
OBIT DEVELOPMENT MEMO SERIES NO. 36 1

Comparison of GPU, Single– and Multi–threading
for Interferometric Gridding

W. D. Cotton, January 17, 2014

Abstract—One of the more compute intensive aspects of
radio interferometry is the conversion of the sampled visibilities
to a “dirty” image. Interferometric measurements inherently
randomly sample locations on the u–v plane making the direct
usage of an fast Fourier Transform (FFT) to transform to the
image domain impractical. The current practice is to convolve
the measured samples with a continuous function which is then
re-sampled and accumulated onto a regular grid. This grid can
then be used with an FFT algorithm to efficiently derive an image
from the data. This algorithm presents a number of challenges to
an efficient implementation on Graphics Processor Units (GPUs).
GPUs are optimized for image manipulation wherein memory is
imaged sequentially in streaming operations. The convolutional
gridding algorithm updates random patches in the grid resulting
in inefficient GPU memory access. Furthermore, various com-
binations of convolved visibilities will overlap on the grid in a
difficult to predict pattern so the accumulation into the grid must
be done via an “atomic” operation to assure that the operation is
done reliably. This memo explores several implementations of the
convolutional gridding algorithm for single– and multi–threaded
CPU and GPU applications as well as the inclusion of AVX coding
in a multi–threaded test. The best GPU implementation tested
was not quite as fast as the best simple multi–threaded CPU
implementation but several times faster than a single threaded
CPU implementation. Multi–threading with AVX intrinsics is
the clear winner in this comparison being over two and a half
times faster than the best GPU implementation. The frequency
of serious memory errors in the absence of error correction is
explored and found to be quite rare.

Index Terms—interferometry, computation efficiency, multi–
threading, GPU

I. I NTRODUCTION

I MAGING of data from modern radio interferometers can
be a very compute intensive operation. Data are sampled

along continuous tracks of locations in the aperture (AKA
pupil) plane, essentially the Fourier transform of the image
plane. Use of the efficient discrete Fast Fourier Transform
(FFT) algorithm to convert such data to the image plane is not
possible. The current technique is to convolve the individual
data samples with a continuous function of limited extent; the
resultant function can then be re-sampled onto a regular grid
and accumulated onto the vertices of this grid. The resulting
regular grid can then be subjected to the FFT algorithm.
The GPU implementations in this memo use nVidia cards
programmed in CUDA.

II. I MAGING CONSIDERATIONS

While gridding radio interferometer data can be compute
intensive, it is only part of a more complex set of operations.

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

For a general description of radio interferometry, see [1].
The convolving function used in gridding is relatively arbi-

trary but in practice, one with desirable properties is chosen.
Two of the more desirable, and common, properties are limited
support to minimize the computational load and good alias
rejection of the artifacts of the application of the discrete FFT.
[2] discusses anti–aliasing filters; a good compromise is a7×7

spheroidal wave function as separable factors in u and v. A
table of values can be pre–computed for a set of fractional u/v
cells and used in the gridding.

The high sensitivity and dynamic range of current and
planned interferometers generally require wide fields of view.
Especially at lower frequencies, the field of view can be large
enough that a flat approximation of the sky is inadequate
[3]. The solution to this problem discussed in this memo is
“faceting”, covering the field of view with a piece-wise flat
mosaic of sub-images [4].

Faceted imaging is very well suited to parallel processing
as described in [4]. The same data is used in each facet with a
different rotation of the (u,v,w) vector and a separate position
shift. Furthermore, each facet uses a separate grid making a
multi–threaded implementation straightforward.

III. M EMORY ACCESS

A. memory latency

Digital memory is arraigned in a hierarchy with increas-
ing size with increasing latency. The details depend on the
particular hardware but generally include registers, cache(s),
main memory and disk storage. Computing is more efficient
when data accessed resides in low latency memory. The longer
latency storage is generally read in continuous blocks into
lower latency storage. GPUs have a further complication that
memory accesses can be “coalesced” among threads of a
thread block which greatly speeds access in a restricted set
of circumstances. These all mean that memory access should
be as sequential as possible and a thread block should access
a contiguous block of memory with the appropriate alignment
properties in a given cycle.

GPUs are optimized for image–like operations so put a high
premium on sequential access of blocks of memory with fairly
restrictive alignment properties. CPUs are better at hitting a
random pattern in memory and frequently have relatively large
caches to increase performance. GPUs tend to have more
registers but smaller cache than CPUs.

B. memory updates

A further memory issue is the problem of updating mem-
ory from multiple independent threads. A common operation

OBIT DEVELOPMENT MEMO SERIES NO. 36 2

consists of 1) reading a word from memory, 2) modifying it,
3) replacing it in memory. In general, there is no guarantee
that when thread A performs this operation that thread B will
not have modified the memory in question between steps 2
and 3; this is know as a race condition. In the context of
gridding, there are two solutions, first, have multiple grids,
one per active thread and second, “atomic” operations. In
an atomic operation, the several steps are coupled and the
memory in question is “locked” against modification by other
threads during the operation.

