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False Detection Rate of Source Finding Revisited
W. D. Cotton (NRAO) May 24, 2016

Abstract—Astronomical images always contain a randomly
distributed component to pixel values which is unrelated to
anything on the celestial sphere. The statistics of this distribution
must be taken into account in order to establish the significance
of features in the image. The true distribution of the “noise”
can be estimated from the pixels with negative values and used
to estimate the probability that a given positive pixel value was
obtained at random. “Sources” can be selected which have a
probability of a false detection below a selected level. A previous
attempt to apply this technique to low frequency radio images
produced unsatisfactory results due to the highly variable nature
of the images. This memo explores the use of an estimation of
the false detection rate for sources as a function of flux density
using a well behaved, deep VLA image. Use of a 5% target false
detection rate (FDR) produced a sample with an estimated FDR
of 7.7% with a 74% increase in the number of sources over a
5 σ selection. Fourσ selection gives an estimated FDR of 0.5%
with an increase of 38% in the number of sources over a 5σ
sample.

Index Terms—Radio Interferometry, Source cataloging

I. I NTRODUCTION

W IDEFIELD astronomical images, especially those pro-
duced by sky surveys, are frequently decomposed into

a list of discrete components to produce a catalog of objects.
Due to a random component of the pixel values not of celestial
origin, some criterion must be adopted to distinguish features
in the image which correspond to plausibly real objects from
those unlikely to be real. In the following this non–celestial
component of the pixel value distribution will be called
“noise”. Such tests must invariably involve a trade off between
the possibility of missing real objects and contamination of the
catalog by fictitious ones.

Some measure of the statistical probability of a feature
being due the the noise distribution is required. Such tests
are well established in cases where the noise has a Gaussian
distribution. The simplest such test is a cutoff at some multiple
of the Gaussianσ of the distribution where values in excess of
this are expected to be sufficiently rare. For more sophisticated
applications of Gaussian statistics to astronomical images, see
[1], [2].

An attempt to select sources based on an estimation of the
false detection rate on a low frequency radio sky survey was
described in [3]. The results of this attempt were unsatisfactory
as the pixel statistics of the low frequency images were
sufficiently variable to limit the region over which the statistics
were constant to be too small to measure good statistics. The
following is a reworking of [3] using well behaved images
from a deep single pointing survey with the VLA at S band
(2-4 GHz).
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In some applications, the noise distribution is not well mod-
eled by a Gaussian and Gaussian statistics underestimate the
number of false detections. Calibration and imaging artifacts
will contribute a non–Gaussian component to the distribution
of pixel values and frequently do so by increasing the tails of
the distribution.

The following develops a technique of estimating the false
detection probability directly from images statistics andap-
plies it to deep VLA images. Here, false detection rate (FDR)
is the likelihood that a feature could be a random occurrence
due to the noise distribution. The faint sources in the image
tested are dominated by star forming galaxies, the majorityof
which are detectable in deep IR images. Mark Lacy has kindly
provided deep Spitzer 3.6 and 4.5 micron images covering
the region surveyed as well as a catalog of objects derived
from them [4]. A catalog derived from the radio image can be
compared with the Spitzer IR catalog to derive a statistical
measure of the false detection rate actually achieved. The
techniques discussed are implemented in the Obit package ([5],
http://www.cv.nrao.edu/∼bcotton/Obit.html).

II. I NTERFEROMETRICIMAGE STATISTICS

The “noise” in radio interferometer images arises from a
number of causes, thermal noise from the atmosphere, antenna,
ground pick and electronics as well as power from celestial
sources scattered due to incomplete calibration, especially
phase calibration. All but the last of these will contribute
equally to all portions of the derived image. Other imaging
artifacts such as result from limited dynamic range images
including bright sources can also contribute to the distribution
of pixel values; these artifacts will generally be more concen-
trated around the bright sources. The spatial filtering inherent
in interferometric images means that the noise in the image
will be centered near zero.

