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False Detection Rate of Source Finding Revisited

W. D. Cotton (NRAO) May 24, 2016

Abstract—Astronomical images always contain a randomly  In some applications, the noise distribution is not well mod
distributed component to pixel values which is unrelated to eled by a Gaussian and Gaussian statistics underestineate th
anything on the celestial sphere. The statistics of this distribution number of false detections. Calibration and imaging atifa

must be taken into account in order to establish the significance il tribut G . t to the distriuti
of features in the image. The true distribution of the “noise” wilf-contribute a non—Gaussian component to the dis :

can be estimated from the pixels with negative values and used Of pixel values and frequently do so by increasing the tdils o
to estimate the probability that a given positive pixel value was the distribution.

obtained at random. “Sources” can be selected which have a  The following develops a technique of estimating the false
probability of a false detection below a selected level. A previous detection probability directly from images statistics aa-
attempt to apply this technique to low frequency radio images lies it to deep VLA images. Here, false detection rate (FDR)
produced unsatisfactory results due to the highly variable nature p o p ges. '

of the images. This memo explores the use of an estimation ofiS the likelihood that a feature could be a random occurrence
the false detection rate for sources as a function of flux density due to the noise distribution. The faint sources in the image
using a well behaved, deep VLA image. Use of a 5% target false tested are dominated by star forming galaxies, the majofity

detection rate (FDR) produced a sample with an estimated FDR ; ; ; ;
of 7.7% with a 74% increase in the number of sources over a which are detectable in deep IR images. Mark Lacy has kindly

5 o selection. Fouro selection gives an estimated FDR of 0.5% prOVIdeq deep Spitzer 3.6 and 4.5 micron 'mages coverlng
with an increase of 38% in the number of sources over a 5 the region surveyed as well as a catalog of objects derived

sample. from them [4]. A catalog derived from the radio image can be

compared with the Spitzer IR catalog to derive a statistical
measure of the false detection rate actually achieved. The
techniques discussed are implemented in the Obit package ([

|. INTRODUCTION http://www.cv.nrao.edu/bcotton/Obit.html).

Index Terms—Radio Interferometry, Source cataloging

IDEFIELD astronomical images, especially those pro-
duced by sky surveys, are frequently decomposed into
a list of discrete components to produce a catalog of objectsThe “noise” in radio interferometer images arises from a
Due to a random component of the pixel values not of celesti@imber of causes, thermal noise from the atmosphere, antenn
origin, some criterion must be adopted to distinguish fietu ground pick and electronics as well as power from celestial
in the image which correspond to plausibly real objects frosources scattered due to incomplete calibration, especial
those unlikely to be real. In the following this non—celakti phase calibration. All but the last of these will contribute
component of the pixel value distribution will be calledequally to all portions of the derived image. Other imaging
“noise”. Such tests must invariably involve a trade off begw artifacts such as result from limited dynamic range images
the possibility of missing real objects and contaminatibthe including bright sources can also contribute to the diatidn
catalog by fictitious ones. of pixel values; these artifacts will generally be more @mc
Some measure of the statistical probability of a featuteated around the bright sources. The spatial filtering rieie
being due the the noise distribution is required. Such testsinterferometric images means that the noise in the image
are well established in cases where the noise has a Gauswidinbe centered near zero.
distribution. The simplest such test is a cutoff at some iplelt
of the Gaussian of the distribution where values in excess oj Example Image
this are expected to be sufficiently rare. For more soplaitst

Il. INTERFEROMETRICIMAGE STATISTICS

applications of Gaussian statistics to astronomical irmagee For the purposes of the tests described in this memo, data
bp from a deep, single pointing VLA survey at 2-4 GHz are
[1], [2]
e H]seed. Images at 3" and 0.7" FWHM were obtained for the

An attempt to select sources based on an estimation of - - )
i . same region of the sky. The 3" images were derived from data
false detection rate on a low frequency radio sky survey was

. ; . M a number of VLA configurations over a number of years
described in [3]. The results of this attempt were unsattofy while the 0.7” data were taken in a single VLA configuration

as the pixel statistics of the low frequency images werg,, . . )
. ; . . ; " A’) over a period of several months. Since the 3” image is
sufficiently variable to limit the region over which the ssfts . . .
_Ik%emg used to derive the catalog of radio sources, most of the

were constant to be too small to measure good statistics. Fowi ; )
S . . . following uses it. The uv—coverage used for both these image
following is a reworking of [3] using well behaved images

from a deep single pointing survey with the VLA at S band exlcelllen't which co#.plhed with the absence of str?ng saurce
(2-4 GHz). results in images which are not dynamic range limited and

have relatively uniform noise properties.

