
OBIT DEVELOPMENT MEMO SERIES NO. 88 1

Efficient Faraday Synthesis
W. D. Cotton (NRAO), January 31, 2025

Abstract—Computational efficiency of the software used for
Faraday synthesis and analysis in the Obit system is discussed.
Improved memory access patterns lead to dramatic, factor of 7
to 10, improvement in the runtime for Faraday syntheses and
modest improvements in runtime for Faraday analysis. In all
cases, the CPU requirements are significantly reduced. Tests
used multi–threading and hand coded AVX intrinsics to boost
performance. AVX512 seems to give little improvement over AVX
on a machine with a 512 bit bus.

Index Terms—Computational efficiency

I. INTRODUCTION

FARADAY analysis of polarimetric images using a direct
parameter search can be computationally expensive. The

Faraday depth spectrum is essentially the Fourier transform
of the Q+iU spectrum in λ2 space. Since these spectra are
never sampled regularly in λ2 space, a direct rather than
FFT transform is needed. This memo describes techniques for
efficient Faraday synthesis and analysis in the Obit package
[1]1.

The image level Faraday synthesis/analysis described in this
memo is a good test case for exploring efficiency improve-
ments as it is relatively simple and has no dependencies to
complicate the logic. I.e. the operations on each pixel on the
sky are independent of all others. Also, much of the work is
done after the input data is read and before the results are
written so that timing of the core functionality is not affected
by the speed of the I/O. Obit uses multi–threading [2] and
vector intrinsics (SSE, AVX) [3], [4] to boost performance.

II. FARADAY ROTATION

The phenomenon of the rotation of the angle of a polarized
signal passing through a magnetized plasma, Faraday rotation,
has long been understood. The amount of this rotation [5] is:

∆χ = λ2 0.81

∫
neB‖dr, (1)

where λ is the wavelength in m, ne is the electron density
in cm−3, B‖is the strength of the component of the magnetic
field along the line of sight in µGauss and r is distance in
parsec. This effect was further used to develop the concepts of
Faraday dispersion and Faraday depth by [6] who introduced
the technique of Faraday synthesis, derivation of the Faraday
depth spectrum in a given sight-line. This technique has been
further refined by [5], [7], [8], [9].

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

The Faraday spectrum is approximated using the Fourier
series [10]

Fk(x, y) = K

n∑
j=1

Wj e
−2iφk(λ

2
j−λ

2
0)[Qj(x, y) + iUj(x, y)]

(2)
for Faraday depth φk where Wj is the weight for frequency
sub-band j of n, λj is the wavelength of frequency sub-band
j, λ0 is the reference wavelength, i is

√
−1 and Qj and Uj

are the Stokes Q and U sub-band images at frequency j. The
normalization factor K is 1/

∑n
j=1Wj . Wj may also include

a correction for spectral index2, α:

Wj = wje
−α log(νj/ν0) (3)

where νj is the frequency of channel j, ν0 is the reference
frequency and the weight for sub-band j, wj , is zero for
frequency bins (nearly) totally blanked due to RFI filtering,
one otherwise.

In Obit, the derivation of a Faraday cube (RA, Dec, Faraday
depth) is done in task RMSyn. This is described in more detail
in [10], [9] which also explore some of the limitations of the
technique.

III. PARALLEL COMPUTING IN OBIT

Multithreading is implemented using gthread pools[2]. Use
of thread pools allows, in principle, reducing the overhead
of starting and stopping threads which can be substantial.
All threads in a thread pool are constrained to use the same
function. Since a thread is not terminated when a function
call finishes, this completion is indicated by an event which is
handled by the thread pool manager. This mechanism prohibits
multiple simultaneous thread pools. or multiple functions in
the same thread pool.

Modern processors all support vector operations with
vectors of length the width of the memory bus, currently 256
or 512 bits. This allows operations on vectors of 8 or 16 floats
at the same cost of a single, scalar, operation. Compilers
are (slowly) getting to use some of this functionality but
for the ultimate boost in performance, use of “intrinsics”
(https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html) is better. Hand coded libraries of common
functions (e.g.sincos) are available to give a boost to these
functions.

Intrinsics functions are essentially assembly level instruc-
tions in the form of c function calls. Obit has explicit support
for SSE (128 bit = 4 float), AVX (256 bit = 8 float), AVX2
(256 bit with a stronger instruction set) and AVX512f (512 bit
= 16 floats) vector operations [3], [4]. The supported vector

2The spectral index is defined as Iν ∝ να.

OBIT DEVELOPMENT MEMO SERIES NO. 88 2

sets are chosen at compile time using options -DHAVE SSE, -
DHAVE AVX, -DHAVE AVX2, -DHAVE AVX512 to select
Obit code wrapped in #ifdefs and the options -msse, -mavx, -
mavx2 and -m512f to allow the compiler to use the associated
vector instruction sets.

