OBIT DEVELOPMENT MEMO SERIES NO. 14 1

A Fast Sine/Cosine Routine

W. D. Cotton, July 17, 2009

Abstract—The calculation of sine/cosine pairs is a common and ~ While an arbitrary precision can be obtained by a simple
relatively expensive operation in radio interferometry. The very table lookup, adequate resolution can require quite lagies.
flexible “DFT” calculation of the interferometer response to a Further improvements in the precision of a table lookup can
sky model makes heavy use of this operation and the cost of &n
and cosine calculations can dominate the run time of a proces be _Obta'ned u_smg either an interpolation in the table Or_a
using this technique. This memo describes a technique for § SEries expansion about the tabulated value. A Taylorsseri

sine/cosine calculations to moderate accuracy. The techipie is a expansion is given by:

table lookup followed by a single term Taylor's series expasion.

An Streaming SIMD Extensions (SSE) implementation further _ 1Nt a "

increased the efficiency. A factor of 8 increase in the sinegdsine f(z) fla) + fia) 1! +) 2! te

calculation speed and a factor of 3 increase in the speed of angjnce the derivatives of sines and cosines are the cosines

actual application are reported. The precision obtained ismore d si f th | luati f h S

than adequate for the intended applications. and sines o the same angles, eval u.atlon of such a series is
straightforward. The one term expansions for sine and essin

of anglex about tabulated value are:

(z — a)?

Index Terms—interferometry, performance

I. INTRODUCTION sin(z) = sin(a) + cos(a)lz — a
Alculating the response of an interferometer to a sky cos(x) = cos(a) — sin(a)[r — a
model is a common operation in radio interferometry
and for complex sky models can be one of the more computa- 1. | MPLEMENTATION

tionally expensive operations. One generic type of sky rhode
y SXpe b . generic 1yp y A fast sine/cosine routine, ObitSinCosCalc, to calculate

calculation is the so called Direct Fourier Transform (AKA . . : : : L

N " : . a sine/scosine pair was implemented in Obit utility module

DFT") technigue wherein the response to each component(% :

a sky model (e.g. CLEAN component) is evaluated for ea tSinCos using a 1381 elemen_t (1 1./4 turn) table Iopkup f.OI
S . . lowed by the single term expansion given above. This routine
complex correlation in the data set. The real and imagin

; > 9T Wl initialize the tables on the first call. Once initialidethis
parts of such model calculations are evaluated by sine

cosine functions of the component phase. This can result unnctlon should be threadsafe; a single call prior to ifiiag

VERY LARGE numbers of calls to sin and cos routines Whichhreadmg using this routine will make usage threadsafe.
dominate the cost of this operation.

The sine and cosine routines in standard mathematiéal Scalar
libraries have much higher precision that is needed for this A single lookup table can be used for sine and cosine
radio interferometry application in that they exceed by yarby noting that cos(phase) = sin(phase + 1/4 turn). Further
orders of magnitude the accuracy of practical phase calibk@ductions in the size of the table needed can be had by using

tion. Standard library versions of these functions areettifp the symmetries in the sine/cosine functions but at a cost of
additional constraints such as smoothness and range dgeckhcreased logic and computation.

which are unnecessary in the applications discussed here.
Furthermore, much of the cost of the operation for the sepg-

rate sine and cosine calculations is in common. A moderaté))
relaxation of the precision and other constraints in additi !t possible to go one step further. The overhead of functio
to and coupling the calculations of sines and cosines has fif@lS can be reduced by collecting the phases for which the
potential for significant performance enhancements. sines and cosines are desired into an array and doing the

This memo explores such a technique in the Obit packa%%lFm_""tions in a single function call. A "vector” versiori 0
S bitSinCosCalc is implemented in routine ObitSinCosVec.

Organizing data into vectors also improves the cache hib rat
[I. SINES AND COSINES of the code.