W. Cotton is with National Radio Astronomy Observatory, 52fgEmont _The pixel d'smb_u_t'ons.fr_om these images are_ g'Ver_] In
Rd., Charlottesville, VA, 22903 USA email: bcotton@nraa.ed Figure 1. The positive tail in excess of the negative tail of
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Fig. 1. Pixel histograms for 3" (left) RMS=1.00Jy and 0.7” (right) RMS=0.8%:.Jy. Solid lines are the Gaussian fitted near the peak of thehdison.
The negative tail of the distributions indicate the non-&aan nature of the distribution of values.

the distributions is dominated by real sources; howeves, thnd including large areas. On the other hand, the charafter o
negative tail is expected to include a combination of thérmthe noise may change across the image meaning statistics ove
noise and calibration and imaging artifacts. The negativeore limited areas are preferred. One compromise to make
tail of the distribution from the 3” image (left) shows athe statistics more robust is to integrate the pixel histogr
distinct deviation from Gaussian, perhaps unsurprisingrgi each bin then includes the counts in that bin plus all bins
the period of time and number of observations involved. THarther from zero. This makes a subtle change in the meaning
distribution from the 0.7” image is better behaved but stithf the false detection rate given above; it is the probabilit
deviates from Gaussian well away from the peak (althougti a pixel at a given level, or greater, being a random event.
at a level well below the positive side of the curve. Clearlyfhe difference between differential and integrated histots
Gaussian statistics are not a good model for the distribudfo is illustrated in Figure 2. The flux density correspondingato
values well away from zero, even in these well behaved casgien false detection rate can be interpolated from theeslu
shown as “+"es in Figure 2 right.
[1l. ESTIMATION OF ACTUAL NOISE DISTRIBUTION

Real sources undoubtedly contribute much of the positive IV. IMPLEMENTATION

wing of the pixel distributions seen in Figure 1 butthe n&@gat A histogram analysis of the false detection rate as destribe
Wlng of the distribution should be an indication of the truﬂ] the previous section was imp|emented in the Obit package_
noise distribution. If the true positive wing of the noise ign the ¢ library, the ObitPixHisto class implements the func
symmetric with the negative wing, the negative half of thgonality with bindings in python as the PixHistFDR clasieT
distribution can be used to estimate the correspondingip®si source finding task, FndSou was modified to allow selecting
half. Thus, the excess positive values in a given intervar ovsources by estimated false detection rate with statisticset

the negative values in the corresponding negative intgiveb  from a box of a given size centered on the source in question.
the fraction of the positive values related to real sourtes.

this simple case, the false detection rate for positiveesin )
this interval can be expressed as: A. Cataloging
The 3” image was used by Obit task FndSou to generate
catalogs. This program does fitting to islands in the image of
at least X2 pixels in excess of a given threshold. Elliptical
where FDR, is the false detection rate at flux density leveGaussians are then fitted to the islands. The significance
x, ny is the number of pixels in the positivebin andn_ is of each fitted component was based on the peak value by
the number of pixels in the negativebin. two statistical criteria. The first of these criteria is thhe
Determining flux density levels for low false detection mtepeak value exceed some multiple of the RMS in the pixels
requires good statistics well out in the wings of the distrib within a 101x101 pixel box centered on the component. The
tion. This generally means sampling large numbers of pixedsher criterion uses an estimate of the false detectionaate

FDRI:IfM

n_
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Fig. 2. Differential and integrated histograms from the saeteo$ pixels from the 3” image. The solid line is the histograormalized to 1, the dashed
line is the negative half folded to the positive half and thées are ' D R. On the left is the differential histogram and on the right thtegrated version.

