
OBIT DEVELOPMENT MEMO SERIES NO. 14 1

A Fast Sine/Cosine Routine
W. D. Cotton, July 17, 2009

Abstract—The calculation of sine/cosine pairs is a common and
relatively expensive operation in radio interferometry. The very
flexible “DFT” calculation of the interferometer response to a
sky model makes heavy use of this operation and the cost of sine
and cosine calculations can dominate the run time of a process
using this technique. This memo describes a technique for fast
sine/cosine calculations to moderate accuracy. The technique is a
table lookup followed by a single term Taylor’s series expansion.
An Streaming SIMD Extensions (SSE) implementation further
increased the efficiency. A factor of 8 increase in the sine/cosine
calculation speed and a factor of 3 increase in the speed of an
actual application are reported. The precision obtained ismore
than adequate for the intended applications.

Index Terms—interferometry, performance

I. I NTRODUCTION

CAlculating the response of an interferometer to a sky
model is a common operation in radio interferometry

and for complex sky models can be one of the more computa-
tionally expensive operations. One generic type of sky model
calculation is the so called Direct Fourier Transform (AKA
“DFT”) technique wherein the response to each component of
a sky model (e.g. CLEAN component) is evaluated for each
complex correlation in the data set. The real and imaginary
parts of such model calculations are evaluated by sine and
cosine functions of the component phase. This can result in
VERY LARGE numbers of calls to sin and cos routines which
dominate the cost of this operation.

The sine and cosine routines in standard mathematical
libraries have much higher precision that is needed for this
radio interferometry application in that they exceed by many
orders of magnitude the accuracy of practical phase calibra-
tion. Standard library versions of these functions are subject to
additional constraints such as smoothness and range checking
which are unnecessary in the applications discussed here.
Furthermore, much of the cost of the operation for the sepa-
rate sine and cosine calculations is in common. A moderate
relaxation of the precision and other constraints in addition
to and coupling the calculations of sines and cosines has the
potential for significant performance enhancements.

This memo explores such a technique in the Obit package
[1] 1.

II. SINES AND COSINES

Sines and cosines are periodic functions that repeat every 2π

radians of their argument. Thus, while the range of arguments
to these functions is±∞, they can be fully described by
the interval[0, 2π] and replacing the argument with its value
modulo2π. This facilitates a table lookup scheme.

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

While an arbitrary precision can be obtained by a simple
table lookup, adequate resolution can require quite large tables.
Further improvements in the precision of a table lookup can
be obtained using either an interpolation in the table or a
series expansion about the tabulated value. A Taylor’s series
expansion is given by:

f(x) = f(a) + f ′(a)
x − a

1!
+ f ′′(a)

(x − a)2

2!
+ ...

Since the derivatives of sines and cosines are the cosines
and sines of the same angles, evaluation of such a series is
straightforward. The one term expansions for sine and cosines
of anglex about tabulated valuea are:

sin(x) = sin(a) + cos(a)[x − a]

cos(x) = cos(a) − sin(a)[x − a]

III. I MPLEMENTATION

A fast sine/cosine routine, ObitSinCosCalc, to calculate
a sine/scosine pair was implemented in Obit utility module
ObitSinCos using a 1381 element (1 1/4 turn) table lookup fol-
lowed by the single term expansion given above. This routine
will initialize the tables on the first call. Once initialized, this
function should be threadsafe; a single call prior to initializing
threading using this routine will make usage threadsafe.

A. Scalar

A single lookup table can be used for sine and cosine
by noting that cos(phase) = sin(phase + 1/4 turn). Further
reductions in the size of the table needed can be had by using
the symmetries in the sine/cosine functions but at a cost of
increased logic and computation.

B. Vector

It is possible to go one step further. The overhead of function
calls can be reduced by collecting the phases for which the
sines and cosines are desired into an array and doing the
calculations in a single function call. A “vector” version of
ObitSinCosCalc is implemented in routine ObitSinCosVec.
Organizing data into vectors also improves the cache hit ratio
of the code.

C. SSE

Streaming SIMD Extensions (SSE) is an implementation
of SIMD (Single Instruction Multiple Data) architecture for
length 4 vectors on Pentium and similar design CPU chipsets.
Furthermore, it is supported by the gcc compiler (and likely
others) meaning available on all (or nearly all) architectures
of interest for radio interferometry. This feature allows coding

OBIT DEVELOPMENT MEMO SERIES NO. 14 2

TABLE I
SIN /COS TIMINGS

method total CPU time vector length CPU used
sec. sec.

c sinf/cosf 9.310 7.549
c sincosf 6.169 4.408
ObitSinCosCalc 4.727 2.966
ObitSinCosVec 4.064 10 2.303
ObitSinCosVec 3.780 100 2.019
ObitSinCosVec 3.756 1000 1.995
ObitSinCos SSE 2.696 1000 0.935
SSE + aligned 2.526 1000 0.764
none 1.761

very fast routines although at the level of assembler and
with a Spartan instruction set. This system was designed
for fast video game software but has the basics needed for
interferometric calculation. A version of ObitSinCosCalcfor
length 4 vectors was coded using SSE (the most basic version)
and implemented in ObitSinCosVec. This code is wrapped in
#ifdefs such that if SSE is not available, the non-SSE version
will be used. The text of the ObitSinCos utility package is
given in the appendix.

