OBIT DEVELOPMENT MEMO SERIES NO. 27 1

A Fast Exp(-x) Routine

W. D. Cotton, October 4, 2011

Abstract—The calculation of the interferometric response to ~ While an arbitrary precision can be obtained by a simple
Gaussian componsnts using the direct Fourier transform method table lookup, adequate resolution can require quite labkes.

involve many evaluations of exp(-x) where x0. This calculation p,ther improvements in the precision of a table lookup can
can dominate the compute time of such models when using the

fast sine/cosine evaluation discussed in [1]. This memo describesbe ,Obtamed qsmg either an interpolation in the tabyle or.a
a technique for fast exp(-x) calculations to moderate accuracy. SEr€s expansion about the tabulated value. A Taylorsseri
The technique is a table lookup followed by a single term expansion is given by:

Taylor’s series expansion. An Streaming SIMD Extensions (SSE) ( )2
implementation further increased the efficiency. A factor of 9 N — 1AL a4 11 r—a

increase in the exp(-x) calculation speed is reported. The precision f(z) fla) + f(a) 1! + () 2!

obtained is more than adequate for the intended applications. Since the derivatives of exp(-x) are the +/-exp(-x) of thmea
Index Terms—interferometry, performance argument, evaluation of such a series is straightforwatee T
one term expansions for expabout tabulated value are:

I. INTRODUCTION

Alculating the response of an interferometer to a sky
model is a common operation in radio interferometry I11. | MPLEMENTATION
and for complex sky models can be one of the more computa-,
tionally expensive operations. One generic type of sky r’noo%:o
calculation is the so called Direct Fourier Transform (AK
“DFT") technique wherein the response to each component
a sky model (e.g. CLEAN component) is evaluated for ea

complex correlation in the data set. Increasing the speedtﬂ eadsafe: a single call prior to initializing threadinging

sine/consne routines is discussed in [1]. For model calicuia thiiroutine will make usage threadsafe. The range of allbwe

of the response to Gaussian components many evaluation%ﬂ es is [0,10], other values being clipped to this randee T
exp(-x) are made which dominate the compute time. exp(-10) is }54<’10,5
X . .

The exp routines in standard mathematical libraries hav
much higher precision that is needed for this radio inter-
ferometry application in that they exceed by many ordefs Vector Implementation
of magnitude the accuracy of practical phase calibration.Itis possible to go one step further. The overhead of functio
Furthermore, the arguments to the exp function involved acells can be reduced by collecting the arguments for whieh th
negative meaning the function varies from 1 to 0 and is wedlkp values are desired into an array and doing the calcoktio
behaved. Standard library versions of this function argestib in a single function call. A “vector” version of ObitExpCalc
to additional constraints such as smoothness and rang&-chés implemented in routine ObitExpVec. Organizing data into
ing which are unnecessary in the applications discussesl harectors also improves the cache hit ratio of the code.
A moderate relaxation of the precision and other constsaint
has the potential for significant performance enhancement

This memo explores such a technique in the Obit package ) ) . ) )
[2] L. Streaming SIMD Extensions (SSE) is an implementation

of SIMD (Single Instruction Multiple Data) architecturerfo
1. Exp(-x) length 4 vecto.rs_on Pentium and similar desigq CPU chipsets.
' Furthermore, it is supported by the gcc compiler (and likely
For an unresolved Gaussian the argument of the exp fuRghers) meaning available on all (or nearly all) architeesu
tion is O leading to a value of 1.0. At the other extreme, & interest for radio interferometry. This feature allowsding
strongly resolved Gaussian results in a large negative-argjéry fast routines although at the level of assembler and
ment to the exp function leading asymptomatically to zerQjith a Spartan instruction set. This system was designed
Therefore only a finite range of values need to be computegy fast video game software but has the basics needed for
arguments more negative than some value can be assumeghi&ferometric calculation. A version of ObitSinCosCédbr
produce zero. This limited range of arguments allows a Ipokiyength 4 vectors was coded using SSE (the most basic version)
table based approach. and implemented in ObitSinCosVec. This code is wrapped in
National Radio Astronomy Observatory, 520 Edgemont Rd., IGtiasville, #ifdefs such that if SSE is not available, the non-SSE varsio