Either of these solutions comes at some cost. Multiple
grids require more memory and any necessary combination
operations. Multiple grids are practical for a limited number
of threads, especially when multiple facets are being gridded in
parallel but becomes impractical for the thousands of threads
available in GPUs.

Atomic adds avoid the complication of multiple grids but
impose a substantial overhead. Locking CPU memory can
dramatically increase the time for an operation; GPUs may
have hardware support for atomic operations but still impose
an overhead and threads updating a given memory word run
sequentially. For nVidia GPUs programmed in CUDA there
is the additional complication that neither CUDA arrays nor
pinned host memory support atomic operations.

The interferometric gridding algorithm described above is
a relatively poor match to best practices for CPUs and a very
poor match for GPUs. The relatively arbitrary locations of the
footprint of a given visibility in the grid allows for limited
blocks of contiguous memory which seldom conform to the
memory alignments for efficient GPU access. The arbitrary
location of visibility samples in u–v space puts pressure on
memory caching, usually favoring CPUs.

IV. GRIDDING IMPLEMENTATIONS

Several test-bed programs were constructed to test gridding
algorithms for single–threaded CPU, multi–threaded CPU,
multi–threaded + AVX and GPU implementations. All per-
formed the same operations, gridding the same set of sim-
ulated visibilities onto the same grids. Data were gridded
onto multiple facets using a7 × 7 convolution separated
into u and v factors and pre–tabulated. GPU implementations
were programmed in CUDA, CPU implementations in c. The
operations used for each visibility are:

• Rotate u,v,w for facet
• Calculate position phase shift per channel
• Rotate phase of visibility per channel
• Apply data weighting
• Compute center grid cell for visibility
• Compute index for fractional cell convolution functions

in u, v.
• For each cell in convolution kernel:

– Multiple visibility by convolution function in u, v
– Accumulate into grid

The gridding is for a single Stokes parameter and is there-
fore Hermitian; meaning only a single half plane needs to be
accumulated. Data in theu < 0 half plane are folded onto
the u > 0 half plane. Since the convolution function is of

0

0 u

v

V1
V6

V5

V4*

V4

V2

V3

Fig. 1. Schematic view of the visibility grid showing theu > 0 half plane
plus the additional columns needed to include the footprint of the convolution
kernel in theu < 0 half plane. Square boxes are the footprints of the
convolution kernels of the various visibility measurements,labeled V1...V6.
V4 straddles the u=0 line and its conjugate is shown dotted inV4*. The
footprints for V1 and V6 overlap allowing the possibility ofa race condition
when they are accumulated onto the grid.

finite width, this will still result in cells in theu < 0 half
plane being accessed. Complex logic inside of inner loops
are always a hindrance to performance so extra columns are
added to the grid for the few columns in negative u. When the
gridding is finished, these columns need to be “flipped” and
the complex conjugate added to the corresponding conjugate
cells. A representation of the gridding process is illustrated in
Figure 1 which shows overlapping visibility footprints andone
overlapping into theu < 0 half plane. In practice, there will
be a very large number of potentially overlapping convolution
kernels. Gridding parameters are given a structure shown in
the appendix in sectionGridInfo Structure .

A. Single–threaded CPU

The gridding routine is given in the Appendix in section
Single–Thread codeas routine gridKernel and the routine to
“flip” the extra u columns is routine gridFlipKernel. Each call
to gridKernel grids all the channels for a given visibility into
the grid for a given facet.

B. Multi–threaded CPU

A multi–threaded implementation of the test gridding in
which each call to the gridding routine processes all the
channels for a given visibility into the grid for a given facet.
Each facet is gridded in a separate thread.

OBIT DEVELOPMENT MEMO SERIES NO. 36 3

In order to reduce the overhead of thread start-up, the thread
pools of the gthreads library is used and the threading itself
uses gthreads. The fast sine/cosine approximations in [5] were
used.

C. Multi–threaded CPU+AVX

Intel Advanced Vector Extensions (AVX) technology is
available on recent CPUs allowing significant performance
enhancements. This uses the wide memory bus to operate
on 8 floats simultaneously. The detailed implemention tested
is structured in a similar fashion to the two pass GPU
implementation described below. An implementation based on
AVX intrinsics was included in a multi–threaded version of the
test program.

D. GPU

Two variations of GPU implementations were tested. The
first, a simple one pass implementation where each thread
gridded all channels of a given visibility on a given facet.
The relative performance of this implementation was poor soa
second, two pass implementation was tested. The CUDA code
for the single pass implementation is given in the appendix in
sectionone pass GPU code.

The two pass implementation allowed for more efficient
memory access but requires an outer loop over channel. The
first pass calculates the visibility to be gridded for a given
channel and facet and saves this as well as the cell and
convolution kernel location in GPU memory for each visibility.
A second pass then has one thread per cell in the convolution
kernel per real and imaginary part. This allows contiguous
blocks of memory to be updated each cycle. The second
pass uses shared memory to speed access to the common
data saved from the first pass. A different ordering of the
tabulated convolution function also speeds access by locating
the entries for a given fractional cell to be contiguous. The
CUDA code for the two pass implementation is given in the
appendix in sectiontwo pass GPU code. One difference
between CPU and GPU implementations was that in CPU
implementations, the computation of the phase to rotate each
visibility to a given facet used double (64-bit) precision and
the GPU implementation used single (32-bit) precision.

