
OBIT DEVELOPMENT MEMO SERIES NO. 35 1

Comparison of GPU and Multithreading for
Interferometric DFT Model Calculation

W. D. Cotton, version 2, January 17, 2014

Abstract—Calculation of sky models for interferometric image
processing using a direct Fourier transform (DFT) allows a
relatively arbitrary model to be computed. This flexibility comes
at the price of a potentially large computing cost as the response
to each sky model component must be computed for each visi-
bility measurement. Fortunately, such calculations can be highly
parallel and a multi–threading method has been implemented
in Obit. This memo compares the performance of a multi–
threaded implementation with that using a GPU. A substantial
improvement (33X) is seen on large problems from using a GPU
over multi–threading plus AVX and both implementations are
far faster than a CPU single thread.

Index Terms—interferometry, computation efficiency, multi–
threading, GPU

I. I NTRODUCTION

CALCULATION of sky models for interferometric image
processing using a direct Fourier transform (DFT) allows

a relatively arbitrary model to be computed enabling a large
variety of corrections. This flexibility comes with a potentially
large computing cost as the response to each sky model
component must be computed for each visibility measurement.
This version of the memo uses thesincosf function in the
CUDA routine rather than sincosf which leads to a substantial
improvement as well as the use of AVX intrinsics for the
sine/cosine calculation in the threaded CPU case.

II. DFT SKY MODEL CALCULATION

The model of the celestial emission is frequently composed
of discrete components derived from a CLEAN deconvolution.
These may be a collection of either delta functions or extended
components such as Gaussians. The following will consider
the simple case of a set (k) of delta functions described by a
flux density (ak) and a position (xk, yk andzk=1−

√

x2
k + y2

k).
Each visibility measurement (Vj) is a complex value and is
described by its location in the aperture plane as (uj0, vj0,
wj0) which is a function of frequency (ν) and the 0 subscripts
indicate the (u, v, w) coordinate at the reference frequencyν0.
For multi–frequency data, the (u, v, w) coordinates at a given
frequency are given by:

ujν = uj0
ν

ν0

vjν = vj0
ν

ν0

wjν = wj0
ν

ν0

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

The response of an interferometer to a sky model composed
of n flat spectrum delta functions is then:

Vi,ν =

n
∑

k=0

ak e
−2iπ ν

ν0
(uj0xk+vj0yk+wj0zk) (1)

wherei =
√

−1.
Evaluation of the complex exponential in Eq. 1 is done by

taking the sine and cosine of the argument. A fast implemen-
tation of sine and cosine functions is described in [1].

III. PARALLEL IMPLEMENTATIONS

Modern large data-sets contain many (millions) of visibility
records each with many frequency channels. The evaluation
of Eq. 1 can be performed independently for visibility and
frequency and is therefore “embarrassingly parallel”. Two
current schemes for parallel computing are using multiple
cores in a CPU via multi–threading and the using attached
graphics processors generically called GPUs.

Large data-sets can be larger than will fit into computer
memory so the technique of “strip mining”, processing se-
quential segments of the data, is frequently employed. Each
segment of data can be split in any of a number of ways and
the different parts processed in parallel.

A. Multi–threading

Modern CPUs contain multiple cores with a common ad-
dress space; multiple cores can be used simultaneously by
means of multiple threads of execution. A means of creating
and controlling multiple threads in an application programis
described in [2].

The implementation of multi–threaded DFT model calcula-
tion described here splits the data into groups of visibilities
each of which is processed by a separate core. A sample
thread routine is given in the appendix which uses the fast
Sine/Cosine routine described in [1]. This version of the
sin/cos vector routines are based on AVX intrinsics.

B. GPU

GPUs are attached processors with separate memories and
address spaces; data must be copied to and from the device
from the host. GPUs are optimized for graphics operations and
are not as flexible as CPU cores but have sufficient capability
for our needs, in particular, 32 bit floating arithmetic and math
functions. A sample GPU kernel in CUDA is given in the
appendix. GPUs contain a large number of processors similar
to CPU cores but generally slower. In the implementation

OBIT DEVELOPMENT MEMO SERIES NO. 35 2

given in the appendix, the problem is split by visibility
and frequency channel and each kernel evaluates Eq. 1 for
a given visibility and frequency. Higher performance GPUs
allow overlapping data transfers and execution which enhances
the overall performance. Note: the CUDA code executes
substantially faster using thesincosf intrinsic function rather
than sincosf.