VA, 22903 USA email: bcotton@nrao.edu yvill be used. The text of the ObitExp utility package is given
Lhttp://www.cv.nrao.edutbcotton/Obit.html in the appendix.

exp(—z) = exp(a) (1 - [z —a])

fast exp(-x) routine, ObitExpCalc, to calculate a ex-
nential was implemented in Obit utility module ObitExp
ing a 500 element table lookup followed by the single term
pansion given above. This routine will initialize the leab

the first call. Once initialized, this function should be



OBIT DEVELOPMENT MEMO SERIES NO. 27

TABLE |
SIN/COS TIMINGS

method CPU time | ratio |
sec.

c lib expf 5.84 1.00

ObitExpCalc 1.61 3.63

ObitExpVec ¢ 1.21 4.82

ObitExpVec SSE 0.63 9.26

IV. TESTING

The following give the results of various precision and
timing tests.

A. Precision

In order to evaluate the precision of this technique com-
pared to the standard library exp routine, a test program was
employed that uset0® arguments randomly spaced from 0 to
10 and compared the results of ObitExpCalc and ObitExpVec
with the c library expf routine. The average difference iisth
test was—1.5 x 1076, the rms difference was.1 x 10~¢ and
the maximum difference wa%.0 x 107°.

B. Exp(-x) Timing

The various possibilities implemented in ObitExp are were
compared with the c library exp function using® arguments
randomly chosen from 0 to 10 and run times compared using
the Unix time utility. The software was compiled using the3-O
option (highly optimised). Timings of various portions wer
determined by a comparison of runs with and without that
portion. The results are given in Table | where the ratio ooiu
gives the speedup ratio compared to the library exp function
These tests were run on a 3 GHz Xenon intel machine; the
ObitExpVec SSE routine took about 18 CPU cycles evaluation.

V. DISCUSSION

The cost of “DFT” interferometer model calculations for
Gaussian components when using the fast sine/cosine func-
tions described in [1] is strongly dominated by the cost of
calculating the exp function. The new vector exp SSE based
routine described above appears to be 9 times faster than the
c library exp versions.

The precision of this routines appears to be more than
adequate and far better than the precision of the calibratio
Use of this fast exponential technique can significantlyioed
the cost of a common, and expensive, operation in radio
interferometry.

APPENDIX
Text of the Obit utility ObitExp.c follows.

REFERENCES

[1] W. D. Cotton, “A Fast Sine/Cosine Routine®bit Development Memo
Series, vol. 14, pp. 1-8, 2009.

[2] W. D. Cotton, “Obit: A Development Environment for Astromical
Algorithms,” PASP, vol. 120, pp. 439-448, 2008.



OBIT DEVELOPMENT MEMO SERIES NO. 27

#def i ne OBl TEXPTAB 512 /= tabul ated points =/
[*+x |s initialized? «/

static gboolean islnit = FALSE

/+*x Exp | ookup tabl e covering mnTable to naxTable =/
static ofl oat exptab[ OBl TEXPTAB];

/** Arg spacing in table =/

static ofl oat delta=0.02;

/** inverse of delta =*/

static ofloat idelta=50.0;

/** mn value tabul ated */

static ofloat m nTabl e=1. Oe-5;

/*+max val ue tabul ated */

static ofl oat maxTabl e=10. O;

/** SSE inplenmentation */
#i f def HAVE SSE
#i ncl ude <xmm ntrin. h>

typedef _ ml28 v4sf;
typedef _ nb4 v2si;

/* gcc or icc x/
# define ALI GN16_BEG
# define ALIGNL6_END attribute_ ((aligned(16)))

/* Union allowing c interface */
typedef ALI GN16_BEG uni on {

float f[4];
i nt i[4];
v4sf v,

} ALI GN16_END VASF;

/* Union allowing c interface */
t ypedef ALI GN16_BEG uni on {

i nt i[2];

v2si v,
} ALI GN16_END V2SI ;