V. T IMING TESTS

Each of the implementations was tested using 100 iterations
of gridding 10240 visibilities of 1024 channels into 7 facets
for 2048 × 2048 cell images. This is roughly the equivalent
of gridding several hours of EVLA B configuration data
without baseline dependent time averaging. The data used
uv coverage derived from a simulated EVLA data-set. The
gridding parameters of the 7 facets were set to the same values
in order to test the results for memory errors in the GPU im-
plementations without error correction. GPU implementations
used multiple streams to get maximal overlap of data transfer
and computation.

Timing tests were performed on two machines, k2 and
lhotse. k2 has an nVidia GTX25 GPU and lhotse has both

2

3

4

1

single

CPU

lhotsek2

CPU

k2 lhotse

one pass
GPU

two pass
GPU

AVX

lhotse

R
at

io

10

5
threaded

lhotse
Tesla K20c

lhotse
GTX780GTX285

lhotse
Tesla K20c

lhotse
GTX780

k2 k2
GTX285

AVX

Fig. 2. Bar chart of performances relative to single–threaded CPU time on
the same machine for the various tests. Green is single threaded CPU, blue
is threaded CPU, yellow is threaded AVX and red GPU implementations.

OBIT DEVELOPMENT MEMO SERIES NO. 36 4

an nVidia GTX780 and Tesla K20c GPUs. lhotse has 6
cores hyper-threaded, an Intel(R) Xeon(R) CPU E5-1650 0 @
3.20GHz with cache size= 12288 KB and 64 GBytes of main
memory. k2 has 4 cores hyper-threaded, an Intel(R) Core(TM)
i7 CPU 940 @ 2.93GHz, cache size = 8192 KB and 12 GByte
of memory. The GTX285 has 30 processors with 240 cores,
the GTX780 has 12 processors with 2304 cores and the Tesla
K20c has 13 processors with 2496 cores. The Tesla K20c was
used with error correction enabled, the other GPUs have no
error correction. The GTX780 and Tesla K20c GPUs were
compute capability 3.5 while the GTX285 was 1.3. k2 does
not support the AVX extensions so the threaded–AVX version
was only tested on lhotse.

Timing results are given in table I. The “ratio” column gives
the ratio of the single–threaded CPU time to the wall clock
time of the given test for the given computer. The results are
also presented in Figure 2.

VI. M EMORY ERRORS

nVidia makes two lines of GPUs, one intended for gaming
applications (represented here by the GTX285 and GTX780)
and the other for more general computing application (here the
Tesla K20c). The two lines differ by approximately a factor
of 4 in price (gaming versions being cheaper) but the gaming
versions lack memory error correction. Memory errors have
the potential to corrupt the computed results.

Interferometric imaging involved a large amount of aver-
aging of noisy data making it relatively insensitive to GPU
memory errors. Furthermore, the order of the execution of
threads is not fixed and the results will differ in detail between
different runs. Bit errors in the mantissa will generally not
produce significant errors in the result but errors in the sign
or exponent bits might.

The timing test involved computing multiple facet grids
which are done independently but for purposes of detecting
memory errors, the gridding parameters were all set to the
same. At the end of the processing, the grids retrieved from
the GPUs were compared and any difference greater than a
part in 10

4 was flagged as an error. A loop over the timing

TABLE I
Timing Results

Method CPU/GPU Device Real time ratio
s

Single–Threaded CPU k2 1024 1.0
Single–Threaded CPU lhotse 806 1.0
Multi–Threaded(7) CPU k2 316 3.2
Multi–Threaded(7) CPU lhotse 188 4.3
Multi–Threaded+AVX lhotse 67 12.0
1 pass GPU k2/GTX285 3086 0.26
1 pass GPU lhotse/GTX780 319 2.5
1 pass GPU lhotse/tesla K20 576 1.4
2 pass GPU k2/GTX285 1930 0.42
2 pass GPU lhotse/GTX780 205 3.9
2 pass GPU lhotse/tesla K20 312 2.6

test for the two pass gridding on the GTX285 on k2 was run
for extended periods and the log examined to determine the
frequency of significant memory errors. In 342 hours of testing
using 634 executions of the timing program, no errors were
detected by this test.

VII. D ISCUSSION

A previous comparison, multi–threaded CPU and GPU
DFT based interferometer model calculations [6] showed a
dramatic performance advantage of the GPU whereas the best
performance of a GPU in the present test was not quite as good
as the simple multi–threaded result and threaded use of AVX
intrinsics resulted in a speed 2.8 times better than the GPU.
The difference between the gridding and model calculation
tests is the pattern of memory usage. The earlier DFT test
had far more computing per memory access and the pattern
of memory usage was a good match to optimum GPU usage.
The current gridding test, in contrast, has fewer computations
per memory access and the pattern of memory access is a very
poor match to optimum GPU usage.