IV. PREVIOUS OBIT IMPLEMENTATION

As described in Section III, Obit makes extensive use
of parallelization using both multi–threaded operation and
vectorization to improve performance. Many operations on
image–like data are implemented in the ObitFArray (float)
and ObitCArray (complex) classes which provide a variety
of operations on arrays of floats or complex values (as float
pairs). Many of these function use a combination of multi-
threading and SSE/AVX vectorization. For threaded functions,
thread load balancing is done by dividing each array operation
into equal number of pixels for each thread. This is possible as
these operations do not include dependencies between pixels.

Since most of the array functions in classes ObitFArray and
ObitCArray are fairly generic, they support magic value pixel
blanking; a special value, similar to a NaN, is used to indicate
no value 3. This adds an additional computing expense but is
simple to implement using intrinsics functions. The Fourier
synthesis given in Equation 2 is implemented using image
plane functions in the ObitFArray and ObitCArray classes.
Some of these functions have multithreaded implementations
which do their own thread management meaning the thread
pools are repeatedly started and shut down.

A. Original RMSyn Faraday Synthesis

Task RMSyn reads arrays of ObitFArrays containing the
observed Stokes Q and U cubes and generates a cube of
complex image planes at a set of Faraday depths using
Equation 2. A complex CLEAN in each pixel is optional but
the focus of the current memo is the generation of the “dirty”
cube. For each Faraday depth (φ) and λ2:

1) Convert Q and U FArrays to a CArray. This operation
uses ObitCArrayComplex.

2) Rotation array. Using ObitCArrayFill (threaded) fill a
CArray with the complex value

e−2iφ(λ
2−λ2

0)

where λ20 is the reference λ2 (near 0) and i is
√
−1.

3) Multiply Q/U Array by Rotation array. using Obit-
CArrayMul (AVX implementation and threaded).

4) Accumulate. Add the result of the previous step to
the accumulation CArray using ObitCArrayAdd (AVX
implementation and threaded).

While this implementation is reasonably optimized it still
involves extra copies of the Q/U data (converting to a CArray),
uses a complex array (Rotation array) where a complex scalar
is adequate and multiple passes are made through the data.
Threads are only used for a single function call.

3This usage in AIPS predates the development of IEEE standards for
floating point data.

V. ENHANCED OBIT RMSYN IMPLEMENTATION

Many of the inefficiencies in the original implementation of
RMSyn are reduced using new ObitCArray function ObitCAr-
raySMulAccum and implementating a more efficient way of
managing threads. This enhanced implementation is embedded
in the class ObitFaraSyn. These improvements are discussed
in the following sections.

A. ObitCArray function ObitCArraySMulAccum

The operations described in Section IV-A are combined into
the new ObitCArray function ObitCArraySMulAccum. The
performance is enhanced using both AVX vectorization and
multi–threading. This routine is given a Q and U plane from
the input cubes and the complex scalar to rotate them for a
given Faraday depth. The complex product is accumulated into
the Faraday depth plane. The function invoked per thread is
given in Figures V-A and V-A (really 1 & 2). Each thread is
given a range of elements in a 1D representation of the 2D
planes in the Q and U cubes.

The main complication is that neither c nor the AVX intrin-
sics support complex data types which must be implemented
as operations on floats. AVX functions are clumsy at reorga-
nizing data inside vectors so gather/scatter was used for the
AVX512 update of the accumulation array and an even cruder
implementation was used for AVX. AVX512 works on blocks
of 16 floats and AVX on blocks of 8; any left over elements
must be handled from straight c. The threading implementation
uses a minimum or 50,000 elements per thread.

Since ObitCArraySMulAccum is an implementation for
a particular application for which the replacement of pixel
blanking with zeroes is possible, the routine does not need to
check for pixel blanking. This is not the case for the generic
array functions which must check for blanked pixels.

B. Thread Pool Management

Threading in Obit uses gthread thread pools to reduce
the overhead of starting multiple threads. Each thread can
be sent a sequence of jobs and the threads, once activated,
remain alive until explicitly terminated. Unfortunately, the
functions in the ObitFArray and ObitCArray classes do thread
management independently for each call and divides the work
up into a number of threads which are each executed once.
When the same function is repeatedly called, a more efficient
implementation would be to have the external software do
the thread management and only start and stop the pool of
threads once. To make best use of this, a function such as
ObitCArraySMulAccum which combines multiple threaded
operations, is needed.

Previously, thread management was only done internally in
classes with threaded operations, e.g. ObitFArray and Obit-
CArray. Function ObitCArraySMulAccum (see Section V-A)
is implemented in class ObitCArray which has been modified
to allow external thread management. Several functions are
now defined:
• ObitCArrayMakeCAFuncArgs
/**

OBIT DEVELOPMENT MEMO SERIES NO. 88 3

/**
* Form complex array from two FArrays, multiply by complex scalar and

* complex accumulate. Magic value blanking not supported.

