
OBIT DEVELOPMENT MEMO SERIES NO. 27 1

A Fast Exp(-x) Routine
W. D. Cotton, October 4, 2011

Abstract—The calculation of the interferometric response to
Gaussian componsnts using the direct Fourier transform method
involve many evaluations of exp(-x) where x>0. This calculation
can dominate the compute time of such models when using the
fast sine/cosine evaluation discussed in [1]. This memo describes
a technique for fast exp(-x) calculations to moderate accuracy.
The technique is a table lookup followed by a single term
Taylor’s series expansion. An Streaming SIMD Extensions (SSE)
implementation further increased the efficiency. A factor of 9
increase in the exp(-x) calculation speed is reported. The precision
obtained is more than adequate for the intended applications.

Index Terms—interferometry, performance

I. I NTRODUCTION

CAlculating the response of an interferometer to a sky
model is a common operation in radio interferometry

and for complex sky models can be one of the more computa-
tionally expensive operations. One generic type of sky model
calculation is the so called Direct Fourier Transform (AKA
“DFT”) technique wherein the response to each component of
a sky model (e.g. CLEAN component) is evaluated for each
complex correlation in the data set. Increasing the speed of
sine/consne routines is discussed in [1]. For model calculations
of the response to Gaussian components many evaluations of
exp(-x) are made which dominate the compute time.

The exp routines in standard mathematical libraries have
much higher precision that is needed for this radio inter-
ferometry application in that they exceed by many orders
of magnitude the accuracy of practical phase calibration.
Furthermore, the arguments to the exp function involved are
negative meaning the function varies from 1 to 0 and is well
behaved. Standard library versions of this function are subject
to additional constraints such as smoothness and range check-
ing which are unnecessary in the applications discussed here.
A moderate relaxation of the precision and other constraints
has the potential for significant performance enhancements.

This memo explores such a technique in the Obit package
[2] 1.

II. EXP(-X)

For an unresolved Gaussian the argument of the exp func-
tion is 0 leading to a value of 1.0. At the other extreme, a
strongly resolved Gaussian results in a large negative argu-
ment to the exp function leading asymptomatically to zero.
Therefore only a finite range of values need to be computed;
arguments more negative than some value can be assumed to
produce zero. This limited range of arguments allows a lookup
table based approach.

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

While an arbitrary precision can be obtained by a simple
table lookup, adequate resolution can require quite large tables.
Further improvements in the precision of a table lookup can
be obtained using either an interpolation in the table or a
series expansion about the tabulated value. A Taylor’s series
expansion is given by:

f(x) = f(a) + f ′(a)
x − a

1!
+ f ′′(a)

(x − a)2

2!
+ ...

Since the derivatives of exp(-x) are the +/-exp(-x) of the same
argument, evaluation of such a series is straightforward. The
one term expansions for expx about tabulated valuea are:

exp(−x) = exp(a) (1 − [x − a])

III. I MPLEMENTATION

A fast exp(-x) routine, ObitExpCalc, to calculate a ex-
ponential was implemented in Obit utility module ObitExp
using a 500 element table lookup followed by the single term
expansion given above. This routine will initialize the table
on the first call. Once initialized, this function should be
threadsafe; a single call prior to initializing threading using
this routine will make usage threadsafe. The range of allowed
values is [0,10], other values being clipped to this range. The
exp(-10) is 5.4×10−5.

A. Vector Implementation

It is possible to go one step further. The overhead of function
calls can be reduced by collecting the arguments for which the
exp values are desired into an array and doing the calculations
in a single function call. A “vector” version of ObitExpCalc
is implemented in routine ObitExpVec. Organizing data into
vectors also improves the cache hit ratio of the code.

B. SSE

Streaming SIMD Extensions (SSE) is an implementation
of SIMD (Single Instruction Multiple Data) architecture for
length 4 vectors on Pentium and similar design CPU chipsets.
Furthermore, it is supported by the gcc compiler (and likely
others) meaning available on all (or nearly all) architectures
of interest for radio interferometry. This feature allows coding
very fast routines although at the level of assembler and
with a Spartan instruction set. This system was designed
for fast video game software but has the basics needed for
interferometric calculation. A version of ObitSinCosCalcfor
length 4 vectors was coded using SSE (the most basic version)
and implemented in ObitSinCosVec. This code is wrapped in
#ifdefs such that if SSE is not available, the non-SSE version
will be used. The text of the ObitExp utility package is given
in the appendix.

OBIT DEVELOPMENT MEMO SERIES NO. 27 2

TABLE I
SIN /COS TIMINGS

method CPU time ratio
sec.

c lib expf 5.84 1.00
ObitExpCalc 1.61 3.63
ObitExpVec c 1.21 4.82
ObitExpVec SSE 0.63 9.26

IV. T ESTING

The following give the results of various precision and
timing tests.

A. Precision

In order to evaluate the precision of this technique com-
pared to the standard library exp routine, a test program was
employed that used108 arguments randomly spaced from 0 to
10 and compared the results of ObitExpCalc and ObitExpVec
with the c library expf routine. The average difference in this
test was−1.5× 10−6, the rms difference was5.1× 10−6 and
the maximum difference was5.0 × 10−5.