IV. T IMING TESTS

A set of tests were performed on a workstation with both
multiple cores and several GPU devices. The CPU contained 6
Intel(R) Xeon(R) CPU E5-1650 3.2 GHz cores hyper-threaded,
a Tesla K20c GPU with 13 MPs x 192 (Cores/MP) = 2496
(Cores), and a GeForce GTX 780 GPU with 12 MPs x
192 (Cores/MP) = 2304 (Cores). The GTX 780 gave better
performance and was used for the tests reported here.

Two implements were compared, one based on multi-
threading using all 12 hyper threads with a fast sine/cosine
routine based on AVX intrinsics and the other used the
GTX 780 GPU. The threading version used the c language
and the GPU, CUDA. Each was performed on the same
simulated data-set consisting of 10,000 visibilities eachwith
512 frequency channels. Sky models with various numbers
of point components were tested. Each test was repeated 100
times and the wall clock execution times measured with the
UNIX time utility. The computation routines used are given
in the appendix.

The GPU implementation used 4 streams to overlap data
transfer and execution. The multi-threaded implementation
used the AVX based fast sine/cosine routines from [1].

Each implementation was run using sky models of a varying
number of components and the results given in Table I. The
time as a function of number of components is plotted in
Figure 1 and the ratio of the run times in Figure 2. For
reference, a single threaded run of the 1024 component test
took 2198 sec or, a factor of 6.0 longer than the multi–threaded
test or 190 times longer than the GPU test. The speed of the
threaded version scales with the number of CPU cores; in this
case 6.

V. D ISCUSSION

The results given in Table I and Figures 1 and 2 show that
for a small number of sky model components, the data transfer
dominated the time used in the GPU implementation; there is
little increase in the run time for up to 128 components. The
speed of the GPU is still sufficient that it beats the multi–
threaded implementation for all but the smallest test. The ratio
of multi–threaded to GPU times increases rapidly up to about
512 components at which point the GPU computation time
becomes substantially larger than the data transfer time. The
ratio peaks at 33 at 4096 components and declines slowly for
higher numbers. This decline in the ratio is likely due to the
increasing efficiency of the multi–threaded implementation;
for larger problems the scalar overhead of multiple threads
is increasingly hidden behind the parallel computing. Both
the multi–threaded and GPU implementations showed large
performance enhancements over a single thread test.

This test suggests there are big gains to be had, factors
of 10s improvement in performance using GPUs in radio
interferometry imaging software. Other compute intensive
operations such as gridding the data can also be subjected
to similar treatment.

ACKNOWLEDGMENT

I would like to thank Scott Ransom for advice on GPU
usage and for the use of his workstation for testing.

TABLE I
Scaling with Sky Model size

Number of Comps Thread GPU Ratio
s s

1 1.6 2.48 0.6
4 3.6 2.52 1.4
8 3.7 2.44 1.5
16 6.4 2.50 2.6
32 11.7 2.45 4.8
64 23.5 2.51 9.4
128 45.9 2.44 19
256 91.6 3.40 27
512 183.1 6.04 30
1024 365.3 11.58 32
2048 729.4 22.54 32
4096 1458 44.55 33
8192 2912 98.56 30

OBIT DEVELOPMENT MEMO SERIES NO. 35 3

Threaded(+) vs GPU (*)

Number of components

R
ea

l t
im

e(
se

c)

0 2000 4000 6000 8000

0
10

00
20

00
30

00

Fig. 1. Plot of real time v. number of CLEAN components in sky modelfor the threaded and GPU implementations. Thread values are shown as “+” and
solid line and GPU values are “*” and a dotted line.

Ratio of threaded/GPU real times

Number of components

T
hr

ea
d/

G
P

U
 r

ea
l t

im
e

0 2000 4000 6000 8000

0
10

20
30

40

Fig. 2. Plot of the ratio of real times used by the threaded and GPU (GTX 780) processing as a function of the number of components in the CLEAN sky
model.

OBIT DEVELOPMENT MEMO SERIES NO. 35 4

APPENDIX

GPU code
The following is the source code for the kernel used in the

GPU test.