* Callable as thread

* \param arg Pointer to CAFuncArg argument with elements:

* \li FA_1 Real part of input

* \li FA_2 Imaginary part of input

* \li arg1 Real/Imaginary parts of scalar

* \li out Output ObitCArray accumulator

* \li first First element (1-rel) number

* \li last Highest element (1-rel) number

* \li ithread thread number, <0 -> no threading

* \return NULL

*/
static gpointer ThreadCASMulAccum (gpointer arg)
{

/* Get arguments from structure */
CAFuncArg *largs = (CAFuncArg*)arg;
ObitFArray *Fin_r = largs->FA_1;
ObitFArray *Fin_i = largs->FA_2;
ofloat *cscalar = largs->arg1;
ObitCArray *Accum = largs->out;
olong loElem = largs->first-1;
olong hiElem = largs->last;
ofloat tr1, ti1, tr2, ti2;
olong i, ilast;
ofloat *rArr = Fin_r->array, *iArr = Fin_i->array, *oArr = Accum->array;

#if HAVE_AVX512==1
CV16SF v1r, v1i, sr, si, tv1, tv2, tv3, tv4;
V16SI vindex;

#elif HAVE_AVX==1
olong j;
CV8SF v1r, v1i, sr, si, tv1, tv2, tv3, tv4;

#endif

if (hiElem<loElem) goto finish;
tr2 = cscalar[0]; ti2 = cscalar[1];

#if HAVE_AVX512==1 /* AVX 512 Vector (16 float) */
sr.v = _mm512_set1_ps(tr2); /* Scalar real */
si.v = _mm512_set1_ps(ti2); /* Scalar imaginary */
vindex = _mm512_set_epi32(30,28,26,24,22,20,18,16,14,12,10,8 6,4,2,0);
for (i=loElem; i<hiElem-16; i+=16) {

v1r.v = _mm512_loadu_ps(&rArr[i]); /* Input reals */
v1i.v = _mm512_loadu_ps(&iArr[i]); /* Input imaginaries */
tv1.v = _mm512_mul_ps (v1r.v, sr.v); /* tr1*tr2 */
tv2.v = _mm512_mul_ps (v1i.v, si.v); /* ti1*ti2 */
tv1.v = _mm512_sub_ps (tv1.v, tv2.v); /* now Real part */
tv3.v = _mm512_i32gather_ps(vindex,(void const*)(&oArr[i*2]),4); /* Gather reals */
tv3.v = _mm512_add_ps (tv3.v, tv1.v); /* Update reals */
_mm512_i32scatter_ps((void*)(&oArr[i*2]),vindex, tv3.v,4); /* Scatter reals */
tv3.v = _mm512_mul_ps (v1i.v, sr.v); /* ti1*tr2 */
tv4.v = _mm512_mul_ps (v1r.v, si.v); /* tr1*ti2 */
tv2.v = _mm512_add_ps (tv3.v, tv4.v); /* now Imaginary part */
tv3.v = _mm512_i32gather_ps(vindex,(void const*)(&oArr[1+(i*2)]),4); /* Gather imag */
tv3.v = _mm512_add_ps (tv3.v, tv2.v); /* Update imag */
_mm512_i32scatter_ps((void*)(&oArr[1+(i*2)]),vindex, tv3.v,4); /* Scatter imag */

} /* end outer loop */
ilast = i; /* How far did I get? */

Fig. 1. ThreadCASMulAccum function

OBIT DEVELOPMENT MEMO SERIES NO. 88 4

#elif HAVE_AVX==1 /* AVX Vector (8 float) */
sr.v = _mm256_broadcast_ss(&tr2); /* Scalar real */
si.v = _mm256_broadcast_ss(&ti2); /* Scalar imaginary */
for (i=loElem; i<hiElem-8; i+=8) {

v1r.v = _mm256_loadu_ps(&rArr[i]); /* Input reals */
v1i.v = _mm256_loadu_ps(&iArr[i]); /* Input imaginaries */
tv1.v = _mm256_mul_ps (v1r.v, sr.v); /* tr1*tr2 */
tv2.v = _mm256_mul_ps (v1i.v, si.v); /* ti1*ti2 */
tv1.v = _mm256_sub_ps (tv1.v, tv2.v); /* now Real part */
/* Gather/scatter the hard way */
tv3.v = _mm256_set_ps(oArr[(i+7)*2],oArr[(i+6)*2],oArr[(i+5)*2],oArr[(i+4)*2],