Sines and cosines are periodic functions that repeat every 2
radians of their argument. Thus, while the range of argumeri. SSE
to these functions istoo, they can be fully described by Streaming SIMD Extensions (SSE) is an implementation
the interval[0, 27] and replacing the argument with its valuesf SIMD (Single Instruction Multiple Data) architecturerfo
modulo27. This facilitates a table lookup scheme. length 4 vectors on Pentium and similar design CPU chipsets.
National Radio Astronomy Observatory, 520 Edgemont Rdarottesville, Furthermore, _It IS supported by the gcc compiler (and likely
VA, 22903 USA email: bcotton@nrao.edu others) meaning available on all (or nearly all) architeesu
Lhitp://www.cv.nrao.edutbcotton/Obit. html of interest for radio interferometry. This feature allonsding

OBIT DEVELOPMENT MEMO SERIES NO. 14 2

TABLE | TABLE I
SIN/COS TIMINGS UVSUB TIMINGS
method total CPU time | vector length| CPU used method CPU time | Real time | CPU/Real
sec. sec. sec. sec.
¢ sinf/cosf 9.310 7.549 ¢ sinf/cosf 40.6 245 1.65
¢ sincosf 6.169 4.408 ¢ sincosf 27.1 16.9 1.60
ObitSinCosCalc 4,727 2.966 ObitSinCosCalc 19.1 125 1.52
ObitSinCosVec 4.064 10 2.303 ObitSinCosVec(100) 14.9 9.9 1.51
ObitSinCosVec 3.780 100 2.019 ObitSinCosVec(SSE) 11.0 7.7 1.43
ObitSinCosVec 3.756 1000 1.995
ObitSinCos SSE 2.696 1000 0.935
SSE + aligned 2.526 1000 0.764
none 1.761

pointers, the result is given by entry “SSE + aligned”. This
feature has serious implications for the calling routinel an
was not implemented in ObitSinCos. However, if another 20%
very fast routines although at the level of assembler amgrformance is important this is a viable technique.
with a Spartan instruction set. This system was designedThe ObitSinCosCalc version was 3.0 times faster than the ¢
for fast video game software but has the basics needed library sinf/cosf version and 1.7 times faster than the comat
interferometric calculation. A version of ObitSinCosCdtr sincosf version. The ObitSinCosVec version ran as much as
length 4 vectors was coded using SSE (the most basic versidrf) times faster than the sinf/cosf version. The SSE version
and implemented in ObitSinCosVec. This code is wrapped iimplemented was 8.1 times faster than the sinf/cosf version
#ifdefs such that if SSE is not available, the non-SSE varsidhe SSE version with aligned buffers (not implemented) was
will be used. The text of the ObitSinCos utility package i8.9 times faster. These tests were run on a 3 GHz Xenon intel
given in the appendix. machine; the ObitSinCosVec SSE routine took about 23 CPU
cycles for each sine/cosine pair.

IV. TESTING

The following give the results of various precision ané- UVSub Test
timing tests. To test the accuracy and speed of the sine/cosine routine
on a real dataset, Obit task UVSub was used on a VLA data
set containing 78,000 visibilities each with 15 channeld an
o)) a model composed of 22 facets with a total of 386 CLEAN

In order to evaluate the precision of this technique conparg,mponents after summing all components in the same pixel.
to the standard library sinf/cosf routines, a test prograas Wrpe field contains a 12 Jy point source; previous calibration
employed that useti0® angles randomly spaced from -100 g, editing were applied to the input data. UVSub was run
100 radians and compared the results of ObitSinCosCalc Wifling hoth the c library sinf/cosf and sincosf routines a8l we
the c library sinf andgcosf routines. The average dlffgralmce as ObitSinCosCalc and ObitSinCosVec (length 100) versions
this test wass.9 <1077, the rms d|ffere(?ce wab8x107"and These all used the same data sets, 2 threads and the “DFT”
the maximum difference was0 > 107°. This rms dlffere4nce model algorithm. The timing results are given in Table I1€Th
corresponds to an equivalent phase error rms at0x107%°. 56 of the vector (non-SSE) routine reduced the CPU time by

