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False Detection Rate of Source Finding

W. D. Cotton (NRAQO) and W. Peters (NRL) August 8, 2011

Abstract—Astronomical images always contain a randomly and apply them to a reprocessing of the VLA 74 MHz
distributed component to pixel values which is unrelated to VLSS survey [3]. Here, false detection rate (FDR) is the
anything on the celestial sphere. The statistics of this distribution likelihood that a feature could be a random occurrence due

must be taken into account in order to establish the significance to th ise distributi Sj this i lativelv shall
of features in the image. The nature of this distribution depends 0 the naise distribution. since this IS a refalively shallo

on the imaging instrument; in this memo we consider that derived SUrvey, the vast majority of detected objects are expected
from radio interferometers, in particularly those operating at low  to appear in the deeper VLA 1400 MHz VLSS survey[4].

frequencies. In this regime, the non—celestial component of the The catalog derived from the VLSS images can be com-
distribution of pixel values is dominated by deficiencies in the pared with the NVSS catalog to derive a statistical mea-

calibration due to the ionosphere and the poorly known antenna . .
pattern and is distinctly non—Gaussian. We develop a technique SUre of the false detection rate actually achieved. The-tech

of modeling the pixel statistics directly from the distribution in  hiques discussed are implemented in the Obit package ([5],
a given image in order to estimate the probability that a given http://www.cv.nrao.edutbcotton/Obit.html).

level feature is a random event. This technique is applied to a

reprocessing of the VLA 74 MHz VLSS survey and validated

using the VLA 1400 MHz NVSS survey. The method does not Il. L Ow FREQUENCY INTERFEROMETRICIMAGE
produce acceptable results for this data. STATISTICS
Index Terms—Radio Interferometry, Source cataloging At low radio frequencies accurate calibration of the data

is compromised by the poorly known antenna pattern and
| INTRODUCTION frquently sgrlously degradgd by |onospherlc fluctua'tlms.-
o ) cussions of ionospheric calibration techniques are gingb]i
IDEFIELD astronomical images, especially those pr 1, [8].
V' duced by sky surveys, are frequently decomposed intotyg examples of pixel distributions from reprocessed VLSS
a list of discrete components to produce a catalog of objeci§ages are given in Figure 1. These illustrate a well behaved
Due to a random component of the pixel values not of celestigliy and a poorly behaved one. The positive tail in excess
origin, some criterion must be adopted to distinguish U ¢ the negative tail of the distributions are dominated by
in the image which correspond to plausibly real objects fropg| sources: however, the negative tail is expected to be a
those unlikely to be rgal_ In the fqllow|ng this _nOﬂ—Cembt' combination of thermal noise and calibration and imaging
component of the pixel value distribution will be calledyitacts, In the 1240+150 field, the positive and negative
noise”. Such tests must invariably involve a trade off BBEN  (5i15 of the distribution are nearly the same indicatingt tha

the possibility of missing real objects and contaminatibthe e,y sources can reliably be identified at low flux density

catalog by fictitious ones. values. Clearly, Gaussian statistics are not a good model fo

Some measure of the statistical probability of a featufge gistribution of values well away from zero, even in well
being due the the noise distribution is required. Such tegjshaved cases.

are well established in cases where the noise has a Gaussian
distribution. The simplest such test is a cutoff at some iplelt

of the Gaussiam of the distribution where values in excess of
this are expected to be sufficiently rare. For more sophistit =~ Real sources undoubtedly contribute much of the positive

applications of Gaussian statistics to astronomical imagee Wing of the pixel distributions seen in Figure 1, at least for
[1, [2]. the 0800+650 field, but the negative wing of the distribution

In some app”cations, the noise distribution is not WeﬁhOU'd be an indication of the true noise distribution. # thue
modeled by a Gaussian and Gaussian statistics underestinR@sitive wing of the noise is symmetric with the negative gyin
the number of false detections. One such case is low freguefige negative half of the distribution can be used to estirtfee
radio interferometry where difficulties with modeling thé e corresponding positive half. Thus, the excess positiveesin
fects of the ionosphere and the antenna patterns result i given interval over the negative values in the correspundi
nontrivial fraction of the celestial power being scatteietb negative interval give the fraction of the positive valuekted
bogus features. The highly variable nature of the ionosphdp real sources. In this simple case, the false detectienfoat

I1l. ESTIMATION OF ACTUAL NOISEDISTRIBUTION

further aggravates this problem. positive values in this interval can be expressed as:
In the following, we develop techniques of estimating ny —n_
the false detection probability directly from images sttt FDR, = 1 — —