A. Example Image

For the purposes of the tests described in this memo, data
from a deep, single pointing VLA survey at 2-4 GHz are
used. Images at 3” and 0.7” FWHM were obtained for the
same region of the sky. The 3” images were derived from data
in a number of VLA configurations over a number of years
while the 0.7” data were taken in a single VLA configuration
(“A”) over a period of several months. Since the 3” image is
being used to derive the catalog of radio sources, most of the
following uses it. The uv–coverage used for both these images
is excellent which coupled with the absence of strong sources
results in images which are not dynamic range limited and
have relatively uniform noise properties.

The pixel distributions from these images are given in
Figure 1. The positive tail in excess of the negative tail of
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Fig. 1. Pixel histograms for 3” (left) RMS=1.00µJy and 0.7” (right) RMS=0.89µJy. Solid lines are the Gaussian fitted near the peak of the distribution.
The negative tail of the distributions indicate the non-Gaussian nature of the distribution of values.

the distributions is dominated by real sources; however, the
negative tail is expected to include a combination of thermal
noise and calibration and imaging artifacts. The negative
tail of the distribution from the 3” image (left) shows a
distinct deviation from Gaussian, perhaps unsurprising given
the period of time and number of observations involved. The
distribution from the 0.7” image is better behaved but still
deviates from Gaussian well away from the peak (although
at a level well below the positive side of the curve. Clearly,
Gaussian statistics are not a good model for the distribution of
values well away from zero, even in these well behaved cases.

III. E STIMATION OF ACTUAL NOISE DISTRIBUTION

Real sources undoubtedly contribute much of the positive
wing of the pixel distributions seen in Figure 1 but the negative
wing of the distribution should be an indication of the true
noise distribution. If the true positive wing of the noise is
symmetric with the negative wing, the negative half of the
distribution can be used to estimate the corresponding positive
half. Thus, the excess positive values in a given interval over
the negative values in the corresponding negative intervalgives
the fraction of the positive values related to real sources.In
this simple case, the false detection rate for positive values in
this interval can be expressed as:

FDRx = 1 −

n+ − n−

n−

whereFDRx is the false detection rate at flux density level
x, n+ is the number of pixels in the positivex bin andn− is
the number of pixels in the negativex bin.

Determining flux density levels for low false detection rates
requires good statistics well out in the wings of the distribu-
tion. This generally means sampling large numbers of pixels

and including large areas. On the other hand, the character of
the noise may change across the image meaning statistics over
more limited areas are preferred. One compromise to make
the statistics more robust is to integrate the pixel histogram;
each bin then includes the counts in that bin plus all bins
further from zero. This makes a subtle change in the meaning
of the false detection rate given above; it is the probability
of a pixel at a given level, or greater, being a random event.
The difference between differential and integrated histograms
is illustrated in Figure 2. The flux density corresponding toa
given false detection rate can be interpolated from the values
shown as “+”es in Figure 2 right.

IV. I MPLEMENTATION

A histogram analysis of the false detection rate as described
in the previous section was implemented in the Obit package.
In the c library, the ObitPixHisto class implements the func-
tionality with bindings in python as the PixHistFDR class. The
source finding task, FndSou was modified to allow selecting
sources by estimated false detection rate with statistics derived
from a box of a given size centered on the source in question.

A. Cataloging

The 3” image was used by Obit task FndSou to generate
catalogs. This program does fitting to islands in the image of
at least 2×2 pixels in excess of a given threshold. Elliptical
Gaussians are then fitted to the islands. The significance
of each fitted component was based on the peak value by
two statistical criteria. The first of these criteria is thatthe
peak value exceed some multiple of the RMS in the pixels
within a 101×101 pixel box centered on the component. The
other criterion uses an estimate of the false detection rateas
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Fig. 2. Differential and integrated histograms from the same set of pixels from the 3” image. The solid line is the histogram normalized to 1, the dashed
line is the negative half folded to the positive half and the “+”es areFDR. On the left is the differential histogram and on the right the integrated version.

described above for a given target false detection rate (5%)
using 2000×2000 pixel boxes.

