
OBIT DEVELOPMENT MEMO SERIES NO. 87 1

Broadband Image Effective Frequency
W. D. Cotton (NRAO), November 20, 2024

Abstract—Issues involved with obtaining consistent and well
defined effective frequencies in broadband continuum images
derived from a set of subband images is discussed. A solution
implemented in the Obit environment is presented.

Index Terms—Image Effective Frequency

I. INTRODUCTION

IDEALLY the broadband continuum image obtained from
a set of narrower band images would be derived from a

spectral fit in each pixel which possibly includes a spectral
index and will have a well defined, and constant, effective
frequency for all pixels. Unfortunately, in most images most
pixels lack adequate sensitivity for this and an average of
the channels is needed. Since the sensitivity of the various
narrowband planes is generally not the same, and the spectral
index of the sources in the field vary, some weighted average is
needed. The details of the weighting determines the effective
frequency of the broadband image and, if uncontrolled, can
lead to a poorly defined effective frequency. This memo
describes a technique for forming a wideband continuum
image, possibly with spectral terms with a constant and well
defined effective frequency using the Obit package [1]1 .

II. EFFECTIVE FREQUENCY

For wideband data which are imaged as multiple frequency
subbands, the effective frequency of the resultant wideband
image depends on how the individual frequency subbands are
combined. In the general case, the different subbands will have
different sensitivities due to effects such as a different amount
of data flagged due to RFI and frequency variations of receiver
and sky noise. Thus, the combination of subband images needs
to be a weighted average.

All else being equal, weighting by the inverse subband
variance (1/σ2) gives the optimal result. However, at low
frequencies where the disk of the Milky Way is very bright and
has a very steep spectrum, a 1/σ2 weighting can effectively
remove the effects of the lowest frequencies from images at
low Galactic latitude. In this case, 1/σ weighting may be
preferred.

When it is possible to fit for a meaningful in–band spectral
index, it is desirable to do so. A weighted least squares fit
subject to signal–to–noise constraints can produce spectral
index values for some pixels, others should be blanked - given
a value meaning “no value”. The technique described here is
also discussed in [2] and [3].

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

III. OBIT IMPLEMENTATION

In the following, it is assumed that the broadband image(s)
are derived from a number of subbands in frequency that are
to be combined by a weighted average (Itotal(x, y)):

Itotal(x, y) =

∑n
i=1WiIi(x, y)∑n

i=1Wi
, (1)

where i of n is the subband index, Ii(x, y) is the image of
subband i and Wi is the weight of subband i. The effective
frequency (νeff) of this combination will be

νeff =

∑n
i=1 νiWi∑n
i=1Wi

, (2)

where νi is the effective frequency of subband i. If multiple
such images are to be produced using the same reference
frequency, then all should use the same channelization (sub-
bands) and associated weights. The following sections describe
how to implement frequency averaging to maintain a constant
effective frequency. This is performed using a set of python
scripts to be executed from ObitTalk. These files are kept in
$OBIT/share/scripts and should be copied to your working di-
rectory to be edited and renamed for the details of your project.
These scripts assume input images in the form produced by
Obit task MFImage [4]. All input and output images are in
FITS image files of the type produced by Obit or AIPS.

A. Determining Weights

As a general rule, some measure of the “noise” in each
subband should be used to set the relative weight of that
subband. The optimal weighting in a statistical sense is by the
inverse variance (σ−2

i) of each subband. However, in some
cases, e.g. at low Galactic latitudes, the very steep spectrum
of the additional sky noise causes this weighting to effectively
discard the lower portion of the band. Weighting by the
inverse of σi (subband RMS) will preserve more of the lower
frequency information but still give higher weight to less noisy
data.

If only one image is to be produced with a given effective
frequency, the weights can be determined from the relevant
subband images. If multiple images are to be produced, e.g.
extended area mosaics or a set of related pointings, then the
appropriate weighting need be determined from an average
over all relevant images. Figures 1 & 2 give the text of
script $OBIT/share/scripts/AvgWeights.py which operates on
one or more broadband image cubes of the type produced
by Obit task MFImage [4] and determines the weights to be
be used for the images. The results are stored in the pickle
file AvgWeights.pickle for use by other scripts. The relevant
parameters set in this script are:

OBIT DEVELOPMENT MEMO SERIES NO. 87 2

• dir. This is the relative path to the directory containing
the FITS images. For the CWD this is ’./’

• posn. This is a list of the roots of the file names.
• post. This is the constant part of the file names. The full

name of the files is dir+posn[i]+post for each posn[i].
• doLin. True if the weighting is 1/σ, else 1/σ2
• nthreads. The number of threads to use; generally the

number of cores available.
The script can be executed from ObitTalk by:

>>> exec(open(’AvgWeights.py’).read())

When completed, the script will give the effective frequency.
None of the input files are modified. The script should be
renamed as appropriate for your project.