W. Cotton is with National Radio Astronomy Observatory, 52gemont \where FDR, is the false detection rate at flux density level
Rd., Charlottesville, VA, 22903 USA email: bcotton@nraaed -

W. Peters is with Naval Research Lab, Along some river, WaghinDC, <> 7+ 1S the number O_f pixels in the p(?SItI\[E bin andn_ is
27?2?27 USA email: wendy.peters@nrl.navy.mil the number of pixels in the negatiwebin.
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Fig. 1. Pixel histograms for two VLSS fields. Solid lines are Baussian fitted near the peak of the distribution. On theided well behaved field and
on the right, one containing a very bright and extended soufbe negative tail of the distributions indicate the ncau€sian nature of the distribution of
values.

0800+450 differential

0800+450 integral

e L . + o+ e L . + o+ o+
= Histogram | = Histogram
L +  Fract. OK | L +  Fract. OK
L o Neg. histo | L - Neg. histo

¥ © | o= 0.060 1 ¥ «©| o= 0.060 i
o o o o
c [ 1 < [
.9 r 4 S L
S © S ©
L o[ 1Y ol ]
£ [ 1 E r
o r 1 8 r
g o 18 L
2 < 2
2 of 12 s¢ ]
T L ) L
X X
[=% F 4o F
o N 4 o N u
o o o o

o | o

=N ‘ St | i

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
Flux density (Jy) Flux density (Jy)

Fig. 2. Differential and integrated histograms from the saetea$ pixels. The solid line is the histogram normalized toHe tashed line is the negative
half folded to the positive half and the “+"es areF1ID R. On the left is the differential histogram and on the rigte thtegrated version. The region sampled
is a subset of that shown in Figure 1.

Determining flux density levels for low false detectiorabove; it is the probability that a pixel at a given level, or
rates requires good statistics well out in the wings of thmore. has a given probability of being a random event. The
distribution. This generally means sampling large numbedifference between differential and integrated histograim
of pixels and including large areas. On the other hand, tilkistrated in Figure 2. The flux density corresponding to a
character of the noise may change across the image meargivgn false detection rate can be interpolated from theeslu
statistics over more limited areas are preferred. Imades lishown as “+"es in Figure 2 right.
the VLSS fields are composites of images derived at different
pointings and the statistical properties of the noise caguie
variable. One compromise to make the statistics more robust
is to integrate the pixel histogram; each bin then includes t A histogram analysis of the false detection rate as deatribe
counts in that bin plus all bins further from zero. This makesin the previous section was implemented in the Obit package.
subtle change in the meaning of the false detection ratengivi@ the c library, the ObitPixHisto class implements the func

tionality with bindings in python as the PixHistFDR clas&.eT

IV. IMPLEMENTATION
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source finding task, FndSou was modified to allow selecting 0800+450 integral residual
sources by estimated false detection rate with statisédset ol L e 7
from a box of a given size centered on the source in question. B Er'ztcotgroa{("
ffffffffff Neg. histo
V. TESTING ONVLSS ?:»;' g o700 ]
The processing techniques for analyzing low frequency daté
have improved significantly since the original processifig o S - -
the VLSS survey data, especially in the areas of ionospherig
calibration and the excision of interfering signals. Thehte g <[ A
nigues discussed in this memo were derived to be used in tfge °
cataloging of the reprocessed VLSS images. a
g S ]
A. VLSS Reprocessing i
The reprocessing of the VLSS survey followed that in the 3 B ‘ + L]

original except improved ionospheric calibration techrs 0.4 0.2 0.0 0.2 0.4
were used to the exclusion of self calibration and intenfgri Flux density (Jy)
signals were estimated and subtracted from the data. Linear

; ; ; s~ Fig. 3. Like Figure 2 but from the residuals image after thersesl in the
mosaics were formed from the overlapplng Smgle pOmtm%age used in Figure 2 were subtracted. Spurious sourcesrhduveed the

images. positive wing of the distribution below that of the negativing.