B. Exp(-x) Timing

The various possibilities implemented in ObitExp are were
compared with the c library exp function using108 arguments
randomly chosen from 0 to 10 and run times compared using
the Unix time utility. The software was compiled using the -O3
option (highly optimised). Timings of various portions were
determined by a comparison of runs with and without that
portion. The results are given in Table I where the ratio column
gives the speedup ratio compared to the library exp function.
These tests were run on a 3 GHz Xenon intel machine; the
ObitExpVec SSE routine took about 18 CPU cycles evaluation.

V. D ISCUSSION

The cost of “DFT” interferometer model calculations for
Gaussian components when using the fast sine/cosine func-
tions described in [1] is strongly dominated by the cost of
calculating the exp function. The new vector exp SSE based
routine described above appears to be 9 times faster than the
c library exp versions.

The precision of this routines appears to be more than
adequate and far better than the precision of the calibration.
Use of this fast exponential technique can significantly reduce
the cost of a common, and expensive, operation in radio
interferometry.

APPENDIX

Text of the Obit utility ObitExp.c follows.

REFERENCES

[1] W. D. Cotton, “A Fast Sine/Cosine Routine,”Obit Development Memo
Series, vol. 14, pp. 1–8, 2009.

[2] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

OBIT DEVELOPMENT MEMO SERIES NO. 27 3

#define OBITEXPTAB 512 /* tabulated points */
/** Is initialized? */
static gboolean isInit = FALSE;
/** Exp lookup table covering minTable to maxTable */
static ofloat exptab[OBITEXPTAB];
/** Arg spacing in table */
static ofloat delta=0.02;
/** inverse of delta */
static ofloat idelta=50.0;
/** min value tabulated */
static ofloat minTable=1.0e-5;
/**max value tabulated */
static ofloat maxTable=10.0;

/** SSE implementation */
#ifdef HAVE_SSE
#include <xmmintrin.h>

typedef __m128 v4sf;
typedef __m64 v2si;

/* gcc or icc */
define ALIGN16_BEG
define ALIGN16_END __attribute__((aligned(16)))

/* Union allowing c interface */
typedef ALIGN16_BEG union {
float f[4];
int i[4];
v4sf v;

} ALIGN16_END V4SF;

/* Union allowing c interface */
typedef ALIGN16_BEG union {
int i[2];
v2si v;

} ALIGN16_END V2SI;

/* Constants */
#define _PS_CONST(Name, Val) \
static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }

#define _PI32_CONST(Name, Val) \
static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val }

_PI32_CONST(Obit_NTAB, 512); /* size of table */
_PS_CONST(Obit_delta, 0.02); /* table spacing MUST match delta */
_PS_CONST(Obit_idelta, 50.0); /* 1/table spacing */
_PS_CONST(Obit_minTable, 1.0e-5); /* minimum tabulated value, MUST match minTable */
_PS_CONST(Obit_maxTable, 10.0); /* maximum tabulated value, MUST match maxTable */
_PS_CONST(Obit_HALF, 0.5); /* 0.5 */
_PS_CONST(Obit_ONE, 1.0); /* 1.0 */

#define _OBIT_DELTA 0.02 /* table spacing MUST match delta */
#define _OBIT_IDELTA 50.0 /* 1/table spacing */
#define _OBIT_MINTABLE 1.0e-5 /* minimum tabulated value, MUST match minTable */
#define _OBIT_MAXTABLE 10.0 /* maximum tabulated value, MUST match maxTable */
#define _OBIT_HALF 0.5 /* 0.5 */
#define _OBIT_ONE 1.0 /* 1.0 */
#define _OBIT_NTAB 512 /* size of table */

OBIT DEVELOPMENT MEMO SERIES NO. 27 4

/**
* Fast vector exp(-arg) using SSE instructions

* \param arg argument array

* \param table lookup table

* \param e [out] array of exp(-arg)

*/
void fast_exp_ps(v4sf arg, float *table, v4sf *e) {
v4sf cellf, temp, it, one, exptabl, d;
V2SI iaddrLo, iaddrHi;

/* Clip to range */
temp = _mm_set_ps1 (_OBIT_MINTABLE);
arg = _mm_max_ps (arg, temp); /* Lower bound */
temp = _mm_set_ps1 (_OBIT_MAXTABLE);
arg = _mm_min_ps (arg, temp); /* Upper bound */

/* get arg in cells */
cellf = _mm_set_ps1 (_OBIT_MINTABLE); /* Min table value */
d = _mm_sub_ps(arg, cellf); /* arg-minTable */
temp = _mm_set_ps1 (_OBIT_IDELTA); /* 1/table spacing */
cellf = _mm_mul_ps(d, temp); /* (arg-minTable)/table spacing */
temp = _mm_set_ps1 (_OBIT_HALF); /* 0.5 */
cellf = _mm_add_ps(cellf, temp);
iaddrLo.v = _mm_cvttps_pi32 (cellf); /* Round lower half */
temp = _mm_movehl_ps (cellf,cellf);/* swap */
iaddrHi.v = _mm_cvttps_pi32 (temp); /* Round upper half */