The two pass version of the GPU gridding routines to allow
for a better pattern of memory access resulted in a 50-60%
reduction in run times for the GTX285 and GTX780 GPUs
and an 85% reduction for the Tesla K20c using memory error
correction. A variant of the GPU two pass test was run wherein
the outer loop was over visibility and the inner loop over
channel. This has the property that multiple channels of a
given visibility will access the same region of the grid whereas
independent visibilities will tend to be scattered on the grid.
An inner loop over channel will increase the cache hit ratio but
also increase the frequency of collisions in the atomic updates.
The increased contention for atomic access appears to have
overwhelmed the better cache hit ratio as this variant took 6
times longer on the GTX780 and over 25 times longer on the
GTX285. Padding the length of the rows to minimize bank
conflicts in the second pass of the two pass implementation
had negligible effect on the GTX780 and slightly increased
the run time on the GTX285.

The use of AVX intrinsics in the multi–threaded implemen-
tation is clearly superior to the GPU implementations tested
for this application. The threaded+AVX test case ran 2.8 times
faster than the two pass GPU test. It seems likely that much
of this advantage is the more efficient memory access from
reading and writing blocks of 8 floats. The single thread per
facet grid removes the need for atomic adds. More CPU cores
can be effectively used with a corresponding speed up by using
a grid per core and then combining the grids for each facet
when the gridding is complete. This technique resulted in a
45% speedup on smeagle (16 cores with AVX) when using 14
cores over using 7.

The use of memory error correction increased the run time
by 50–80% while the occurrence of significant memory errors
appears quite low. More testing of the occurrence rate of
memory errors is needed to determine if the slower, and
more expensive GPUs with error correction are warranted.
In nearly a week and a half of continuous testing, no errors
were detected by a simple (relatively insensitive) test on the
GTX285.

OBIT DEVELOPMENT MEMO SERIES NO. 36 5

The GTX285 run time in Table I was twice the single–
threaded CPU time and 7 times slower than the multi–threaded
CPU run time on the same machine. This older model of GPU
appears not to be competitive with CPUs for this application.

ACKNOWLEDGMENT

I would like to thank Scott Ransom for advice on GPU
usage and for the use of his workstations for testing.

APPENDIX

OBIT DEVELOPMENT MEMO SERIES NO. 36 6

GridInfo Structure
The following is structure used to contain the gridding parameters and arrays..

/* Header file for testGrid */
/* Gridding info for GPU */
typedef struct {
/** Number of facets */
long nfacet;
/** Number of channels */
long nchan;
/** Number of random parameters in visibilities */
long nrparm;
/** length in floats of visibilities */
long lenvis;
/** Size of facets (cells) */
long nx, ny;
/** Size of each grid (nx x ny/2+1+convWidth/2 x 2 floats) */
long sizeGrid;
/** Convolution kernal width */
long convWidth;
/** Number of convolution entries per cell */
long convNperCell;
/** Scaling for u,v to cells */
float uscale, vscale;
/** guardband in u, v in lambda */
float guardu, guardv;
//** shift parameters per facet [3] */
float *shift;
/** UVW, Rotation matrix per facet [3][3]*/
float *rotUV;
/** Frequency scaling array (nchan) */
float *freqArr;
/** gridding kernal */
float *convfn;
/** Facet grids, each sizeGrid floats */
float *grids;
} GridInfo;

Single–Thread code
The following is the source code executed in each thread of the multi-threaded version.

// Processes all channels in a visibility for a given facet
// Grid has halfWidth extra columns in u added to avoid complication near u=0
// The extra rows in the conjugate region need to be added to half plane before FFT.
void gridKernel(GPUGridInfo *gridInfo, gfloat *vis_in, int kvis, int ifacet, gfloat *debug)
{

glong ivis = kvis * gridInfo->lenvis; // beginning of visibility
glong halfWidth = gridInfo->convWidth/2; // half width of convolution kernal
glong fullWidth = gridInfo->convWidth; // full width of convolution kernal
glong convNperCell = gridInfo->convNperCell; // resolution of kernal
glong ichan, iu, iv, icu, icv, jvis, lrow, halfv, it, off, iphase;
gfloat *rot = &gridInfo->rotUV[ifacet*9];
gfloat *shift = &gridInfo->shift[ifacet*3];
gfloat *grid = gridInfo->grids+(ifacet*gridInfo->sizeGrid);
gfloat *convfn = gridInfo->convfn;
gfloat *gp;
gfloat u,v,w, uu, vv, ww;
gfloat vr, vi, vw, vvr, vvi, tr, ti;
gfloat phase, c, s, phaseSign, freqFact;

OBIT DEVELOPMENT MEMO SERIES NO. 36 7

gfloat *convu, *cconvu, *convv;
gdouble dshift[3], dphase;
static const gdouble twopi = 2*G_PI;
static const gdouble itwopi = 1.0/(2*G_PI);

lrow = 2*(1 + gridInfo->nx/2 + halfWidth); // length of grid row in gfloats
halfv = gridInfo->ny/2;
dshift[0] = (gdouble)shift[0];
dshift[1] = (gdouble)shift[1];
dshift[2] = (gdouble)shift[2];