B. Cataloging When the entire survey is cataloged using ther Gest,

The mosaic-ed VLSS fields were used by Obit task FndSgyere are 104459 entries of which 5205 (5%) have no NVSS
to generate catalogs. This program does fitting to islanggynterpart. The entire survey when cataloged using a 196 fal
in the image of at least>22 pixels in excess of a given getection threshold produces 117481 entries of which 10907

threshold. Elliptical Gaussians are then fitted to the B¥an (go4) have no NVSS counterpart. The 1% FDR catalog has
The significance of each fitted component was based on 00 more entries that the & catalog of which 44% are
peak value by one or the other of two statistical tests. Thgjikely to be real.

first of these tests is that the peak value exceed 5 times the
RMS in the pixels within a 122121 pixel box centered on 5 Effects of Image Point Spread Function
the component. The alternate test from the estimate of the

false detection rate as described above for a given tartget fa In mterferorr_]etnc Images t.he noise has been passed .through
detection rate the same spatial frequency filter as the sky, so the covariahc

the noise will be the same as the point spread function (psf)
) ) of the dirty images. However, due to the CLEANing of the
C. Comparison with NVSS images, the dirty psf of the emission is replaced by a Ganssia
The VLSS and NVSS surveys are at different frequeriit to the core of the dirty psf. In the case of the VLSS, the
cies and different resolutions so a comparison, especialy EAN restoring beam is a round Gaussian of 75" FWHM
of resolved sources is not always simple. However, in thehich is approximately that of the “typical” single poingin
comparisons made, the test for an NVSS match to a VL$@age. Thus, the noise will not have the same covariance as
component was the presence of a valid NVSS componght CLEANed emission.
whose centroid was within 60” of the centroid of the VLSS Furthermore, there are positive sources well above theenois
centroid. whose Gaussian representations will add significantly & th
A histogram analysis as shown in Figure 2 can be usedramber of positive values pixels.
select features in the image with a given probability of @dal The ratio of the number of positive pixels to the number
detection. Such a test was performed on the 0800+650 figfisources at the same flux density level can be obtained by
and features with a false detection rate estimated to be lessnparing histograms of the peak values in cataloged ssurce
then 3% in a 40%401 pixel box were fitted by Gaussiango those of the pixels used in the derivation of the catalay. F
and subtracted from the image. A comparison with the NVSSis test three well behaved fields were used. Source catalog
shows that 148/1302 or 11% of the derived catalog entriagere derived and a histogram of the peak value formed. A
do not have a nearby counterpart in the NVSS catalog andmbined histogram of the pixels used was also formed and
are unlikely to be real sources. This is substantially higheummarized in table |
than the target of 3% false detection rate. The histograms ofThe ratio of pixels to sources in flux density bins in Table
the residual image are shown in Figure 3. The effects of thein the flux density bins for which the source finding is
inclusions of false sources can be seen in this figure whexgsentially complete have a ratio of pixels to sources etadt
the positive wing of the distribution is reduced to below tharound 16 which is also the beam area in pixels. Note, this is
negative wing. For comparison, the & test identified 890 the low flux density tail of distribution of 2948 sources, the
source of which 3 or 0.3% had no NVSS match within 60”.maximum of which is 115 Jy.
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TABLE |
SOURCHPIXEL HISTOGRAM COMPARISON

(8]

cell | Flux density | pixels | sources| ratio
Jy
31 0.2157 83771 66 | 1269.
32 0.2549 32935 204 | 161.
33 0.2941 14771 255 | 57.9
34 0.3333 8061 244 | 33.0
35 0.3725 5021 229 | 219
36 0.4118 3744 186 | 20.1
37 0.4510 3033 148 | 205
38 0.4902 2577 135 | 19.1
39 0.5294 2050 102 | 20.1
40 0.5686 1750 108 | 16.2
41 0.6078 1493 105 | 14.2
42 0.6471 1343 75 | 179
43 0.6863 1137 74 | 154
44 0.7255 1029 52 | 19.8
45 0.7647 905 65 | 13.9
46 0.8039 835 46 | 18.2
47 0.8431 700 42 | 16.7
48 0.8824 710 40 | 17.8
49 0.9216 598 40 | 149
50 0.9608 547 36 | 15.2
VI. DISCcUSSION

When applied to VLSS data, the false detection rate
achieved is substantially higher than the target value 6sed
the test. The effect is apparently caused by pixels in thetsski
of the Gaussian psf of strong sources which increases tte rat
of positive to negative pixels at a given flux density level
causing the underestimation of the false detection rate. Fo
the whole VLSS survey, cataloging with a target FDR of 1%
resulted in an actual FDR of 9%; however, the results show
substantial variation among different VLSS fields. Overall
using a false detection threshold in the source cataloging
resulted in an increase of 12% in the number of entries of
which 44% were likely unreal. For purposes of the VLSS, the
5 o test is preferred. For better behaved data, this technique
may result in more stable results.
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