B. Fitting Spectra in MFImage-like Cubes
Once the weights have been determined, the values stored in

the AvgWeight.pickle file can be used to fit spectra to be filled
into the first one or two planes on the MFImage-like file(s).
There are a number of options which are set by parameters
in the script. A nonlinear least squares fit is attempted in
each pixel for which the broadband total intensity exceeds
minFlux and for which adding the spectral index term does
not significantly increase the χ2 of the fit. The spectral index
values fitted are given in the second plane of the image and
blanked if not fitted The broadband flux densities are always
the weighted average even if the fitting produced a spectral
index. Primary beam corrections are optional but should NOT
be used in mosaiced images for which they have already been
applied.

The spectral fitting will use all valid pixels in the cube. If
this is a single pointing cube (i.e. not a mosaic) and primary
beam corrections have been applied with a cutoff (PBmin) then
the values at this top of the band may not be included which
will result in a lower effective frequency for affected pixels. To
counteract this, the doBlank=True option will blank the first
two planes on the output image where the highest frequency
bin is blanked; thus ensuring a constant effective frequency.

By default the files to be operated on are those used to derive
the weights but a different set, defined by post and fitsfiles can
be specified. The relevant parameters set in this script are:

• minFlux. Minimum flux density for fitting spectral index.
• defaultSI. Default initial spectral index in fit.
• doPBCor. Apply primary beam correction in determining

broadband flux density and spectral index? The output
subband images will not be affected.

• antSize. The antenna diameter (m) to be used in primary
beam corrections. MeerKAT images produced in Obit are
recognized and a cosine squared beam is used.

• PBmin. Minimum primary beam gain to be corrected;
pixels with lower values will be blanked.

• doBlank. Blank broadband image and spectral index
where the highest frequency subband is blanked, or,
would be blanked by a primary beam correction.

• nthreads. Number of threads to use in computations.
• post. The equivalent of post described in Section III-A;

if not given then the value saved in the AvgWeight.pickle
file is used.

• fitsfiles. A list of (File Name Root, image RMS(not
used)) for the input FITS files. The full path of the files
used are dir+fitsfile[i][0]+post. If not given, the posn list
from the AvgWeight.pickle file is used.

The script is given in Figures 3 & 4 and can be executed from
ObitTalk by:

>>> exec(open(’FitSpec.py’).read())

On successful completion of the script, the first two planes of
the output image(s) will be replaced by the average broadband
image and spectral index plane (if fitted) and the reference
frequency will be changed to the effective frequency. Subband
planes are not modified. The script should be renamed as
appropriate for your project.

C. Spectral Fit Plus Errors
An alternate, more compact, rendition of the image with

just the fitted spectrum together with the least squares error
estimates is also possible. A new output FITS file(s) is(are)
produced. Weighting is obtained from the AvgWeight.pickle
file. The relevant parameters set in this script are similar to
those in Section III-B:

• minFlux. Minimum flux density for fitting spectral index.
• defaultSI. Default initial spectral index in fit.
• doPBCor. Apply primary beam correction in determining

broadband flux density and spectral index?
• antSize. The antenna diameter (m) to be used in primary

beam corrections. MeerKAT images produced in Obit are
recognized and a cosine squared beam is used.

• PBmin. Minimum primary beam gain to be corrected;
pixels with lower values will be blanked.

• maxChi2. Fit acceptance level
• calFract. % relative calibration error for error estimates.
• doBlank. Blank broadband image and spectral index

where the highest frequency subband is blanked, or,
would be blanked by a primary beam correction.

• nthreads. Number of threads to use in computations.
• post. The equivalent of post described in Section III-A;

if not given then the value saved in the AvgWeight.pickle
file is used.