// Assume random parameters start with u,v,w
u = vis_in[ivis];
v = vis_in[ivis+1];
w = vis_in[ivis+2];
// rotate u,v,w for facet
uu = u*rot[0] + v*rot[1] + w*rot[2];
vv = u*rot[3] + v*rot[4] + w*rot[5];
ww = u*rot[6] + v*rot[7] + w*rot[8];
// Only gridding half plane, need to flip to other side?
if (uu<=0.0) {
phaseSign = -1.0;
/*uu = -uu;*/
/*vv = -vv;*/
/*ww = -ww;*/

} else { // no flip
phaseSign = 1.0;

}
// loop over channels
for (ichan=0; ichan<gridInfo->nchan; ichan++) {
// real part of vis
jvis = ivis + gridInfo->nrparm + ichan*3;
freqFact = phaseSign * gridInfo->freqArr[ichan];
u = uu * freqFact; // Scale u,v,w to channel
v = vv * freqFact;
w = ww * freqFact;
vvr = vis_in[jvis];
vvi = vis_in[jvis+1];
vw = vis_in[jvis+2];
/* Data valid? positive weight and within guardband */
if ((vw>0.) && (u<gridInfo->guardu) && (fabs(v)<gridInfo->guardv)) {

// position shift, double and subtract n pi turns
dphase = (u*dshift[0] + v*dshift[1] + w*dshift[2]);
iphase = (glong)(dphase*itwopi);
phase = dphase - iphase * twopi;
s = sin(phase);
c = cos(phase);
vr = c*vvr - s*vvi;
vi = s*vvr + c*vvi;
// weighted data
vr *= vw;
vi *= vw;
// convert to cells
u *= gridInfo->uscale;
v *= gridInfo->vscale;
iu = (glong)(u+0.5) - halfWidth;
if (v>=0.0) iv = (glong)(v+0.5) + gridInfo->ny/2 - halfWidth;
else iv = (glong)(v-0.5)+ gridInfo->ny/2 - halfWidth;

OBIT DEVELOPMENT MEMO SERIES NO. 36 8

// start in convolution function
it = (glong)(convNperCell * (u - (int)u));
convu = convfn + it;
if (v>0) it = (glong)(convNperCell * (v - (glong)v));
else it = (glong)(convNperCell * ((glong)v - v));
convv = convfn + it;
for (icv=0; icv<fullWidth; icv++) {
off = iu*2 + (iv+icv)*lrow;
gp = grid + off;
cconvu = convu;
for (icu=0; icu<fullWidth; icu++) {

tr = vr*(*cconvu)*(*convv);
ti = vi*(*cconvu)*(*convv);

*gp += tr; gp++;

*gp += ti; gp++;
cconvu += convNperCell;

} // end u convolution loop
convv += convNperCell;

} // end v convolution loop
} // end valid

} // end channel loop
} // end gridKernel

// Flip/add conjugate rows in grid
// block.x = vrow, threads in block = facet
void gridFlipKernel(GPUGridInfo *gridInfo, glong ifacet, glong vrow)
{

glong halfWidth = gridInfo->convWidth/2; // half width of convolution kernal
gfloat *grid = gridInfo->grids+(ifacet*gridInfo->sizeGrid);
gfloat *gi, *go;
glong iu, vc, lrow;

lrow = 1 + gridInfo->nx/2 + halfWidth; // length of grid row
vc = gridInfo->ny - vrow; // conjugate row number
// loop over u columns
gi = grid + vc*lrow + halfWidth;
go = grid + vrow*lrow + halfWidth + 1;
for (iu=0; iu<halfWidth; iu++) {

go[0] += gi[0];
go[1] -= gi[1];
go += 2; gi -= 2;

}
}

} // end gridFlipKernel

one pass GPU code
The following is the source code for the kernel used for gridding in the one pass GPU test.

// Integrated gridding routine, loops over channels
// Blocks are 16 x 16 visibilities
// Grid cells are facets x blocks of visibilities
// NB: Grid has halfWidth extra columns in u added to avoid complications
// near u=0. The extra rows in the conjugate region need to be added to
// half plane before FFT (gridFlipKernel).
// gridInfo = structure with gridding controls and arrays (testGrid.cuh)
// vis_in = Visibility array, 1 Stokes, assumed to start with u,v,w
__global__ void gridKernel(GridInfo *gridInfo, float *vis_in)
{