described above for a given target false detection rate (5@pbability of a false match and is the total number of

using 2002000 pixel boxes. samples searched for a match. Solving far
Fo "y
B. Comparison of Radio and IR Catalogs (1-f)xs

The validity of entries in the radio catalogs were determineg/ ¢an be estimated from the histogram in 3 right for a given
by the presence of a match with an entry in the IR catalogllowed match distance and can be estimated from a strong
The resolution of the IR images is approximately 2" so th&ample of radio source whose reality is certain but whick lac
matching was done using the radio 3” image catalog whiéh detected IR counterpart. The estimate gofwill also be
should also be relatively complete. This test excluded t@éfected by false matches as given by:
region around a bright star in the IR images which suffered r_ 9
from saturation and imaging artifacts as well as regions g = 1—f
around extended emission in two radio sources. While t%ereg is the ratio of nonmatches to samples compared for

vast majority do, not all of the radio sources have detectgdsample of (real) radio sources. The achieved FDR is then
IR counterparts. The fraction expected to be detected was n p
- @)

determined using a high significance sampi€7(o) assuming F = .
that this value does not change over the range of radio flux A=fyxs 1-f
densities between the fainter and strong samples. Thegevera ,
position offset of the matches in the 7 o sample was D- Achieved FDR
removed when searching for matches. Test matches were performed with a number of radio
samples selected by a target FDR and an additional SNR test;
C. False Matches these are shown in Tab_le I. The _column Iab_eled “_total"_is the
' total number of entries in the radio catalog including thivse
The density of IR sources is sufficiently high that there ighe exclusion regions; column “fract” is the fraction of ges
a finite probability of an IR source within a given distancén the radio catalog with no match in the IR catalog. Column
of a random position. The distribution of nearest IR sourcgDR” gives the achieved false detection rate as given by
to entries in the deepest radio catalog is given in Figuregd). 1. An SNR> 3 limit essentially adds no constraint over
left; the number of matches drops to the base level beyofie FDR selection. Likewise, the FDR selection had no affect
2". The distribution of nearest IR sources to an arbitrayn the SNR- 7 sample. The alignment of a sample of radio

grid of positions is given in Figure 3 right. The integratedources selected above a FDR of 5% (SN& with the 4.5
probability of a random match within 2" from this figure ismicron image is given in Figure 4.

14.1%,; large enough to affect the statistics of matches. The
expected number of non matches is

n=(F+g)x1-f)xs

where I is the achieved false detection raé,is the fraction
of radio source without a detectable IR counterpdrts the
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Fig. 3. Histogram of the distance to the nearest IR sourcetitries in a radio catalog selected by a target FDR of 5%) (@eftl to vertices of 420 x 120
grid of positions separated by 10” (right).

TABLE |
RADIO SOURCES WITHIR MATCHES WITHIN 2"

Target FDR | SNR | match [ no match | total fract | FDR
5% | >3 882 189 | 1124 | 0.176 | 7.7%
5% | >4 732 115 | 888 | 0.136 | 0.5%
5% | >5 546 69 645 | 0.112 | 0.2%
5% | >7 363 45 431 | 0.110 | =
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V. DISCUSSION

A technique of selecting a source catalog from an image
using a estimate of the false detection rate based on the
distribution of negative pixel values is described. An impl
mentation in Obit is used on a deep VLA 2-4 GHz image.
Available deep IR images and catalog were used to estimate
the reality of entries in radio catalogs generated using a
number of criteria. Table | includes a comparison of the IR
detection rate and estimated false detection rate of catalo
entries with various selection criteria including a pure BEXR
criteria and a variety of additional SNR levels. The estarat
the achieved false detection rate for the target FDR 5% sampl
was 7.7%; however the less aggressive SNRsample had
an estimated 0.5% achieved false detection rate. The tpobni
seems to have produced nearly the desired results and allows
the inclusion of fainter sources in the catalog producece Us
of the FDR target of 5% resulted in an increase of 74% in the
number of entries in the catalog derived over the traditiona
SNR> 5 criteria. Of the additional sources, 86% are expected
to be real.
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Fig. 4. Radio positions marked on negative gray scale of themcron image.