• fitsfiles. A list of (File Name Root, image RMS(not
used) for the input FITS files. The full path of the files
used are dir+fitsfile[i][0]+post. If not given, the posn list
from the AvgWeight.pickle file is used.

• opost. The final part of the output FITS file name,
default “ 5Pln.fits”. The output FITS files will have
names dir+fitsfile[i][0]+opost.

The script is given in Figures 5 & 6 can be executed from
ObitTalk by:

>>> exec(open(’FitError.py’).read())

On successful completion of the script, a new FITS image(s)
will be generated from each input image cube with planes 1)
broadband image (in Jy), 2) spectral index where fitted else
blanked, 3) uncertainty of plane 1) 4) uncertainty of plane 2
where fitted, 5) reduced χ2 of fit. The reference frequency will
be the effective frequency. The input images are not modified.
The script should be renamed as appropriate for your project.

OBIT DEVELOPMENT MEMO SERIES NO. 87 3

Fig. 1. AvgWeights.py
average Stokes I channel weights in a set of images
#exec(open(’AvgWeights.py’).read())
Saves information in dict saved in AvgWeights.pickle
weights, one per subband, RMSes:[mosaic_name,RMS],
Freqs:[center freq, MHz], EffFreq: Effective frequency,
dir:data directory, post: ending of FITS file name
print("\nDetermining weighting, effective frequency")

Assumes MFImage output
dir = "../data/" # Data directory
file name roots
posn = ["Field_1" ,"Field_2", "Field_3", "Field_4"]
post = ’_I_Mosaic.fits’ # file=dir+<name root>+post
doLin = True # If True weight by 1/sigma, else 1/sigmaˆ2
nthreads = 16 # Number of threads to use

import Image, OErr, OSystem, FArray
OSystem.PAllowThreads(nthreads) # with threads
from PipeUtil import SaveObject, FetchObject
import math, pickle

Function to get RMSHist for plane planeno
def imrms(inImage, planeno=1):

""" Get plane RMSHist
Returns dictionary with statistics of selected region with entries:

* inImage = Python Image object, created with getname, getFITS
"""
inImage.GetPlane(None,[planeno,1,1,1,1],err)
rms = inImage.FArray.RMS
return rms

end imrms

Get information from first file
x=getFITS(dir+posn[0]+post,0)
test that MFImage output
if x.Desc.Dict[’ctype’][2]!=’SPECLNMF’:

raise RuntimeError("not MFImage output")

nterm = x.Desc.List.Dict[’NTERM’][2][0]
nspec = x.Desc.List.Dict[’NSPEC’][2][0]
nplane = x.Desc.Dict[’inaxes’][2]

Get frequencies
freqs = []
for i in range(1,nspec+1):

key = "FREQ%4.4d"%i
freqs.append(x.Desc.List.Dict[key][2][0]*1.0e-6)

end channel loop

Channel RMSes per image stored in result[p]
result = {}
for i in range (0,len(posn)):

p=posn[i]
x=getFITS(dir+p+post,0)
print ("File",dir+p+post)
rms = []

OBIT DEVELOPMENT MEMO SERIES NO. 87 4

Fig. 2. AvgWeights.py cont’d
for j in range(nterm+1,nplane+1):

s = imrms(x,j)
rms.append(s)

end channel loop
result[p] = rmsx

end image loop

broadband rmses
ff = []
for i in range (0,len(posn)):

p=posn[i]; x=getFITS(dir+p+post,0)
s = imrms(x, 1)
ff.append((p,s))

Average weights
for i in range (0,len(posn)):

p=posn[i]; wt = []; rms = result[p]
for j in range(0,len(rms)):

if rms[j]>0.0:
if doLin:

wt.append(1.0e-6*(rms[j]**-1)) # weight by 1/sigma
else:

wt.append(1.0e-6*(rms[j]**-2)) # weight by 1/sigmaˆ2
else:

wt.append(0.0)

end channel loop
Normalize by sum of weights
sumwt = sum(wt)
for i in range(0,len(wt)):

wt[i] = 100*wt[i]/sumwt

Print subband weights
print ("Subband Freq Weight")
for i in range(0,len(wt)):

print ("%3d %9.2f %8.2f"%(i+1,freqs[i],wt[i]))