int kvis = blockIdx.y*blockDim.x*blockDim.x +

OBIT DEVELOPMENT MEMO SERIES NO. 36 9

threadIdx.x*blockDim.x + threadIdx.y; // vis number
int ivis = kvis * gridInfo->lenvis; // beginning of visibility
int ifacet = blockIdx.x; // facet number
int halfWidth = gridInfo->convWidth/2; // half width of convolution kernal
int fullWidth = gridInfo->convWidth; // full width of convolution kernal
int convNperCell = gridInfo->convNperCell; // resolution of kernal
float *rot = &gridInfo->rotUV[ifacet*9]; // (u,v,w) rotation matrix per facet
float *shift = &gridInfo->shift[ifacet*3]; // position shift parameters per facet
float *grid = gridInfo->grids+(ifacet*gridInfo->sizeGrid); // u-v grid per facet
float *convfn = gridInfo->convfn; // tabulated convolution function
float guardu = gridInfo->guardu; // u guardband (wavelengths)
float guardv = gridInfo->guardv; // v guardband (wavelengths)
float *gp;
int iu, iv, icu, icv, jvis, lrow, ichan, icufn, icvfn, offset;
float u,v,w, uu, vv, ww, vr, vi, vw, vvr, vvi, tr, ti;
float phase, c, s, phaseSign=1.0, freqFact;
float *convu, *cconvu, *convv, cu, cv;

lrow = 2*(1 + gridInfo->nx/2 + halfWidth); // length of grid row in floats

// Assume random parameters start with u,v,w
u = vis_in[ivis];
v = vis_in[ivis+1];
w = vis_in[ivis+2];
// rotate u,v,w for facet
uu = u*rot[0] + v*rot[1] + w*rot[2];
vv = u*rot[3] + v*rot[4] + w*rot[5];
ww = u*rot[6] + v*rot[7] + w*rot[8];
// Only gridding half plane, need to flip to other side?
if (uu<=0.0) {
phaseSign = -1.0;

} else { // no flip
phaseSign = 1.0;

}
// loop over channels
for (ichan=0; ichan<gridInfo->nchan; ichan++) {
// index of real part of vis
jvis = ivis + gridInfo->nrparm + ichan*3;
vvr = vis_in[jvis];
vvi = vis_in[jvis+1];
vw = vis_in[jvis+2];
// Data valid? positive weight and within guardband
if ((vw>0.) && (uu<guardu) && (fabs(vv)<guardv)) {
freqFact = phaseSign * gridInfo->freqArr[ichan];
u = uu * freqFact; // Scale u,v,w to channel
v = vv * freqFact;
w = ww * freqFact;
// position shift
phase = phaseSign * (u*shift[0] + v*shift[1] + w*shift[2]);
__sincosf (phase, &s, &c);
vr = c*vvr - s*vvi;
vi = s*vvr + c*vvi;
// weight data
vr *= vw;
vi *= vw;
// convert to cells
u *= gridInfo->uscale;
v *= gridInfo->vscale;

OBIT DEVELOPMENT MEMO SERIES NO. 36 10

iu = lroundf(u); // to grid cell number
iv = lroundf(v);
// start in convolution function
icufn = lroundf((convNperCell*(iu + 0.5 - u)));
convu = convfn + icufn;
icvfn = lroundf((convNperCell*(iv + 0.5 - v)));
convv = convfn + icvfn;
cv = *convv;
iu -= halfWidth; // to absolute grid coordinates
iv += gridInfo->ny/2 - halfWidth;
for (icv=0; icv<fullWidth; icv++) {
offset = (iu)*2 + (iv+icv)*lrow;
gp = grid + offset;
cconvu = convu;
cu = (*cconvu)*cv;
for (icu=0; icu<fullWidth; icu++) {

tr = vr*cu;
ti = vi*cu;

// atomic update of grid
atomicAddFloat(gp++, tr);
atomicAddFloat(gp++, ti);
cconvu += convNperCell;
cu = (*cconvu)*cv;

} // end u convolution loop
convv += convNperCell;
cv = *convv;

} // end v convolution loop
} // end data valid

} // end channel loop
} // end gridKernel

two pass GPU code
The following is the source code for the kernel used in the twopass GPU test.

extern __shared__ float Cvx[]; // block convolution fn, u then v

// Routine allowing float atomicAdd on less capable systems
// address = pointer for memory to update
// val = value to add
// returns previous value in address
__device__ float atomicAddFloat(float* address, float val)
{
#if __CUDA_ARCH__ >=200

return atomicAdd(address, val);
#else

unsigned int* address_as_ul = (unsigned int*)address;
union floatEquiv {
unsigned int iarg;
float farg;

};
union floatEquiv arg, assumed, old;
old.iarg = *address_as_ul;
do {

assumed.iarg = old.iarg;
arg.farg = val+assumed.farg;

old.iarg = atomicCAS(address_as_ul, assumed.iarg, arg.iarg);
} while (assumed.iarg != old.iarg);
return old.farg;

endif

OBIT DEVELOPMENT MEMO SERIES NO. 36 11

} // end atomicAddFloat

// First pass gridding routine, saves visibilities, center grid cells
// and first convolution indices in d_gridContr, d_gridCentr and_gridCfn
// Blocks are 16 x 16 visibilities
// Grid cells are facets x blocks of visibilities
// NB: Grid has halfWidth extra columns in u added to avoid complications
// near u=0. The extra rows in the conjugate region need to be added to
// half plane before FFT (gridFlipKernel).
// gridInfo = structure with gridding controls and arrays (testGrid.cuh)
// vis_in = Visibility array, 1 Stokes, assumed to start with u,v,w
// d_gridContr = device storage for visibilities (r,i) per vis, per facet
// d_gridCentr = device storage for center grid cells (u,v) per vis, per facet
// d_gridCfn = device storage for first convolution indices (u,v) per vis/facet
// ichan = (0-rel) channel number
__global__ void gridPrepKernel(GridInfo *gridInfo, float *vis_in,