a factor of 3.2 and the run time by a factor of 2.5. The SSE

B. Sin/cos Timing version reduced the CPU time by a factor of 3.7 and the run

There are several standard c library routines that can bt u&ne by a factor of 3.2. . o
to compute sines and cosines. First, there are the sinf asfd co 1€ output data files were compared using Obit utility
individual routines; then there is the combined routinessi UV-PUtilVisCompare which gave a relative rms difference
for computing both sines and cosines. The test calculatiopgween all real and imaginary parts of the visibilities of
described in the previous section were repeated doing bely t.-448 x .10_4- Note: this is the fraction of the residuaiter
¢ library (sinf/cosf or sincosf) or ObitSinCosCalc caldida Subtracting the model.
and the run times measured with the Unix time utility. Furthe
tests were performed using the ObitSinCosVec vector foncti V. DiscussioN
with a variety of vector lengths. The results are given in The cost of “DFT” interferometer model calculations is
Table I. The final entry, “none”, measures the overhead efrongly dominated by the cost of calculating sines and
calculating the angles; this value was subtracted fromdta t cosines. The new sine/cosine SSE based routine described
run times and are given in the “CPU used” column. The SSibove appears to be 8 times faster than the c library sinf and
implementation is given in the entry “ObitSinCos SSE”. Iisth cosf versions and, when implemented in a real application,
implementation, a nontrivial portion of the time was used ireduced the run time by a factor of 3.2. The SSE version
copying data between regular ¢ arrays and the 16-byte alignef the sin/cosine function appear to to be sufficiently fast a
arrays needed for SSE. When the regular arrays were replatedo longer dominate the run time in the UVSub test. The
with 16-byte aligned arrays and the copy replaced by changiprecision of these routines appears to be more than adequate

A. Precision

OBIT DEVELOPMENT MEMO SERIES NO. 14

and far better than the precision of the calibration. Usehisf t
fast sine/cosine technique can significantly reduce thé aos
a common, and expensive, operation in radio interferometry

ACKNOWLEDGMENT

The author thanks Scott Ransom for discussions and point-
ing out the existance of SSE.

APPENDIX
Text of the Obit utility ObitSinCos.c follows.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Asttomical
Algorithms,” PASP, vol. 120, pp. 439-448, 2008.

OBIT DEVELOPMENT MEMO SERIES NO. 14

[+ Utility routine for fast sine/cosine calculation */
#i ncl ude "Obi t Si nCos. h"
#def i ne OBl TSI NCOSNTAB 1024 /= size of tables -1 */
#def i ne OBl TSI NCOSNTAB4 256 [+ 1/4 size of tables */
[*x |Is initialized? =/
islnit = FALSE;
/+*x Sine | ookup table covering 1 1/4 turn of phase */
of | oat si ncost ab[OBl TSI NCOSNTAB+OBI TSI NCOSNTAB4+1] ;
/** Angl e spacing (radian) in table */
of | oat delta;
[*% 1/ 2pi =/
ofloat itwopi = 1.0/ (2.0 » G PI);
[*% 2pi */
of loat twopi = (2.0 » G PI);
[**

* Initialization

* |

voi d ObitSinCoslnit(void)
{

olong i;

of | oat angl e;

islnit = TRUE; /* Now initialized =/

delta = ((2.0 »G_PI)/ OBl TSI NCOSNTAB,) ;

for (i=0; i<(0BITSI NCOSNTAB+OBI TSI NCOSNTAB4+1); i++) {

angle = delta * i;
sincostab[i] = sinf(angle);

}

} /+ end ObitSinCoslnit =*/

OBIT DEVELOPMENT MEMO SERIES NO. 14

[**
* Cal cul ate sine/cosine of angle
* Lookup table initialized on first cal
* \param angle angle in radians

* \ param sin [out] sine(angle)
* \ param cos [out] cosine(angle)
* |
voi d ObitSinCosCal c(ofl oat angle, ofloat *sin, ofloat *cos)

{
olong it, itt;
of | oat anglet, ss, cc, d;

/* Initialize? */
if (lislnit) OhitSinCoslnit();

/+* angle in turns =*/
angl et = angl exi t wopi ;

/* truncate to [0,1] turns =*/

it = (olong)anglet;

if (anglet<0.0) it--; [+ fold to positive */
anglet -=it;