oArr[(i+3)*2],oArr[(i+2)*2],oArr[(i+1)*2],oArr[i*2]);
tv3.v = _mm256_add_ps (tv3.v, tv1.v); /* Update reals */
for (j=0; j<8; j++) oArr[(i+j)*2] = tv3.f[j]; /* Yuck */
tv3.v = _mm256_mul_ps (v1i.v, sr.v); /* ti1*tr2 */
tv4.v = _mm256_mul_ps (v1r.v, si.v); /* tr1*ti2 */
tv2.v = _mm256_add_ps (tv3.v, tv4.v); /* now Imaginary part */
tv3.v = _mm256_set_ps(oArr[1+(i+7)*2],oArr[1+(i+6)*2],oArr[1+(i+5)*2],oArr[1+(i+4)*2],

oArr[1+(i+3)*2],oArr[1+(i+2)*2],oArr[1+(i+1)*2],oArr[1+i*2]);
tv3.v = _mm256_add_ps (tv3.v, tv2.v); /* Update imag */
for (j=0; j<8; j++) oArr[1+(i+j)*2] = tv3.f[j]; /* Yuck */

} /* end outer loop */
ilast = i; /* How far did I get? */

#else /* Scalar */
ilast = 0; /* Do all */

#endif
/* Loop over whatever is left over */
for (i=ilast; i<hiElem; i++) {

tr1 = rArr[i]; ti1 = iArr[i];
oArr[i*2] += tr1*tr2 - ti1*ti2;
oArr[1+i*2] += ti1*tr2 + tr1*ti2;

} /* end loop over array */

/* Indicate completion */
finish:
if (largs->ithread>=0)

ObitThreadPoolDone (largs->thread, (gpointer)&largs->ithread);

return NULL;
} /* end ThreadCASMulAccum */

Fig. 2. ThreadCASMulAccum function cont’d

* Make arguments for a Threaded function

* For use outside the ObitCArray class

* \param thread ObitThread object

* \param in CA to be operated on

* \param in2 2nd CA

* \param out output CA

* \param FA_1 First FArray

* \param FA_2 Second FArray

* \param FA_3 Third FArray

* \param FA_4 Fourth FArray

* \param larg1 Length of arg1 (float)

* \param larg2 Length of arg2 (float)

* \param larg3 Length of arg3 (float)

* \param larg4 Length of arg4 (float)

* \param larg5 Length of arg5 (float)

* \param larg6 Length of arg6 (float)

* \param larg7 Length of arg7 (float)

* \param ThreadArgs [out] CAFuncArg array

* delete with ObitCArrayKillCAFuncArgs

* \return number of elements in args
(number of allowed threads).

*/

olong ObitCArrayMakeCAFuncArgs
(ObitThread *thread, ObitCArray *in,
ObitCArray *in2, ObitCArray *out,
ObitFArray *FA_1, ObitFArray *FA_2,
ObitFArray *FA_3, ObitFArray *FA_4,
olong larg1, olong larg2,

OBIT DEVELOPMENT MEMO SERIES NO. 88 5

olong larg3, olong larg4,
olong larg5, olong larg6,
olong larg7, gpointer *ThreadArgs)

This takes a number of application specific parameters,
determines the number of threads allowed and creates
an array of opaque thread argument arrays (ThreadArgs)
and returns the maximum number of allowed threads. The
number of threads and the ThreadArgs array pointer can
be passed to the threaded application.

• ObitCArrayKillCAFuncArgs
/**
* Delete arguments for ThreadCAFunc

* \param nThreads number of threads

* \param ThreadArgs array of CAFuncArg

*/
void ObitCArrayKillCAFuncArgs

(olong nThreads, gpointer ThreadArgs)

This function stops the threads in the thread pool and
frees components in ThreadArgs.

• ObitCArraySMulAccum
/**
* Form complex array from two FArrays,

* multiply by complex scalar and

* complex accumulate.

* \param Fin_r Input real FArray

* \param Fin_i Input imaginary FArray

* \param cscalar Complex Scalar [r,i]

* \param Accum CArray Accumulator

*/
void ObitCArraySMulAccum

(ObitFArray* Fin_r,ObitFArray* Fin_i,
ofloat cscalar[2],ObitCArray* Accum)

Version of the routine which manages threads internally.
• ObitCArraySMulAccumTh
/**
* Form complex array from two FArrays,

* multiply by complex scalar and

* complex accumulate.

* Threading controlled externally.

* \param Fin_r Input real FArray

* \param Fin_i Input imaginary FArray

* \param cscalar Complex Scalar [r,i]

* \param Accum CArray Accumulator

* \param nThreads Number of threads

* \param threadArgs Thread arguments

*/
void ObitCArraySMulAccumTh

(ObitFArray* Fin_r,ObitFArray* Fin_i,
ofloat cscalar[2],ObitCArray* Accum,
olong nThreads,gpointer ThreadArgs)

Version of the routine for managing threads externally.