IV. T ESTING

The following give the results of various precision and
timing tests.

A. Precision

In order to evaluate the precision of this technique compared
to the standard library sinf/cosf routines, a test program was
employed that used108 angles randomly spaced from -100 to
100 radians and compared the results of ObitSinCosCalc with
the c library sinf and cosf routines. The average differencein
this test was8.9×10−9, the rms difference was1.8×10−6 and
the maximum difference was6.0× 10−6. This rms difference
corresponds to an equivalent phase error rms of∼ 1.0×10−4◦.

B. Sin/cos Timing

There are several standard c library routines that can be used
to compute sines and cosines. First, there are the sinf and cosf
individual routines; then there is the combined routine sincosf
for computing both sines and cosines. The test calculations
described in the previous section were repeated doing only the
c library (sinf/cosf or sincosf) or ObitSinCosCalc calculation
and the run times measured with the Unix time utility. Further
tests were performed using the ObitSinCosVec vector function
with a variety of vector lengths. The results are given in
Table I. The final entry, “none”, measures the overhead of
calculating the angles; this value was subtracted from the total
run times and are given in the “CPU used” column. The SSE
implementation is given in the entry “ObitSinCos SSE”. In this
implementation, a nontrivial portion of the time was used in
copying data between regular c arrays and the 16-byte aligned
arrays needed for SSE. When the regular arrays were replaced
with 16-byte aligned arrays and the copy replaced by changing

TABLE II
UVSUB TIMINGS

method CPU time Real time CPU/Real
sec. sec.

c sinf/cosf 40.6 24.5 1.65
c sincosf 27.1 16.9 1.60
ObitSinCosCalc 19.1 12.5 1.52
ObitSinCosVec(100) 14.9 9.9 1.51
ObitSinCosVec(SSE) 11.0 7.7 1.43

pointers, the result is given by entry “SSE + aligned”. This
feature has serious implications for the calling routine and
was not implemented in ObitSinCos. However, if another 20%
performance is important this is a viable technique.

The ObitSinCosCalc version was 3.0 times faster than the c
library sinf/cosf version and 1.7 times faster than the combined
sincosf version. The ObitSinCosVec version ran as much as
3.8 times faster than the sinf/cosf version. The SSE version
implemented was 8.1 times faster than the sinf/cosf version.
The SSE version with aligned buffers (not implemented) was
9.9 times faster. These tests were run on a 3 GHz Xenon intel
machine; the ObitSinCosVec SSE routine took about 23 CPU
cycles for each sine/cosine pair.

C. UVSub Test

To test the accuracy and speed of the sine/cosine routine
on a real dataset, Obit task UVSub was used on a VLA data
set containing 78,000 visibilities each with 15 channels and
a model composed of 22 facets with a total of 386 CLEAN
components after summing all components in the same pixel.
The field contains a 12 Jy point source; previous calibration
and editing were applied to the input data. UVSub was run
using both the c library sinf/cosf and sincosf routines as well
as ObitSinCosCalc and ObitSinCosVec (length 100) versions.
These all used the same data sets, 2 threads and the “DFT”
model algorithm. The timing results are given in Table II. The
use of the vector (non-SSE) routine reduced the CPU time by
a factor of 3.2 and the run time by a factor of 2.5. The SSE
version reduced the CPU time by a factor of 3.7 and the run
time by a factor of 3.2.

The output data files were compared using Obit utility
UV.PUtilVisCompare which gave a relative rms difference
between all real and imaginary parts of the visibilities of
1.448× 10−4. Note: this is the fraction of the residualsafter
subtracting the model.

V. D ISCUSSION

The cost of “DFT” interferometer model calculations is
strongly dominated by the cost of calculating sines and
cosines. The new sine/cosine SSE based routine described
above appears to be 8 times faster than the c library sinf and
cosf versions and, when implemented in a real application,
reduced the run time by a factor of 3.2. The SSE version
of the sin/cosine function appear to to be sufficiently fast as
to no longer dominate the run time in the UVSub test. The
precision of these routines appears to be more than adequate

OBIT DEVELOPMENT MEMO SERIES NO. 14 3

and far better than the precision of the calibration. Use of this
fast sine/cosine technique can significantly reduce the cost of
a common, and expensive, operation in radio interferometry.