float *d_gridContr, int *d_gridCentr, int *d_gridCfn, int ichan)
{

int kvis = blockIdx.y*blockDim.x*blockDim.y +
threadIdx.x*blockDim.x + threadIdx.y; // vis number

int ivis = kvis * gridInfo->lenvis; // beginning of visibility
int ifacet = blockIdx.x; // facet number
float *rot = &gridInfo->rotUV[ifacet*9]; // (u,v,w) rotation matrix per facet
float *shift = &gridInfo->shift[ifacet*3]; // position shift parameters per facet
float *gridContr = &d_gridContr[ifacet*2*gridInfo->nvis]; // pointer to facet storage
int *gridCentr = &d_gridCentr[ifacet*2*gridInfo->nvis]; // pointer to facet storage
int *gridCfn = &d_gridCfn[ifacet*2*gridInfo->nvis]; // pointer to facet storage
int halfWidth = gridInfo->convWidth/2; // half width of convolution kernal
int convNperCell = gridInfo->convNperCell; // resolution of kernal
int jvis, iu, iv, icufn, icvfn;
float u,v,w, uu, vv, ww, vr, vi, vw, vvr, vvi, tr, ti;
float phase, c, s, phaseSign=1.0, freqFact;

// ignore vis more than the max
if (kvis>=gridInfo->nvis) return;

// Assume random parameters start with u,v,w
u = vis_in[ivis];
v = vis_in[ivis+1];
w = vis_in[ivis+2];
// rotate u,v,w for facet
uu = u*rot[0] + v*rot[1] + w*rot[2];
vv = u*rot[3] + v*rot[4] + w*rot[5];
ww = u*rot[6] + v*rot[7] + w*rot[8];
// Only gridding half plane, need to flip to other side?
if (uu<=0.0) {
phaseSign = -1.0;

} else { // no flip
phaseSign = 1.0;

}
// channels values: index of real part of vis
jvis = ivis + gridInfo->nrparm + ichan*3;
vvr = vis_in[jvis];
vvi = vis_in[jvis+1];
vw = vis_in[jvis+2];

// Data valid? positive weight and within guardband
if ((vw>0.) && (uu<gridInfo->guardu) && (fabs(vv)<gridInfo->guardv)) {

OBIT DEVELOPMENT MEMO SERIES NO. 36 12

freqFact = phaseSign * gridInfo->freqArr[ichan];
u = uu * freqFact; // Scale u,v,w to channel
v = vv * freqFact;
w = ww * freqFact;
// position shift
phase = phaseSign * (u*shift[0] + v*shift[1] + w*shift[2]);
__sincosf (phase, &s, &c);
vr = c*vvr - s*vvi;
vi = s*vvr + c*vvi;
// weighted data
tr = vr * vw;
ti = vi * vw;
// convert to cells
u *= gridInfo->uscale;
v *= gridInfo->vscale;
iu = lroundf(u); // to center grid cell number
iv = lroundf(v);
icufn = convNperCell*lroundf(convNperCell*(iu + 0.5 - u));
icvfn = convNperCell*lroundf(convNperCell*(iv + 0.5 - v));
iu -= halfWidth; // to absolute grid coordinates
iv += gridInfo->ny/2 - halfWidth;

} else { // data invalid
tr = 0.0;
ti = 0.0;
iu = 0;
iv = 0;
icufn = 0;
icvfn = 0;
} // end data invalid

// save to device memory
gridContr[2*kvis] = tr;
gridContr[2*kvis+1] = ti;
gridCentr[2*kvis] = iu;
gridCentr[2*kvis+1] = iv;
gridCfn[2*kvis] = icufn;
gridCfn[2*kvis+1] = icvfn;

} // end gridPrepKernel

// Second pass gridding routine, uses visibilities, center grid cells
// and first convolution indices in d_gridContr, d_gridCentr and_gridCfn
// Blocks are (uconv, x r,i) x vconv entries in the convolution
// threads are (width*2, width)
// Grid cells are facets x visibilities
// threads are (width*2, width)
// gridInfo = structure with gridding controls and arrays (testGrid.cuh)
// d_gridContr = device storage for visibilities (r,i) per vis, per facet
// d_gridCentr = device storage for center grid cells (u,v) per vis, per facet
// d_gridCfn = device storage for first convolution indices (u,v) per vis/facet
// ichan = (0-rel) channel number
__global__ void gridAccumKernel(GridInfo *gridInfo,

float *d_gridContr, int *d_gridCentr, int *d_gridCfn, int ichan)
{

int kvis = blockIdx.y; // vis number
int ifacet = blockIdx.x; // facet number
int halfWidth = gridInfo->convWidth/2; // half width of convolution kernal
float *grid = gridInfo->grids+(ifacet)*gridInfo->sizeGrid; // facet grid
int cw = gridInfo->convWidth; // convolution width