C. RMSyn Timing Comparison

Timing tests of the original RMSyn and the enhanced
version were performed on machines Gandalf (sixteen Intel

Xeon cores running @ 3.1 GHz and which supports SSE and
AVX), Smeagle (twenty–four Intel Xeon Gold cores running
@ 3.0 GHz and which supports SSE, AVX, AVX2, and
AVX512 instructions) and Cheeta (seventy–two Intel Xeon
cores running @ 2.1 GHz and which supports SSE, AVX,
and AVX2). Each of these systems has 256 GByte of RAM.
Gandalf and smeagle have software RAID-5 disks and cheeta
has a 20 TByte SSD disk. Testing included a number of
compilers including gcc 4.8.5, gcc 8.3.1 and icc 19.1.1.217;
all compilations use -O3 optimization. All of the major com-
putation code used was compiled with the same options for
each test.

Two data sets were used, the smaller one with
2001×2001×200 pixels (“Small”) and a larger one
4882×4882×225 pixels (“Large”). In both cases a substantial
number of the Q/U channels were blanked due to RFI.
For both tests, a Faraday depth cube with 1000 planes was
formed. The elapsed wall clock and CPU times for just the
Faraday synthesis part of runs of the old and new versions of
RMSyn are given in Table I with the ratio of old to new wall
clock and CPU times. The test data used are from MeerKAT
at L band and are described in [11], [10], [9].

The more efficient newer implementation makes a dramatic
difference in the wall clock (real) times, a factor of 7 for the
older machines (galdalf, cheeta) and 10 for the newer (smea-
gle) one with more cores than gandalf and longer vectors.

In the new implementation, complex fill, multiply and sum
is done in one pass through the data with no blank checking.
Gather/scatter is used for AVX512 but is crudely emulated
in AVX using SSE (4 float) operations for the ”scatter” as
they are more flexible. AVX2 has gather/scatter but that wasn’t
implemented or tested. The routines used in the old tests were
generic and supported pixel blanking whereas in new tests, the
routines were specific to that problem and any blanks were
replaced by zeroes once and did not need testing. The most
significant differences in the new and old implementations are
that that the new version needs fewer passes through the data
and doesn’t need to check for blanked pixels.

Different compilers listed in Table I have different prop-
erties. One concern is the behavior of the tests, especially
“Old”, on smeagle with AVX512/AVX/no AVX (”no AVX”
means the work was done in straight c but was allowed to
use SSE instructions). The AVX512 and no AVX runs were
comparable but AVX with gcc 8.3.1 took MUCH longer for
both the old and new tests. The bulk of the time in the
“Old” test should have been in ObitCArray:ThreadCAMul but
the AVX512 and AVX implementations use the equivalent

mm512 and mm256 functions. The same is also true of
ObitCArray:ThreadCAAdd. The new implementations are also
very similar for AVX512 and AVX. When the same AVX tests
are rerun on smeagle compiling with either the older gcc 4.8.5
or icc, the results are comparable to the AVX512 runs. gcc
8.3.1 seems to produce particularly poorer results when using
AVX than the older gcc 4.8.5; even when a large fraction of
the work uses intrinsics. Using AVX512 shows little to no
advantage over AVX; nor does icc over gcc.

Other than the discrepant results using gcc 8.3.1 on smeagle,
the old tests show little variation in performance with vector

OBIT DEVELOPMENT MEMO SERIES NO. 88 6

TABLE I
RMSYNTH CPU TIMING

System Test Vector Compiler Old Real Old CPU New Real New CPU Real Ratio CPU Ratio
min. min. min. min.

Gandalf Small AVX gcc4.8.5 34.8 157.8 4.47 43.1 7.8 3.7
Gandalf Large AVX ” 219.0 943.0 27.8 290.4 7.8 3.2
Cheeta Small AVX gcc4.8.5 39.5 314.7 3.25 117.9 12.2 2.7
Cheeta Large AVX ” 309.3 2775.6 35.8 1894.4 8.6 1.4
Cheeta Small no AVX gcc4.8.5 38.2 311.7 49.0 1872.8 8.7 1.7
Cheeta Large no AVX ” 321.2 3408.0 414.0 15951. 0.8 0.2
Smeagle Small AVX512 gcc8.3.1 22.2 116.0 2.43 35.7 9.1 3.2
Smeagle Large AVX512 ” 213.1 1255.8 20.4 402.3 10.4 3.1
Smeagle Small AVX512 icc 23.4 116.0 2.45 35.9 9.6 3.2
Smeagle Large AVX512 ” 206.0 1177.2 20.6 401.7 10.0 2.9
Smeagle Small AVX gcc8.3.1 44.5 211.2 4.57 71.0 9.7 3.0
Smeagle Large AVX ” 381.3 2110.7 29.1 465.1 13.1 4.5
Smeagle Small AVX gcc4.8.5 22.0 89.3 2.12 34.2 10.4 2.6
Smeagle Large AVX ” 203.9 1166.7 20.0 400.9 10.2 2.9
Smeagle Small AVX icc 21.3 109.0 2.15 34.1 9.9 3.2
Smeagle Large AVX ” 206.0 1243.5 20.1 400.2 10.2 3.1
Smeagle Small no AVX gcc8.3.1 24.2 136.1 14.2 174.0 1.7 0.8
Smeagle Large no AVX ” 217.0 1399.9 99.6 1195.5 2.18 1.2

length. This suggests that the limiting factor was the larger
number of passes through the data cubes in the old algorithm;
much of the time was spent waiting on data from memory.
This is further supported by the result that the CPU time
was reduced by substantially less than the wall clock time
(see Table II). In the new test, the AVX512 and AVX tests
on smeagle and cheeta showed substantial improvement over
using straight c code with SSE instructions allowed.