/* Lookup, cos(phase) = sin(phase + 1/4 turn) =/

itt = (olong) (0.5 + angl et OBl TSI NCOSNTAB) ;
ss = sincostab[itt];
cc = sincostab[itt+0OBlI TSI NCOSNTAB4] ;

/* One term Tayl ors series x/
d = angl et*twopi - deltaxitt;
*Sin = ss + cc * d;
*COS = CcC - SS * d;

} /+ end ObitSinCosCalc */

OBIT DEVELOPMENT MEMO SERIES NO. 14

| *x
* Cal cul ate sine/cosine of vector of angles uses SSE i nplementation is avail able
* Lookup table initialized on first cal
* \ param n Nunmber of el ements to process
* \param angle array of angles in radians
* \ param sin [out] sine(angle)
* \ param cos [out] cosine(angle)
*/
voi d ObitSinCosVec(olong n, ofloat xangle, ofloat *sin, ofloat *cos)
{
olong i, nleft, it, itt;

of | oat anglet, ss, cc, d;

/** SSE i nplementation =/
#i f def HAVE_SSE

ol ong ndo;

VASF vangl et, vss, vcc;
#endi f /+ HAVE_SSE =*/

[+ Initialize? =/
if (tislnit) ObitSinCoslnit();

n; /* Nunber |left to do */

nl ef t
[0; /* None done yet =*/

[*x SSE inplementation */

#i f def HAVE_SSE
[+ Loop in groups of 4 =/
ndo = nleft - nlefty; /[/+ Only full groups of 4 */
for (i=0; i<ndo; i+=4) {

vangl et.f[0] = *angl e++;
vangl et.f[1] = xangl e++;
vangl et.f[2] = xangl e++;
vangl et.f[3] = *angl e++;

fast _sincos_ps(vanglet.v, sincostab, &vss.v, &vcc.v);

*sin++ = vss. f[0];
*sin++ = vss. f[1];
*sin++ = vss. f[2];
*sin++ = vss. f[3];
*Ccos++ = vcce. f[0];
*cos++ = vcce. f[1];
*cos++ = vcce. f[2];
*cos++ = vcc. f[3];

} /+ end SSE | oop */
#endi f /+ HAVE_SSE =*/

nleft = n-i; /> How many left? */

/* Loop doing any el ements not done in SSE | oop */
for (i=0; i<nleft; i++) {
[+ angle in turns =*/
angl et = (*angl e++) *i t wopi ;

[+ truncate to [0, 1] turns =/

it = (ol ong)anglet;

if (anglet<0.0) it--; [+ fold to positive */
anglet -=it;

OBIT DEVELOPMENT MEMO SERIES NO. 14

/= Lookup, cos(phase) = sin(phase + 1/4 turn) =/
itt = (olong) (0.5 + angl et +OBI TSI NCOSNTAB) ;
ss sincostab[itt];
cc si ncostab[itt+O0BI TSI NCOSNTAB4] ;

[+ One term Tayl or series =/
d = anglet*twopi - delta*itt;
*sin++ = ss + cc * d;
*COS++ = cC - ss * d;
} /+ end | oop over vector =x/
} /+ end ObitSinCosVec */

[*x SSE inplenentation */
#i f def HAVE_SSE
#i ncl ude <xmm ntrin. h>

typedef _ ml28 v4sf;
typedef __nmb4 v2si;

/* gcc or icc */
define ALI GN16_BEG
define ALIGNL6_END attribute_ ((aligned(16)))

/* Union allowing c interface */
t ypedef ALI GN16_BEG uni on {

float f[4];
i nt i[4];
vasf v;

} ALI GN16_END VASF,;

/* Union allowing c interface */
typedef ALI GN16_BEG uni on {

i nt i[2];

v2si v;
} ALI GN16_END V2SI ;

#define _OBI T_TWOPI 6.2831853071795862 [+ 2pi =*/

#define _OBI T_|I TWOPI 0.15915494309189535 [+ 1/ 2pi */

#define _OBI T _DELTA 0.0061359231515425647 [+ table spacing = 2pi/ Chit_NTAB */
#define OBIT _NTAB 1024.0 /* size of table -1 */