/* Fetch tabulated values */
exptabl = _mm_setr_ps(table[iaddrLo.i[0]],table[iaddrLo.i[1]],
table[iaddrHi.i[0]],table[iaddrHi.i[1]]);

/* Get difference in arg from tabulated points */
temp = _mm_cvtpi32_ps (temp, iaddrHi.v); /* float upper values */
it = _mm_movelh_ps (temp,temp); /* swap */
it = _mm_cvtpi32_ps (it, iaddrLo.v); /* float lower values */
/* it now has the floated, truncated cells */
temp = _mm_set_ps1 (_OBIT_DELTA); /* table spacing */
temp = _mm_mul_ps(it, temp); /* cell*delta */
d = _mm_sub_ps(d, temp); /* d = arg-cell*delta-minTable */

/* One term Taylor’s series */
one = _mm_set_ps1 (1.0); /* ones */
d = _mm_sub_ps(one, d); /* 1-d */

e = _mm_mul_ps(d, exptabl); / table[cell]*(1.0-d) */

_mm_empty(); /* wait for operations to finish */
return ;

} /* end fast_exp_ps */

#endif /* HAVE_SSE */

OBIT DEVELOPMENT MEMO SERIES NO. 27 5

/**
* Initialization

*/
void ObitExpInit(void)
{
olong i, cell;
ofloat arg;

isInit = TRUE; /* Now initialized */

for (i=0; i<OBITEXPTAB-1; i++) {
arg = minTable + delta * i;
exptab[i] = exp(-arg);

}
exptab[OBITEXPTAB-1] = 0.0; /* Higher values */

/* Zero cell for maxTable */
cell = (olong)((maxTable-minTable)*idelta + 0.5);
exptab[cell] = 0.0;

} /* end ObitSinCosInit */

/**
* Calculate exp of -arg

* arg<minTable => 1.0

* arg>maxTable => 0.0

* Lookup table initialized on first call

* \param arg argument

* \return exp(-arg)

*/
ofloat ObitExpCalc(ofloat arg)
{
olong cell;
ofloat out, d;

/* Initialize? */
if (!isInit) ObitExpInit();

/* Range test */
if (arg<minTable) return 1.0;
if (arg>maxTable) return 0.0;

/* Cell in lookup table */
cell = (olong)((arg-minTable)*idelta + 0.5);

/* Difference from tabulated value */
d = arg - minTable -cell*delta;

/* Lookup plus one Taylor term,
NB, d(exp(-x)/dx = -exp(-x) */

out = exptab[cell]*(1.0-d);
return out;

} /* end ObitExpCalc */

OBIT DEVELOPMENT MEMO SERIES NO. 27 6

/**
* Calculate exp(-x) of vector of args uses SSE implementation is available

* arg<minTable => 1.0

* arg>maxTable => 0.0

* Lookup table initialized on first call

* \param n Number of elements to process

* \param argarr array of args

* \param exparr [out] exp(-arg)

*/
void ObitExpVec(olong n, ofloat *argarr, ofloat *exparr)
{
olong i, nleft, cell;
ofloat argt, d;
/** SSE implementation */

#ifdef HAVE_SSE
olong ndo;
V4SF vargt, vex;

#endif /* HAVE_SSE */

/* Initialize? */
if (!isInit) ObitExpInit();

nleft = n; /* Number left to do */
i = 0; /* None done yet */

/** SSE implementation */
#ifdef HAVE_SSE
/* Loop in groups of 4 */
ndo = nleft - nleft%4; /* Only full groups of 4 */
for (i=0; i<ndo; i+=4) {

vargt.f[0] = *argarr++;
vargt.f[1] = *argarr++;
vargt.f[2] = *argarr++;
vargt.f[3] = *argarr++;
fast_exp_ps(vargt.v, exptab, &vex.v);

*exparr++ = vex.f[0];

*exparr++ = vex.f[1];

*exparr++ = vex.f[2];

*exparr++ = vex.f[3];
} /* end SSE loop */

#endif /* HAVE_SSE */

OBIT DEVELOPMENT MEMO SERIES NO. 27 7

nleft = n-i; /* How many left? */

/* Loop doing any elements not done in SSE loop */
for (i=0; i<nleft; i++) {

/* arg */
argt = (*argarr++);

/* range check */
if (argt<minTable) {*exparr++=1.0; continue;}
if (argt>maxTable) {*exparr++=0.0; continue;}

/* Cell in lookup table */
cell = (olong)((argt-minTable)*idelta + 0.5);

/* Difference from tabulated value */
d = argt - minTable -cell*delta;

/* Lookup plus one Taylor term,
NB, d(exp(-x)/dx = -exp(-x) */

exparr++ = exptab[cell](1.0-d);
} /* end loop over vector */

} /* end ObitExpVec */