Effective frequency
sum1 = 0.0; sumwt=0.0
for i in range(0,len(wt)):

sum1 += freqs[i]*wt[i]; sumwt += wt[i];

EffFreq = sum1/sumwt
print ("\nEffective Frequency = %9.2f"%EffFreq,"MHz")

Save to pickle jar
weights, one per subband, RMSes:[mosaic_name,RMS], Freqs:[center freq, MHz],
dir:data directory, post: ending of FITS file name
stuff = {"weights":wt, "RMSes":ff, "Freqs":freqs, "EffFreq":EffFreq, \

"dir":dir, "post":post}
SaveObject(stuff, "AvgWeights.pickle", True)
print ("Wrote AvgWeights.pickle")

OBIT DEVELOPMENT MEMO SERIES NO. 87 5

Fig. 3. FitSpec.py
Fit spectra to a set of images where flux density>minFlux
Using weighting from AvgWeights.pickle
#exec(open(’FitSpec.py’).read())
minFlux = 0.0002 # Minimum flux density for SI
defaultSI = 0.0 # Default spectral index
doPBCor = False # Do PB correct? not for Mosaics
antSize = 24.5 # Antenna size for PB Corr
PBmin = 0.05 # Min PB gain for correction
doBlank = False # Blank total intensity and SI where highest plane blanked?

After any PB Correction
nthreads = 16 # Number of threads to use
post = None # If given, the ending of file names,

Else the value from AvgWeights.pickle
fitsfiles = None # If given, (name root, broadband RMS)

Else the value from AvgWeights.pickle
import Image, OErr, OSystem, FArray
OSystem.PAllowThreads(nthreads) # with threads
from PipeUtil import SaveObject, FetchObject
import math, pickle

Get weighting info
stuff = FetchObject("AvgWeights.pickle")
refFreq = stuff[’EffFreq’] # Effective frequency in MHz
wwts = stuff[’weights’] # Subband weights in %
dir = stuff[’dir’] # Data directory
if fitsfiles==None:

fitsfiles = stuff[’RMSes’] # List of (file_name root, RMS)
if post==None:

post = stuff[’post’] # Ending of file name

import Obit, ImageMF, Image, FArray, OSystem, OErr
err = OErr.OErr()
OSystem.PAllowThreads(nthreads) # with threads

for fitsfile in fitsfiles:
print ("Doing",fitsfile[0])
inMF = ImageMF.newPFImageMF(’Input’,dir+fitsfile[0]+post, 0, True, err)
ImageMF.PFitSpec(inMF, err, antSize=0., nOrder=1,corAlpha=defaultSI,

refFreq=refFreq*1.0e6, Weights=wwts, minFlux=minFlux,
doPBCor=doPBCor, PBmin=PBmin)

IV. DISCUSSION

This memo discusses producing a set of broadband contin-
uum images producing a constant and well defined effective
frequency. Scripts are provided which can be used in the Obit
environment to produce such images from an input set of
single pointing or mosaic images produced in Obit.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

[2] S. Goedhart, W. D. Cotton, F. Camilo, M. A. Thompson, G. Umana,
M. Bietenholz, P. A. Woudt, L. D. Anderson, C. Bordiu, D. A. H. Buckley,
C. S. Buemi, F. Bufano, F. Cavallaro, H. Chen, J. O. Chibueze, D. Egbo,
B. S. Frank, M. G. Hoare, A. Ingallinera, T. Irabor, R. C. Kraan-Korteweg,
S. Kurapati, P. Leto, S. Loru, M. Mutale, W. O. Obonyo, A. Plavin,
S. H. A. Rajohnson, A. Rigby, S. Riggi, M. Seidu, P. Serra, B. M. Smart,