[+ Constants =*/
#define _PS CONST(Nane, Val)

static const ALIGNL6 BEG float _ps_##Nanme[ 4] ALI GN16_END

#def i ne _Pl 32_CONST( Narme, Val)

static const ALIGN16 _BEG int _pi 32_##Nanme[4] ALI GN16_END

\

{ val, Vval, Vval, Val }
\

{ val, Vval, Val, Val }

_PI132_CONST(Obhit _NTAB, 512); [+ size of table */
_PS CONST(Ohit_delta, 0.02); [+ table spacing MIUST match delta */
_PS CONST(Obit _idelta, 50.0); [+ 1/table spacing */

_PS CONST(Obit_minTable, 1.0e-5); /* mninmmtabul ated val ue,
_PS CONST(Obit_nmaxTabl e, 10.0); /* maxi mum t abul at ed val ue,

MJUST match nminTabl e */
MUST mat ch nmaxTabl e x/

_PS_CONST(nit_HALF, 0.5); [+ 0.5 */
_PS_CONST( Oni t _ONE, 1.0); [+ 1.0 */
#define _OBI T_DELTA 0.02 /=* table spacing MIST natch delta =/

#define _OBIT_I DELTA 50.0 /* 1/ table spacing =/

#define _OBIT MNTABLE 1.0e-5 /* m ninumtabul ated val ue,
#define _OBI T_MAXTABLE 10.0 /* maxi mum t abul at ed val ue,

#define _OBIT_HALF 0.5 /% 0.5 */
#define _OBI T_ONE 1.0 [/ 1.0 =/
#defi ne _OBI T_NTAB 512 /* size of table */

MUST match mi nTable */
MUST mat ch naxTabl e */



OBIT DEVELOPMENT MEMO SERIES NO. 27

| **
* Fast vector exp(-arg) using SSE instructions
* \param arg argument array
* \paramtable |ookup table
* \parame [out] array of exp(-arg)
* |

void fast_exp_ps(v4sf arg, float *table, v4sf =xe) {
v4sf cellf, tenp, it, one, exptabl, d;

V2SI iaddrlLo, iaddrHi;

[+ dip to range =/

tenp = _mmset_psl (_OBI T_M NTABLE)

arg = mmmax_ps (arg, tenp); [+ Lower bound =/
tenp = _mmset_psl (_OBI T_MAXTABLE)

arg = _mmmnn_ps (arg, tenp); /* Upper bound */

[+ get arg in cells */

cellf = _mmset _psl (_OBIT_MNTABLE); /* Mn table value =/

d = mmsub_ps(arg, cellf); [+ arg-mnTable */

tenp = _mmset_psl (_OBIT_IDELTA); /+ 1/tabl e spacing */

cellf = _mmml _ps(d, tenp); /* (arg-m nTabl e)/tabl e spacing */
tenp = mmset _psl (_OBIT_HALF); /* 0.5 */

cellf = _mmadd _ps(cellf, tenp);

iaddrLo.v = _nmecvttps_pi 32 (cellf); /+* Round | ower half =/

tenp = _mmnovehl _ps (cellf,cellf);/* swap */

iaddrH .v = mmcvttps_pi 32 (tenmp); /* Round upper half =/

/* Fetch tabul ated val ues =/
expt abl = mmsetr_ps(table[iaddrLo.i[0]],table[iaddrLo.i[1]],
table[iaddrHi .i[0]],table[iaddrH .i[1]]);

[+ Get difference in arg fromtabul ated points */

tenp = mmecvtpi32_ps (tenp, iaddrHi.v); [+ float upper values =*/
it = mmnovel h_ps (tenp,tenp); [+ swap */

it = mmecvtpi32_ps (it, iaddrLo.v); [+ float |ower values */
[+ it now has the floated, truncated cells =/

tenp = mmset _psl (_OBIT_DELTA); [+ table spacing */

tenp = _mmnul _ps(it, tenp); [+ cell=+delta */

d = mmsub _ps(d, tenp); [+ d = arg-cell xdel ta-m nTabl e */
[+ One term Taylor’'s series */

one = mmset_psl (1.0); [* ones */

d = mmsub_ps(one, d); [+ 1-d =/

*e = mmml _ps(d, exptabl); [+ table[cell]*(1.0-d) =/

_mmenpty(); [/* wait for operations to finish /
return ;
} /+ end fast_exp_ps =*/