The new tests using no AVX instructions on cheeta (gcc
4.8.5) showed very poor results whereas the comparable test
on smeagle (gcc 8.3.1) were more in line with expectations.
These tests were repeated to confirm the results. The poor
result seems confined to the Faraday synthesis section as it
took practically all of the total time rather than the more typical
30% (see Table II). The no AVX new test on smeagle also
used a large fraction (70%) of the total time in the Faraday
synthesis section.

The Faraday synthesis is only one component of a typical
run of RMSyn; a CLEAN is generally also done on each pixel
with detectable polarization. While the details of the CLEAN
depend on the particular case being analyzed, the test case used
here is relatively representative. The fraction of the total run
time used by the Faraday synthesis in the various test cases is
given in Table II. The cost of the Faraday synthesis dominated
all cases with the “old” implementation but is (generally) a
relatively smaller component in the “new” implementation.

A portion of the field used for the timing tests in Stokes
I is shown in Figure 3. Polarized AGN and extended cluster
emission appears in this area. The 3D Faraday depth cube is
collapsed to 2D dimensions in Figure 4.

VI. FARADAY ANALYSIS

The previous sections have described the generation of
full Faraday depth cubes. In many practical cases, the Fara-

TABLE II
RMSYNTH RUN FRACTION

System Test Vector compiler Old Fract New Fract
% %

Gandalf Small AVX gcc4.8.5 77.3 30.7
Gandalf Large AVX ” 77.2 29.9
Cheeta Small AVX gcc4.8.5 90.0 41.9
Cheeta Large AVX ” 93.6 63.0
Cheeta Small no AVX gcc4.8.5 89.4 91.6
Cheeta Large no AVX ” 93.9 95.1
Smeagle Small AVX512 gcc8.3.1 77.0 30.2
Smeagle Large AVX512 ” 84.5 33.8
Smeagle Small AVX512 icc 79.6 30.0
Smeagle Large AVX512 ” 85.5 37.9
Smeagle Small AVX gcc8.3.1 70.7 21.0
Smeagle Large AVX ” 79.3 23.2
Smeagle Small AVX gcc4.8.5 64.1 30.4
Smeagle Large AVX ” 82.9 37.9
Smeagle Small AVX icc 70.7 21.7
Smeagle Large AVX ” 79.3 31.2
Smeagle Small no AVX gcc8.3.1 77.5 65.9
Smeagle Large no AVX ” 84.2 69.7

day screen is relatively simple and an analysis searching
for the peak Faraday depth (called “Rotation measure”) and
the associated unwrapped polarized intensity and polarization
angle are sufficient. There are two generic approaches to
this, 1) doing a direct search, i.e. computing the full cube
and in each pixel using the rotation measure and polarization
corresponding to the peak unwrapped polarized amplitude. The
other approach, 2) is to perform a least squares fitting to the Q
and U values in each pixel. In this latter case, the fitting needs

OBIT DEVELOPMENT MEMO SERIES NO. 88 7

Fig. 3. Region of cluster of galaxies Abell 3395 in Stokes I at 1.3 GHz containing interesting polarized emission. From [11].

to be nonlinear as the fitted values, atan2(U,Q), are ambiguous
and a good initial starting solution is needed. Such a starting
solution can be obtained via a direct search. These functions
have been implemented in Obit class ObitRMFit with a python
interface in class RMFit as functions Cube and ImArr for Q/U
cubes or arrays of single plane images.

A new task, Farad, has been implemented to use the
new, higher efficiency ObitFarSyn class. The original class
ObitRMFit was implemented only through a python interface
which makes timing more problematic. For the timing tests
a c program was used for the testing. The tests used the
same three systems, gandalf, smeagle and cheeta used for
the Faraday synthesis tests. The dataset was the same as the
“small” (2001×2001×200) test and all runs used the best

vector set available on the system. The timing results are
shown in Table III.