B. W. Stappers, N. Steyn, M. Surnis, C. Trigilio, G. M. Williams, T. D.
Abbott, R. M. Adam, K. M. B. Asad, T. Baloyi, E. F. Bauermeister,
T. G. H. Bennet, H. Bester, A. G. Botha, L. R. S. Brederode, S. Buchner,
J. P. Burger, T. Cheetham, K. Cloete, M. S. de Villiers, D. I. L. de Villiers,
L. J. du Toit, S. W. P. Esterhuyse, B. L. Fanaroff, D. J. Fourie, R. R. G.
Gamatham, T. G. Gatsi, M. Geyer, M. Gouws, S. C. Gumede, I. Heywood,
A. Hokwana, S. W. Hoosen, D. M. Horn, L. M. G. Horrell, B. V. Hugo,
A. I. Isaacson, G. I. G. Józsa, J. L. Jonas, J. D. B. L. Jordaan, A. F.
Joubert, R. P. M. Julie, F. B. Kapp, N. Kriek, H. Kriel, V. K. Krishnan,
T. W. Kusel, L. S. Legodi, R. Lehmensiek, R. T. Lord, P. S. Macfarlane,
L. G. Magnus, C. Magozore, J. P. L. Main, J. A. Malan, J. R. Manley,
S. J. Marais, M. D. J. Maree, A. Martens, P. Maruping, K. McAlpine,
B. C. Merry, M. Mgodeli, R. P. Millenaar, O. J. Mokone, T. E. Monama,
W. S. New, B. Ngcebetsha, K. J. Ngoasheng, G. D. Nicolson, M. T.
Ockards, N. Oozeer, S. S. Passmoor, A. A. Patel, A. Peens-Hough, S. J.
Perkins, A. J. T. Ramaila, S. M. Ratcliffe, R. Renil, L. L. Richter, S. Salie,
N. Sambu, C. T. G. Schollar, L. C. Schwardt, R. L. Schwartz, M. Serylak,
R. Siebrits, S. K. Sirothia, M. J. Slabber, O. M. Smirnov, A. J. Tiplady,
T. J. van Balla, A. van der Byl, V. Van Tonder, A. J. Venter, M. Venter,

OBIT DEVELOPMENT MEMO SERIES NO. 87 6

Fig. 4. FitSpec.py cont’d
if doBlank:

print (’Blanking by high freq. bin’)
Blanking mask
outIm = Image.newPFImage(’Output’,dir+fitsfile[0]+post, 0, True, err)
hiPlane = [outIm.Desc.Dict[’inaxes’][2],1,1,1,1]
if doPBCor:

Mask by primary beam correction and high bin
PBImg = Image.Image(’PBImage’); Image.PCloneMem(outIm,PBImg,err)
Blank where highest plane blanked
ImageUtil.PPBImage(outIm,PBImg,err,PBmin,outPlane=hiPlane,antSize=antSize)
PBImg.GetPlane(None,hiPlane, err); mask1 = PBImg.FArray
outIm.GetPlane(None,hiPlane, err); FArray.PBlank(mask1, outIm.FArray, mask1)

else:
Mask by highest frequency
outIm.GetPlane(None,hiPlane, err); mask1 = FArray.PCopy(outIm.FArray, err)
PBImg = None

Plane 1 - total intensity
outIm.GetPlane(None, [1,1,1,1,1], err)
FArray.PBlank(outIm.FArray, mask1, outIm.FArray)
outIm.PutPlane(None, [1,1,1,1,1], err)
Plane 2 - Spectral index
outIm.GetPlane(None, [2,1,1,1,1], err)
FArray.PBlank(outIm.FArray, mask1, outIm.FArray)
outIm.PutPlane(None, [2,1,1,1,1], err)
#DEBUG Image.PFArray2FITS(mask1, "Mask.fits", err, outDisk=0)
del PBImg, mask1

End blanking
end loop

M. G. Welz, and L. P. Williams, “The SARAO MeerKAT 1.3 GHz
Galactic Plane Survey,” MNRAS, vol. 531, no. 1, pp. 649–681, Jun. 2024.

[3] W. D. Cotton, M. D. Filipović, F. Camilo, R. Indebetouw, R. Z. E.
Alsaberi, J. O. Anih, M. Baker, T. S. Bastian, I. Bojičić, E. Carli,
F. Cavallaro, E. J. Crawford, S. Dai, F. Haberl, L. Levin, K. Luken, C. M.
Pennock, N. Rajabpour, B. W. Stappers, J. T. van Loon, A. A. Zijlstra,
S. Buchner, M. Geyer, S. Goedhart, and M. Serylak, “The MeerKAT 1.3
GHz Survey of the Small Magellanic Cloud,” MNRAS, vol. 529, no. 3,
pp. 2443–2472, Apr. 2024.