OBIT DEVELOPMENT MEMO SERIES NO. 36 13

int i, jri, ju, jv, iuc, ivc, lrow, offset, icufn, icvfn;
float tt, *gp;
__shared__ float gridContr[2]; // shared memory to speed access
__shared__ int gridCentr[2];
__shared__ int gridCfn[2];

// ignore vis more than the max
if (kvis>=gridInfo->nvis) return;

// global to shared memory, first two threads in block for u,v parts
if ((threadIdx.x<2) && (threadIdx.y==0)) {

i = threadIdx.x;
gridContr[i] = d_gridContr[ifacet*2*gridInfo->nvis+2*kvis+i];
gridCentr[i] = d_gridCentr[ifacet*2*gridInfo->nvis+2*kvis+i];
gridCfn[i] = d_gridCfn[ifacet*2*gridInfo->nvis+2*kvis+i];

}

// which part of contribution to grid
jri = threadIdx.x%2; // real (0), or imaginary (1)
ju = (threadIdx.x/2); // u index of convolution
jv = threadIdx.y; // v index of convolution
lrow = 2*(1 + gridInfo->nx/2 + halfWidth); // length of grid row in floats
__syncthreads();

// data
tt = gridContr[jri]; // real/imag value
iuc = gridCentr[0]; // center cell in u
ivc = gridCentr[1]; // center cell in v
icufn = gridCfn[0]; // first element in u convolution function
icvfn = gridCfn[1]; // first element in v convolution function

// Fetch convolution values to shared memory
if ((threadIdx.y==0) && (jri==0)) Cvx[ju] = gridInfo->convfn[icufn + ju];
if (threadIdx.x==0) Cvx[cw+jv] = gridInfo->convfn[icvfn + jv];
__syncthreads();

// multiply by convolution fn.
tt *= Cvx[ju]*Cvx[cw+jv];

// location in grid
offset = (iuc+ju)*2 + (ivc+jv)*lrow + jri;
gp = grid + offset;

// atomic update grid
atomicAddFloat(gp, tt);

} // end gridAccumKernel

// Finish up gridding by adding nevative u cells to their conjugate points
// Blocks are facet
// Grid cells are rows in v
// block.x = vrow, threads in block = facet
// gridInfo = structure with gridding controls and arrays (testGrid.cuh)
__global__ void gridFlipKernel(GridInfo *gridInfo)
{

long ifacet = threadIdx.x; // facet number
long vrow = blockIdx.x; // v row number
long halfWidth = gridInfo->convWidth/2; // half width of convolution kernal
long fullWidth = gridInfo->convWidth; // full width of convolution kernal

OBIT DEVELOPMENT MEMO SERIES NO. 36 14

float *grid = gridInfo->grids+(ifacet*gridInfo->sizeGrid); // facet grid
float *gi, *go;
long iu, vc, lrow;

lrow = 2*(1 + gridInfo->nx/2 + halfWidth); // length of grid row
vc = gridInfo->ny - vrow; // conjugate row number

// loop over u columns
gi = grid + vc*lrow;
go = grid + vrow*lrow + 2*fullWidth;
for (iu=0; iu<halfWidth; iu++) {

go[0] += gi[0];
go[1] -= gi[1]; // conjugate
go -= 2; gi += 2;

}
} // end gridFlipKernel

REFERENCES

[1] A. R. Thompson, J. M. Moran, and G. W. Swenson, Jr.,Interferometry and Synthesis in Radio Astronomy, 2nd Edition, Thompson, A. R., Moran, J. M.,
& Swenson, G. W., Jr., Ed. Wiley-Interscience, 2001.

[2] F. R. Schwab, “Optimal Gridding of Visibility Data in Radio Interferometry,” inIndirect Imaging. Measurement and Processing for IndirectImaging.
Australia, Cambridge University Press, Cambridge, England, New York, NY, L C # QB51.3.E43 I53 1984. ISBN # 0-521-26282-8. P.333, 1983, 1983, pp.
333–+.

[3] R. A. Perley, “Imaging with Non-Coplanar Arrays,” inSynthesis Imaging in Radio Astronomy II, ser. Astronomical Society of the Pacific Conference
Series, G. B. Taylor, C. L. Carilli, and R. A. Perley, Eds., vol. 180, 1999, pp. 383–+.

[4] W. D. Cotton, “Parallel Facet Imaging in Obit,”Obit Development Memo Series, vol. 6, pp. 1–3, 2009.
[5] ——, “A Fast Sine/Cosine Routine: Revenge of the Vector Processors,”Obit Development Memo Series, vol. 37, pp. 1–9, 2013.
[6] ——, “Comparison of GPU and Multithreading for Interferometric DFT Model Calculation,”Obit Development Memo Series, vol. 35, pp. 1–5, 2013.