#define _OBI T_NTAB4 256

OBIT DEVELOPMENT MEMO SERIES NO. 14

| *

*

* Fast sine/cosine of angle

* Approxi mat e si ne/ cosi ne,

*
*
*

*

*/

\ param angl e
\paramtabl e
\ param s
\ param c

angl e in radi ans

| ookup table

[out] sine(angle)
[out] cosine(angle)

voi d fast_sincos_ps(v4sf angle, float *tab

v4sf angl et,

v2si itLo, itHi;

V2S| i addr Lo,

tenp
angl et

i addr Hi

~mmset _psl (_OBIT_ I TWOPI);

/+* angle in turns =*/
= mmml _ps(angle, tenp);

/* truncate to [0,1] turns =*/
[+ Get full turns =/

itLo
tenmp
itH
it
tenp
it

_mmcvttps_pi 32 (anglet);

_mm nmovehl _ps (angl et, angl et);
_mmcvttps_pi 32 (tenp);
_mmecvtpi 32_ps (it, itH);
_mmmovel h_ps (it, it);
_mmcvtpi 32 ps (tenp, itLo);

/+ If anglet negative, decrenent it x/

zero = _mmsetzero_ps ();

mask = mmecnplt_ps (angl et, zero);
one = mmset _psl (1.0);

one = mm and_ps(one, nask);

it = mmsub _ps (it, one);
anglet = _mmsub_ps (anglet, it);

[+ Tabl e I ookup,

tenp

it

tenp

it

i addr Lo. v
tenp

i addrHi.v
si ne

i[0]],table[iaddrHi .i[1]]);

e,

tenp, it, zero, mask, one, sine,

| *
| *

| *
| *
| *

| *
| *
| *
| *

| *

no range or val ue checking

v4sf s, vdsf xc) {

first t
upper t
second

cosi ne, d;

wo truncated =*/
wo val ues into | ower =*/
two truncated x/

float upper values =*/

swap */
float |

ower val ues =*/

Zeros */

Conpar i
ones x/

son to mask =/

mask out positive values =/

fold to [0, 2pi] =*/

| *

cos(phase) = sin(phase + 1/4 turn)x*/
_mmset _psl (_OBI T_NTAB)
_mm mul _ps(anglet, temp);
_mmset_psl (0.5);

_mm add_ps(it, tenp);
_mmecvttps_pi 32 (it);

_mm novehl _ps (it,it);
_mmcvttps_pi 32 (tenp);
_mmsetr_ps(table[iaddrLo.i[0]],table[iaddrLo.i[1]],
tabl e[i addr Hi

To cells in table */

/* To cells in table */

/* Round =*/

cosi ne = _mmsetr_ps(tabl e[iaddrLo.i[0]+_0OBI T_NTAB4],

t abl e[i addr Lo.
tabl e[i addr Hi
tabl e[i addr Hi

i [1] +_OBI T_NTAB4] ,
i [0] +_OBI T_NTAB4] ,
i[1] +_OBI T_NTAB4]);

OBIT DEVELOPMENT MEMO SERIES NO. 14

/+* One term Tayl or series =*/
tenp = mmset _psl (_OBI T _TWOPI);

anglet = mmnul _ps(anglet, tenp);

temp = mmecvtpi32_ps (it, iaddrH .v);
it = _mmnovel h_ps (tenp,tenp);

it = mmecvtpi 32 ps (it, iaddrlLo.v);
tenp = mmset _psl (_OBI T _DELTA)

d = mmml _ps (it, tenp);

d = mmsub_ps (anglet, d);

[+ Sine */

tenp = mmml _ps (cosine,d);

*S = mm add_ps (sine, tenp);

/= Cosine */

temp = mmml _ps (sine, d);

*C = _mmsub_ps (cosine, tenp);

_mmenpty(); /* wait for operations to finish =/

return ;
} /+ end fast_sincos_ps =*/

#endif /+ HAVE_SSE «/

| *
| *
| *
| *

| *
| *

Now angl e on radians */
fl oat upper val ues =*/
swap */

float |ower values */

t abul at ed phase =*/
act ual -t abul at ed phase */