[4] W. D. Cotton, “Wide–band, Wide–field Imager MFImage,” Obit
Memo series, vol. 63, pp. 1–2, 2019. [Online]. Available:
https://www.cv.nrao.edu/ bcotton/ObitDoc/MFImage.pdf

OBIT DEVELOPMENT MEMO SERIES NO. 87 7

Fig. 5. FitError.py
Fit spectra with errors to a set of images where flux density>minFlux
Writes new 5 plane cube
Using weighting from AvgWeights.pickle
#exec(open(’FitError.py’).read())
minFlux = 0.0002 # Minimum flux density for SI
defaultSI = 0.0 # Default spectral index
doPBCor = False # Do PB correct? not for Mosaics
maxChi2 = 0.01 # fit acceptance level
calFract = 0.00 # % relative calibration error for error estimates
antSize = 24.5 # Antenna size for PB Corr
PBmin = 0.05 # Min PB gain for correction
doBlank = False # Blank total intensity and SI where highest plane blanked?

After any PB Correction
nthreads = 16 # Number of threads to use
post = None # If given, the ending of file names,

Else the value from AvgWeights.pickle
fitsfiles = None # If given, fine name root, RMS

Else the value from AvgWeights.pickle
opost = "_5Pln.fits" # Post for output
doBlank = True # Blank total intensity and SI where highest plane blanked?

import Image, OErr, OSystem, FArray
OSystem.PAllowThreads(nthreads) # with threads
from PipeUtil import SaveObject, FetchObject
import math, pickle

Get weighting info
stuff = FetchObject("AvgWeights.pickle")
refFreq = stuff[’EffFreq’] # Effective frequency in MHz
wwts = stuff[’weights’] # Subband weights in %
dir = stuff[’dir’] # Data directory
if fitsfiles==None:

fitsfiles = stuff[’RMSes’] # List of (file_name root, RMS)
if post==None:

post = stuff[’post’] # Ending of spectral cube file name

import Obit, ImageMF, Image, FArray, OSystem, OErr
err = OErr.OErr()
OSystem.PAllowThreads(nthreads) # with threads

for fitsfile in fitsfiles:
print ("Doing",fitsfile[0])
inMF = ImageMF.newPFImageMF(’Input’,dir+fitsfile[0]+post, 0, True, err)
outMF = ImageMF.newPFImageMF(’Output’,dir+fitsfile[0]+opost, 0, False, err)
ImageMF.PFitSpec2(inMF, outMF, err, \

corAlpha=defaultSI, doError=True, maxChi2=maxChi2,calFract=calFract, \
refFreq=refFreq*1.0e6, Weights=wwts, minFlux=minFlux, doPBCor=doPBCor)

OBIT DEVELOPMENT MEMO SERIES NO. 87 8

Fig. 6. FitError.py cont’d
if doBlank:

print (’Blanking by high freq. bin’)
Blanking mask
outIm = Image.newPFImage(’Output’,dir+fitsfile[0]+post, 0, True, err)
hiPlane = [outIm.Desc.Dict[’inaxes’][2],1,1,1,1]
if doPBCor:

Mask by primary beam correction and high bin
PBImg = Image.Image(’PBImage’); Image.PCloneMem(outIm,PBImg,err)
ImageUtil.PPBImage(outIm,PBImg,err,PBmin,outPlane=hiPlane,antSize=antSize)
PBImg.GetPlane(None,hiPlane, err); mask1 = PBImg.FArray
outIm.GetPlane(None,hiPlane, err); FArray.PBlank(mask1, outIm.FArray, mask1)

else:
Mask by highest frequency
outIm.GetPlane(None,hiPlane, err); mask1 = FArray.PCopy(outIm.FArray, err)
PBImg = None

Plane 1 - total intensity
outIm = Image.newPFImage(’Output’,dir+fitsfile[0]+opost, 0, True, err)
outIm.GetPlane(None, [1,1,1,1,1], err)
FArray.PBlank(outIm.FArray, mask1, outIm.FArray)
outIm.PutPlane(None, [1,1,1,1,1], err)
Plane 2 - Spectral index
outIm.GetPlane(None, [2,1,1,1,1], err)
FArray.PBlank(outIm.FArray, mask1, outIm.FArray)
outIm.PutPlane(None, [2,1,1,1,1], err)
Image.PFArray2FITS(mask1, "Mask.fits", err, outDisk=0)
del PBImg

end loop