#endif /+* HAVE SSE »/



OBIT DEVELOPMENT MEMO SERIES NO. 27

[ **
* Initialization
*/
voi d Obit Explnit(void)
{
olong i, cell;

of | oat arg;
islnit = TRUE;, /[/* Nowinitialized */

for (i=0; i<0BITEXPTAB-1; i++) {
arg = minTable + delta * i;
exptab[i] = exp(-arg);
}
expt ab[ OBl TEXPTAB-1] = 0.0; /=* Higher values x/

[+ Zero cell for maxTable */
cell = (olong)((naxTabl e-m nTabl e)*idelta + 0.5);
exptab[cell] = 0.0;

} /+ end QbitSinCoslnit =/

[ **
* Cal cul ate exp of -arg
* arg<mi nTable => 1.0

* arg>maxTable => 0.0
* Lookup table initialized on first call
* \param arg ar gumrent
* \return exp(-arg)
*/
of | oat Cbit ExpCal c(of | oat arg)
{
ol ong cell;

of |l oat out, d;

[+ Initialize? =/
if (lislnit) GhitExplnit();

/* Range test =/
if (arg<m nTable) return 1.0;
if (arg>naxTable) return 0.0;

[+ Cell in | ookup table */
cell = (olong)((arg-m nTable)*xidelta + 0.5);

/+ Difference fromtabul ated val ue */
d = arg - mnTable -cell+delta,;

/* Lookup plus one Taylor term
NB, d(exp(-x)/dx = -exp(-x) =/
out = exptab[cell]*(1.0-d);
return out;
} /+ end ObitExpCalc */



OBIT DEVELOPMENT MEMO SERIES NO. 27

| %%
* Cal cul ate exp(-x) of vector of args uses SSE inplenmentation is avail able
* arg<minTable => 1.0
* arg>maxTable => 0.0

* Lookup table initialized on first cal

* \paramn Nurmber of el ements to process

* \param argarr array of args

* \param exparr [out] exp(-arQg)

* |
voi d Cbit ExpVec(olong n, ofloat *argarr, ofloat *exparr)
{

olong i, nleft, cell;

of l oat argt, d;

[** SSE inplenmentation =/
#i f def HAVE_SSE

ol ong ndo;

VASF vargt, vex;
#tendi f /+ HAVE SSE =/

[ Initialize? x/
if (lislnit) ChitExplnit();

n; /* Nunber left to do */

nl eft
i 0; /* None done yet =x/

[*+ SSE i npl ementation */

#i f def HAVE_SSE
[+ Loop in groups of 4 =/
ndo = nleft - nleft%; [+ Only full groups of 4 */
for (i=0; i<ndo; i+=4) {

vargt.f[0] = *argarr++;
vargt.f[1l] = *argarr++
vargt.f[2] = xargarr++
vargt.f[3] = xargarr++;

fast _exp_ps(vargt.v, exptab, &vex.v);

x~exparr++ = vex.f[0];
xexparr++ = vex.f[1];
xexparr++ = vex.f[2];
xexparr++ = vex.f[3];

} /' end SSE | oop =*/
#endi f /+ HAVE_SSE =/



OBIT DEVELOPMENT MEMO SERIES NO. 27

nleft = n-i; [/ How many left? */

/* Loop doing any elements not done in SSE | oop */
for (i=0; i<nleft; i++) {

[+ arg =*/

argt = (*argarr++);

[+ range check =/
if (argt<m nTable) {*exparr++=1.0; continue;}
i f (argt>nmaxTable) {*exparr++=0.0; continue;}

[+ Cell in |ookup table */
cell = (olong)((argt-m nTable)*idelta + 0.5);

/~ Difference fromtabul ated val ue */
d = argt - nminTable -cell=*delta;

[+ Lookup plus one Taylor term
NB, d(exp(-x)/dx = -exp(-x) =/
xexparr++ = exptab[cell]*(1.0-d);
} /' end | oop over vector =/
} /+ end ObitExpVec */