The “RMSyn” test was looking for the peak unwrapped
polarized intensity in the Faraday depth cube used the same
software as for the Faraday synthesis except instead of saving
the whole cube, only kept track of the peak. The least
squares fitting (“LSQ”) in both the old and new tests used a
Gnu Scientific Library (GSL) nonlinear fitting routine. This
was provided with functions to calculate the residuals and
derivatives of the model. To perform this fitting, the routine
had to extract all the Q and U measurements in each pixel. The
two enhancements were 1) to have the threads use successive
cells in the arrays rather than separated blocks of cells. This
improves the cache hit ratio as data are read from memory to

OBIT DEVELOPMENT MEMO SERIES NO. 88 8

Fig. 4. False color representation of the Abell 3395 Faraday cube. This is the polarized intensity weighted Faraday depth given in color shown by the scale
bar; red is -100 rad m−2 and blue is 100 rad m−2. Colors are washed out in pixels with a range of Faraday depths. This is the same region of the sky as in
Figure 3.

cache in blocks the size of the width of the memory bus; 8 or
16 floats in the tests performed.

The other enhancement, 2) was in the loops in the routines
to calculate model residuals and derivatives. The interface to
the GSL routines involved function calls to set each of these
values; initially this was done in a single loop which tested if
the weight of each datum was positive. The enhanced version
replaced this with two loops, the first to calculate arrays of
the values to be fed to GSL and the second to set them. This
allows the compiler to make better use of optimization and
vectorization. Also the test on the weight was dropped as with

zero weight, the results were the same. This also allows better
compiler optimization.

The results in Table III shows a modest improvement in run
time for most of the tests but generally a factor of 2 reduction
in the CPU time used. The timing in these tests was for the
full operation and included input and output I/O.

The result of the LSQ test on gandalf is shown in Figure 5.
Since only the Faraday depth of the peak unwrapped polarized
intensity is shown, there is no washing out of the colors.
However, this figure does not indicate areas with complex
Faraday depth spectra.

OBIT DEVELOPMENT MEMO SERIES NO. 88 9

TABLE III
FARADAY ANALYSIS CPU TIMING

System Test Old Real Old CPU New Real New CPU Real Ratio CPU Ratio
min. min. min. min.

Gandalf RMSyn 9.6 128.4 5.1 46.5 1.9 2.8
Gandalf LSQ 9.4 127.9 6.9 66.6 1.4 1.9
Cheeta RMSyn 3.9 228.4 3.0 117.5 1.3 1.9
Cheeta LSQ 4.5 263.4 4.5 150.9 1.0 1.7
Smeagle RMSyn 4.0 78.9 3.1 38.2 1.3 2.1
Smeagle LSQ 7.7 158.7 4.1 56.5 1.9 2.8

VII. DISCUSSION

The changes made to Faraday synthesis lead to factors of 7
to 10 reduction of the run time on the systems tested. This is
largely due to the single rather than multiple passes through
the input data for each output plane and dropping the testing
for blanked pixels. The memory access pattern leads to a much
improved cache hit ratio.

Hand coded use of vector intrinsics give much better per-
formance than simple gcc compiler optimization. With the use
of vector intrinsics the more expensive intel c compiler, icc,
shows little improvement over gcc. AVX512 (16 floats) on
smeagle doesn’t give much enhancement over AVX (8 floats),
this likely means that the memory access time is the dominant
cost, 512 bits are fetched from memory at a time and if that
dominates, then whether one or two floating operations is
needed is irrelevant.

The new implementation of Faraday analysis in task Farad
shows modest improvement in the run times but of order a
factor of two in CPU usage. This suggests improved runtime
performance on systems with fewer cores than used in these
tests.

The weighting used in these tests were per plane but should
really be done per pixel for wide fields of view for single
pointing images where the relative antenna gain varies with
frequency, hence with λ2. In practice, off–axis instrumental
problems such as instrumental polarization become important
before this becomes an issue. This is especially true for
MeerKAT. Mosaic images should have much reduced off–axis
instrumental problems and no issue with frequency variable
antenna gain.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

[2] W. D. Cotton, “Note on the Efficacy of Multi-threading in Obit,” Obit
Development Memo Series, vol. 1, pp. 1–8, 2008. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/Thread.pdf

[3] ——, “Notes on icc and AVX,” Obit Development Memo
Series, vol. 61, pp. 1–2, 2019. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/ICCAVX.pdf

[4] ——, “AVX512: First Look,” Obit Development Memo
Series, vol. 67, pp. 1–5, 2020. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/AVX512.pdf

[5] M. A. Brentjens and A. de Bruyn, “Faraday rotation measure synthesis,”
A&A, vol. 441, pp. 1217–+, Sep. 2005.

[6] B. J. Burn, “On the depolarization of discrete radio sources by Faraday
dispersion,” MNRAS, vol. 133, p. 67, Jan. 1966.

[7] G. Heald, R. Braun, and R. Edmonds, “The Westerbork SINGS survey.
II Polarization, Faraday rotation, and magnetic fields,” A&A, vol. 503,
no. 2, pp. 409–435, Aug. 2009.