ACKNOWLEDGMENT

The author thanks Scott Ransom for discussions and point-
ing out the existance of SSE.

APPENDIX

Text of the Obit utility ObitSinCos.c follows.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

OBIT DEVELOPMENT MEMO SERIES NO. 14 4

/* Utility routine for fast sine/cosine calculation */
#include "ObitSinCos.h"
#define OBITSINCOSNTAB 1024 /* size of tables -1 */
#define OBITSINCOSNTAB4 256 /* 1/4 size of tables */
/** Is initialized? */
isInit = FALSE;
/** Sine lookup table covering 1 1/4 turn of phase */
ofloat sincostab[OBITSINCOSNTAB+OBITSINCOSNTAB4+1];

/** Angle spacing (radian) in table */
ofloat delta;
/** 1/2pi */
ofloat itwopi = 1.0/ (2.0 * G_PI);
/** 2pi */
ofloat twopi = (2.0 * G_PI);
/**
* Initialization

*/
void ObitSinCosInit(void)

{
olong i;
ofloat angle;
isInit = TRUE; /* Now initialized */
delta = ((2.0 *G_PI)/OBITSINCOSNTAB);
for (i=0; i<(OBITSINCOSNTAB+OBITSINCOSNTAB4+1); i++) {
angle = delta * i;
sincostab[i] = sinf(angle);

}
} /* end ObitSinCosInit */

OBIT DEVELOPMENT MEMO SERIES NO. 14 5

/**
* Calculate sine/cosine of angle

* Lookup table initialized on first call

* \param angle angle in radians

* \param sin [out] sine(angle)

* \param cos [out] cosine(angle)

*/
void ObitSinCosCalc(ofloat angle, ofloat *sin, ofloat *cos)
{

olong it, itt;
ofloat anglet, ss, cc, d;

/* Initialize? */
if (!isInit) ObitSinCosInit();

/* angle in turns */
anglet = angle*itwopi;

/* truncate to [0,1] turns */
it = (olong)anglet;
if (anglet<0.0) it--; /* fold to positive */
anglet -= it;

/* Lookup, cos(phase) = sin(phase + 1/4 turn) */
itt = (olong)(0.5 + anglet*OBITSINCOSNTAB);
ss = sincostab[itt];
cc = sincostab[itt+OBITSINCOSNTAB4];

/* One term Taylors series */
d = anglet*twopi - delta*itt;

*sin = ss + cc * d;

*cos = cc - ss * d;
} /* end ObitSinCosCalc */

OBIT DEVELOPMENT MEMO SERIES NO. 14 6

/**
* Calculate sine/cosine of vector of angles uses SSE implementation is available

* Lookup table initialized on first call

* \param n Number of elements to process

* \param angle array of angles in radians

* \param sin [out] sine(angle)

* \param cos [out] cosine(angle)

*/
void ObitSinCosVec(olong n, ofloat *angle, ofloat *sin, ofloat *cos)
{

olong i, nleft, it, itt;
ofloat anglet, ss, cc, d;
/** SSE implementation */

#ifdef HAVE_SSE
olong ndo;
V4SF vanglet, vss, vcc;

#endif /* HAVE_SSE */

/* Initialize? */
if (!isInit) ObitSinCosInit();

nleft = n; /* Number left to do */
i = 0; /* None done yet */

/** SSE implementation */
#ifdef HAVE_SSE

/* Loop in groups of 4 */
ndo = nleft - nleft%4; /* Only full groups of 4 */
for (i=0; i<ndo; i+=4) {
vanglet.f[0] = *angle++;
vanglet.f[1] = *angle++;
vanglet.f[2] = *angle++;
vanglet.f[3] = *angle++;
fast_sincos_ps(vanglet.v, sincostab, &vss.v, &vcc.v);

*sin++ = vss.f[0];

*sin++ = vss.f[1];

*sin++ = vss.f[2];

*sin++ = vss.f[3];

*cos++ = vcc.f[0];

*cos++ = vcc.f[1];

*cos++ = vcc.f[2];

*cos++ = vcc.f[3];
} /* end SSE loop */

#endif /* HAVE_SSE */

nleft = n-i; /* How many left? */

/* Loop doing any elements not done in SSE loop */
for (i=0; i<nleft; i++) {
/* angle in turns */
anglet = (*angle++)*itwopi;

/* truncate to [0,1] turns */
it = (olong)anglet;
if (anglet<0.0) it--; /* fold to positive */
anglet -= it;

OBIT DEVELOPMENT MEMO SERIES NO. 14 7

/* Lookup, cos(phase) = sin(phase + 1/4 turn) */
itt = (olong)(0.5 + anglet*OBITSINCOSNTAB);
ss = sincostab[itt];
cc = sincostab[itt+OBITSINCOSNTAB4];

/* One term Taylor series */
d = anglet*twopi - delta*itt;