B. Comparison of Radio and IR Catalogs

The validity of entries in the radio catalogs were determined
by the presence of a match with an entry in the IR catalog.
The resolution of the IR images is approximately 2” so the
matching was done using the radio 3” image catalog which
should also be relatively complete. This test excluded the
region around a bright star in the IR images which suffered
from saturation and imaging artifacts as well as regions
around extended emission in two radio sources. While the
vast majority do, not all of the radio sources have detected
IR counterparts. The fraction expected to be detected was
determined using a high significance sample (> 7 σ) assuming
that this value does not change over the range of radio flux
densities between the fainter and strong samples. The average
position offset of the matches in the> 7 σ sample was
removed when searching for matches.

C. False Matches

The density of IR sources is sufficiently high that there is
a finite probability of an IR source within a given distance
of a random position. The distribution of nearest IR source
to entries in the deepest radio catalog is given in Figure 3
left; the number of matches drops to the base level beyond
2”. The distribution of nearest IR sources to an arbitrary
grid of positions is given in Figure 3 right. The integrated
probability of a random match within 2” from this figure is
14.1%; large enough to affect the statistics of matches. The
expected number of non matches is

n = (F + g′) × (1 − f) × s

whereF is the achieved false detection rate,g′ is the fraction
of radio source without a detectable IR counterpart,f is the

probability of a false match ands is the total number of
samples searched for a match. Solving forF :

F =
n

(1 − f) × s
− g′

f can be estimated from the histogram in 3 right for a given
allowed match distance andg′ can be estimated from a strong
sample of radio source whose reality is certain but which lack
a detected IR counterpart. The estimate ofg′ will also be
affected by false matches as given by:

g′ =
g

1 − f
,

whereg is the ratio of nonmatches to samples compared for
a sample of (real) radio sources. The achieved FDR is then

F =
n

(1 − f) × s
−

g

1 − f
. (1)

D. Achieved FDR

Test matches were performed with a number of radio
samples selected by a target FDR and an additional SNR test;
these are shown in Table I. The column labeled “total” is the
total number of entries in the radio catalog including thosein
the exclusion regions; column “fract” is the fraction of entries
in the radio catalog with no match in the IR catalog. Column
“FDR” gives the achieved false detection rate as given by
Eq. 1. An SNR> 3 limit essentially adds no constraint over
the FDR selection. Likewise, the FDR selection had no affect
on the SNR> 7 sample. The alignment of a sample of radio
sources selected above a FDR of 5% (SNR> 3) with the 4.5
micron image is given in Figure 4.
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Fig. 3. Histogram of the distance to the nearest IR source forentries in a radio catalog selected by a target FDR of 5% (left) and to vertices of a120× 120

grid of positions separated by 10” (right).

TABLE I
RADIO SOURCES WITHIR MATCHES WITHIN 2”

Target FDR SNR match no match total fract FDR
5% > 3 882 189 1124 0.176 7.7%
5% > 4 732 115 888 0.136 0.5%
5% > 5 546 69 645 0.112 0.2%
5% > 7 363 45 431 0.110 ≡ 0

V. D ISCUSSION

A technique of selecting a source catalog from an image
using a estimate of the false detection rate based on the
distribution of negative pixel values is described. An imple-
mentation in Obit is used on a deep VLA 2-4 GHz image.
Available deep IR images and catalog were used to estimate
the reality of entries in radio catalogs generated using a
number of criteria. Table I includes a comparison of the IR
detection rate and estimated false detection rate of catalog
entries with various selection criteria including a pure 5%FDR
criteria and a variety of additional SNR levels. The estimate of
the achieved false detection rate for the target FDR 5% sample
was 7.7%; however the less aggressive SNR> 4 sample had
an estimated 0.5% achieved false detection rate. The technique
seems to have produced nearly the desired results and allows
the inclusion of fainter sources in the catalog produced. Use
of the FDR target of 5% resulted in an increase of 74% in the
number of entries in the catalog derived over the traditional
SNR> 5 criteria. Of the additional sources, 86% are expected
to be real.
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Fig. 4. Radio positions marked on negative gray scale of the 4.5 micron image.