[8] X. H. Sun, L. Rudnick, T. Akahori, C. S. Anderson, M. R. Bell,
J. D. Bray, J. S. Farnes, S. Ideguchi, K. Kumazaki, T. O’Brien, S. P.
O’Sullivan, A. M. M. Scaife, R. Stepanov, J. Stil, K. Takahashi,
R. J. van Weeren, and M. Wolleben, “Comparison of Algorithms for
Determination of Rotation Measure and Faraday Structure. I. 1100-1400
MHz,” AJ, vol. 149, no. 2, p. 60, Feb. 2015.

[9] L. Rudnick and W. D. Cotton, “Correction to: Full resolution deconvolu-
tion of complex Faraday spectra,” MNRAS, vol. 523, no. 1, pp. 774–774,
Jul. 2023.

[10] W. D. Cotton and L. Rudnick, “Faraday Synthesis of Unequally
Spaced Data and Complex Deconvolution,” Obit Development
Memo Series, vol. 76, pp. 1–18, 2022. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/Obitdoc/RMSyn.pdf

[11] K. Knowles, W. D. Cotton, L. Rudnick, F. Camilo, S. Goedhart,
R. Deane, M. Ramatsoku, M. F. Bietenholz, M. Brüggen, C. Button,
H. Chen, J. O. Chibueze, T. E. Clarke, F. de Gasperin, R. Ianjamasi-
manana, G. I. G. Józsa, M. Hilton, K. C. Kesebonye, K. Kolokythas,
R. C. Kraan-Korteweg, G. Lawrie, M. Lochner, S. I. Loubser,
P. Marchegiani, N. Mhlahlo, K. Moodley, E. Murphy, B. Namumba,
N. Oozeer, V. Parekh, D. S. Pillay, S. S. Passmoor, A. J. T. Ramaila,
S. Ranchod, E. Retana-Montenegro, L. Sebokolodi, S. P. Sikhosana,
O. Smirnov, K. Thorat, T. Venturi, T. D. Abbott, R. M. Adam, G. Adams,
M. A. Aldera, E. F. Bauermeister, T. G. H. Bennett, W. A. Bode, D. H.
Botha, A. G. Botha, L. R. S. Brederode, S. Buchner, J. P. Burger,
T. Cheetham, D. I. L. de Villiers, M. A. Dikgale-Mahlakoana, L. J.
du Toit, S. W. P. Esterhuyse, G. Fadana, B. L. Fanaroff, S. Fataar,
A. R. Foley, D. J. Fourie, B. S. Frank, R. R. G. Gamatham, T. G.
Gatsi, M. Geyer, M. Gouws, S. C. Gumede, I. Heywood, M. J. Hlakola,
A. Hokwana, S. W. Hoosen, D. M. Horn, J. M. G. Horrell, B. V. Hugo,
A. R. Isaacson, J. L. Jonas, J. D. B. Jordaan, A. F. Joubert, R. P. M.
Julie, F. B. Kapp, V. A. Kasper, J. S. Kenyon, P. P. A. Kotzé, A. G.
Kotze, N. Kriek, H. Kriel, V. K. Krishnan, T. W. Kusel, L. S. Legodi,
R. Lehmensiek, D. Liebenberg, R. T. Lord, B. M. Lunsky, K. Madisa,
L. G. Magnus, J. P. L. Main, A. Makhaba, S. Makhathini, J. A. Malan,
J. R. Manley, S. J. Marais, M. D. J. Maree, A. Martens, T. Mauch,
K. McAlpine, B. C. Merry, R. P. Millenaar, O. J. Mokone, T. E. Monama,
M. C. Mphego, W. S. New, B. Ngcebetsha, K. J. Ngoasheng, M. T.
Ockards, A. J. Otto, A. A. Patel, A. Peens-Hough, S. J. Perkins, N. M.
Ramanujam, Z. R. Ramudzuli, S. M. Ratcliffe, R. Renil, A. Robyntjies,
A. N. Rust, S. Salie, N. Sambu, C. T. G. Schollar, L. C. Schwardt, R. L.
Schwartz, M. Serylak, R. Siebrits, S. K. Sirothia, M. Slabber, L. Sofeya,
B. Taljaard, C. Tasse, A. J. Tiplady, O. Toruvanda, S. N. Twum, T. J.
van Balla, A. van der Byl, C. van der Merwe, C. L. van Dyk, V. Van
Tonder, R. Van Wyk, A. J. Venter, M. Venter, M. G. Welz, L. P. Williams,
and B. Xaia, “The MeerKAT Galaxy Cluster Legacy Survey. I. Survey
Overview and Highlights,” A&A, vol. 657, p. A56, Jan. 2022.

OBIT DEVELOPMENT MEMO SERIES NO. 88 10

Fig. 5. Hue-Intensity image of Abell 3395 derived from a Faraday analysis. The intensity is the unwrapped polarized intensity and the color is the peak
rotation measure given by the scale bar; red is -100 rad m−2 and blue is 100 rad m−2. This is the same region of the sky as in Figure 3.