*sin++ = ss + cc * d;

*cos++ = cc - ss * d;
} /* end loop over vector */

} /* end ObitSinCosVec */

/** SSE implementation */
#ifdef HAVE_SSE
#include <xmmintrin.h>

typedef __m128 v4sf;
typedef __m64 v2si;

/* gcc or icc */
define ALIGN16_BEG
define ALIGN16_END __attribute__((aligned(16)))

/* Union allowing c interface */
typedef ALIGN16_BEG union {

float f[4];
int i[4];
v4sf v;

} ALIGN16_END V4SF;

/* Union allowing c interface */
typedef ALIGN16_BEG union {

int i[2];
v2si v;

} ALIGN16_END V2SI;

#define _OBIT_TWOPI 6.2831853071795862 /* 2pi */
#define _OBIT_ITWOPI 0.15915494309189535 /* 1/2pi */
#define _OBIT_DELTA 0.0061359231515425647 /* table spacing = 2pi/Obit_NTAB */
#define _OBIT_NTAB 1024.0 /* size of table -1 */
#define _OBIT_NTAB4 256

OBIT DEVELOPMENT MEMO SERIES NO. 14 8

/**
* Fast sine/cosine of angle

* Approximate sine/cosine, no range or value checking

* \param angle angle in radians

* \param table lookup table

* \param s [out] sine(angle)

* \param c [out] cosine(angle)

*/
void fast_sincos_ps(v4sf angle, float *table, v4sf *s, v4sf *c) {

v4sf anglet, temp, it, zero, mask, one, sine, cosine, d;
v2si itLo, itHi;
V2SI iaddrLo, iaddrHi;

/* angle in turns */
temp = _mm_set_ps1 (_OBIT_ITWOPI);
anglet = _mm_mul_ps(angle, temp);

/* truncate to [0,1] turns */
/* Get full turns */
itLo = _mm_cvttps_pi32 (anglet); /* first two truncated */
temp = _mm_movehl_ps (anglet,anglet); /* upper two values into lower */
itHi = _mm_cvttps_pi32 (temp); /* second two truncated */
it = _mm_cvtpi32_ps (it, itHi); /* float upper values */
temp = _mm_movelh_ps (it, it); /* swap */
it = _mm_cvtpi32_ps (temp, itLo); /* float lower values */

/* If anglet negative, decrement it */
zero = _mm_setzero_ps (); /* Zeros */
mask = _mm_cmplt_ps (anglet,zero); /* Comparison to mask */
one = _mm_set_ps1 (1.0); /* ones */
one = _mm_and_ps(one, mask); /* mask out positive values */
it = _mm_sub_ps (it, one);
anglet = _mm_sub_ps (anglet, it); /* fold to [0,2pi] */

/* Table lookup, cos(phase) = sin(phase + 1/4 turn)*/
temp = _mm_set_ps1 (_OBIT_NTAB);
it = _mm_mul_ps(anglet, temp); /* To cells in table */
temp = _mm_set_ps1 (0.5);
it = _mm_add_ps(it, temp); /* To cells in table */
iaddrLo.v = _mm_cvttps_pi32 (it);
temp = _mm_movehl_ps (it,it); /* Round */
iaddrHi.v = _mm_cvttps_pi32 (temp);
sine = _mm_setr_ps(table[iaddrLo.i[0]],table[iaddrLo.i[1]],
table[iaddrHi.i[0]],table[iaddrHi.i[1]]);
cosine = _mm_setr_ps(table[iaddrLo.i[0]+_OBIT_NTAB4],
table[iaddrLo.i[1]+_OBIT_NTAB4],
table[iaddrHi.i[0]+_OBIT_NTAB4],
table[iaddrHi.i[1]+_OBIT_NTAB4]);

OBIT DEVELOPMENT MEMO SERIES NO. 14 9

/* One term Taylor series */
temp = _mm_set_ps1 (_OBIT_TWOPI);
anglet = _mm_mul_ps(anglet, temp); /* Now angle on radians */
temp = _mm_cvtpi32_ps (it, iaddrHi.v); /* float upper values */
it = _mm_movelh_ps (temp,temp); /* swap */
it = _mm_cvtpi32_ps (it, iaddrLo.v); /* float lower values */
temp = _mm_set_ps1 (_OBIT_DELTA);
d = _mm_mul_ps (it, temp); /* tabulated phase */
d = _mm_sub_ps (anglet, d); /* actual-tabulated phase */
/* Sine */
temp = _mm_mul_ps (cosine,d);

*s = _mm_add_ps (sine, temp);
/* Cosine */
temp = _mm_mul_ps (sine,d);

*c = _mm_sub_ps (cosine, temp);

_mm_empty(); /* wait for operations to finish */
return ;

} /* end fast_sincos_ps */

#endif /* HAVE_SSE */

