OTF effects from a template image tmpl.fits which should
have the same geometry as the pointing images. This uses a Jinc approximation for the antenna beam shape.

import Image, ImageUtil, OErr
err = OErr.OErr()
inImage = Image.newPFImage(’im’, "tmpl.fits",0, True, err)
doPlane =[1,1,1,1,1]
Image.PGetPlane (inImage, None, doPlane, err)
OErr.printErrMsg(err, "Error reading image for "+Image.PGetName(inImage))
#WtImage = Image.Image("WeightImage")
#Image.PCloneMem(inImage, WtImage, err)
WtImage = Image.newPFImage("Beam","OTFBeam.fits",0,False,err)
inImage.Clone(WtImage,err)
OErr.printErrMsg(err, "Error reading image for "+Image.PGetName(inImage))
minGain = 0.02
d = 0.0124/2
OTFRA = [-3*d,-2*d,-d,0.0,d,2*d,3*d]; OTFDec = [0.,0.,0.,0.,0.,0.,0.]
for iplane in range(0,18):

pln =[iplane+1,1,1,1,1]
ImageUtil.POTFBeam (inImage, WtImage, OTFRA, OTFDec, err, minGain=minGain, outPlane=pln)