__global__ void dftKernel(float *g_out,
float *g_in,float *Model,float *FreqArr,
int nModel, int nrparm, int lenvis)

{
// beginning of a visibility
int idx = blockIdx.x * lenvis;
// channel numbe
int ichan = threadIdx.x;
int i, ivis, iMod = 0;
float arg, amp, s, c, sumR,sumI,u,v,w;
float u, v, w;
float freqFact = FreqArr[ichan];
// copy random parms if 1st channel
if (ichan==0) {

for (i=0; i<nrparm; i++)
g_out[idx+i] = g_in[idx+i];

}
// real part of vis
ivis = idx + nrparm + ichan*3;

// Assume random parms start with u,v,w,
// model = flux, x,y,z factors
u = g_in[idx];
v = g_in[idx+1];
w = g_in[idx+2];
u *= freqFact;
v *= freqFact;
w *= freqFact;
sumR = sumI = 0.0;
for (int i=0; i<nModel; i++) {

amp = Model[iMod];
arg = u*Model[iMod+1] +

v*Model[iMod+2] +
w*Model[iMod+3];

__sincosf(arg, &s, &c);
sumR += amp * c;
sumI += amp * s;
iMod += 4;

} // end loop over model comps
g_out[ivis] = g_in[ivis] - sumR;
g_out[ivis+1] = g_in[ivis+1] - sumI;
g_out[ivis+2] = g_in[ivis+2];

} // end dftKernel

Thread code
The following is the source code executed in each thread

of the multi-threaded version.

/**
* Do Fourier transform using a DFT for a

* buffer of data. Callable as thread

* \param arg Pointer to FTFuncArg argument

* \return NULL

*/
static gpointer ThreadSkyModelFTDFT
(gpointer args)

{
/* Get arguments from structure */
FTFuncArg *largs = (FTFuncArg*)args;
glong hivis = largs->hivis;
/* lowest vis (0-rel) */
glong lovis = largs->lovis;
/* Number of random parameters */
glong nrparm = largs->nrparm ;
/* Number of channels */
glong nchan = largs->nchan;
/* number of CC model components */
glong nmodel = largs->nmodel;
/* thread number, <0 -> no threading */
glong ithread = largs->ithread;
/* data */
gfloat *data = largs->data;
/* model as flux, 2 pi x, 2 pi y, 2 pi z */
gfloat *model = largs->model;
/* Frequency scaling array */
gfloat *freqArr = largs->freqArr;
ObitThread *thread = largs->thread;

glong iVis, iComp, ichan, lrec, it, jt,
itcnt, indx;

gfloat *visData, *ccData, sumReal, sumImag,
u, v, w;

#define FazArrSize 128 /* Size of arrays */
gfloat AmpArr[FazArrSize], FazArr[FazArrSize],
CosArr[FazArrSize], SinArr[FazArrSize];

gfloat freqFact;

lrec = nrparm + nchan*3;
visData = data;
/* Loop over vis */
for (iVis=lovis; iVis<hivis; iVis++) {
/* Loop over channel */
for (ichan=0; ichan<nchan; ichan++) {

freqFact = freqArr[ichan];
u = freqFact*visData[0];
v = freqFact*visData[1];
w = freqFact*visData[2];
indx = nrparm + ichan*3;
/* Valid visibility? */
if (visData[indx+2] <= 0.0) continue;
sumReal = 0.0;
sumImag = 0.0;

OBIT DEVELOPMENT MEMO SERIES NO. 35 5

ccData = model;
/* outer Loop over models */
for (it=0;it<nmodel;it+=FazArrSize) {
itcnt = 0;
/* inner Loop over models */
for (iComp=it; iComp<nmodel; iComp++) {

AmpArr[itcnt] = ccData[0];
FazArr[itcnt] = ccData[1]*u +
ccData[2]*v + ccData[3]*w;

itcnt++;
ccData += 4;
if (itcnt>=FazArrSize) break;

} /* end inner loop */
/* Convert phases to sin/cos */
ObitSinCosVec(itcnt,FazArr,SinArr,CosArr);
/* Accumulate real and imaginary parts */
for (jt=0; jt<itcnt; jt++) {

sumReal += AmpArr[jt]*CosArr[jt];
sumImag += AmpArr[jt]*SinArr[jt];

}
} /* end outer loop over model */

} /* end loop over channel */
/* Subtract */
visData[indx] -= sumReal;
visData[indx+1] -= sumImag;
visData += lrec;

} /* end loop over vis */

/* Done */
if (ithread>=0)

ObitThreadPoolDone (thread,
(gpointer)&ithread);

return NULL;
} /* end ThreadSkyModelFTDFT */

REFERENCES

[1] W. D. Cotton, “A Fast Sine/Cosine Routine: Revenge of theVector
Processors,”Obit Development Memo Series, vol. 37, pp. 1–9, 2013.

[2] ——, “Note on the Efficacy of Multi-threading in Obit,”Obit Develop-
ment Memo Series, vol. 1, pp. 1–8, 2008.

