OBIT DEVELOPMENT MEMO SERIES NO. 36 1

Comparison of GPU, Single— and Multi—-threading
for Interferometric Gridding

W. D. Cotton, January 17, 2014

Abstract—One of the more compute intensive aspects of For a general description of radio interferometry, see [1].
radio interferometry is the conversion of the sampled visibilities The convolving function used in gridding is relatively arbi
to a “dirty” image. Interferometric measurements inherently trary but in practice, one with desirable properties is efos

randomly sample locations on the u-v plane making the direct Two of the more desirable, and common, properties are lanite
usage of an fast Fourier Transform (FFT) to transform to the ! » Prop

image domain impractical. The current practice is to convolve Support to minimize the computational load and good alias
the measured samples with a continuous function which is then rejection of the artifacts of the application of the diserBT.
re-sampled and accumulated onto a regular grid. This grid can [2] discusses anti—aliasing filters; a good compromiseTis @
then be used with an FFT algorithm to efficiently derive an image spheroidal wave function as separable factors in u and v. A

from the data. This algorithm presents a number of challenges to table of values can be pre—computed for a set of fractional u/
an efficient implementation on Graphics Processor Units (GPUSs). P P

GPUs are optimized for image manipulation wherein memory is Cells and used in the gridding.

imaged sequentially in streaming operations. The convolutional ~ The high sensitivity and dynamic range of current and
gridding algorithm updates random patches in the grid resulting planned interferometers generally require wide fields efwi
lar:nlar:t?grlgec?ft ;ﬁyol\%%m\ngﬁ‘ig:?ai”Fg\r/t;‘ﬁ;m‘gs-t%’g”or‘ﬁ i‘ﬁlo';" Especially at lower frequencies, the field of view can bedarg
difficult to predict pattern so the accumulationpinto the ggrid must enough that ,a flat approxmatlon ,Of the SW |s_|nadequ§te
be done via an “atomic” operation to assure that the operation is [3]- The solution to this problem discussed in this memo is
done reliably. This memo explores several implementations of the “faceting”, covering the field of view with a piece-wise flat
convolutional gridding algorithm for single— and multi-threaded mosaic of sub-images [4].

CPU and GPU applications as well as the inclusion of AVX coding Faceted imaging is very well suited to parallel processing

in a multi-threaded test. The best GPU implementation tested . . : : .
was not quite as fast as the best simple multi-threaded CPU as described in [4]. The same data is used in each facet with a

implementation but several times faster than a single threaded différent rotation of the (u,v,w) vector and a separate fwsi
CPU implementation. Multi~threading with AVX intrinsics is shift. Furthermore, each facet uses a separate grid making a

the clear winner in this comparison being over two and a half multi—-threaded implementation straightforward.
times faster than the best GPU implementation. The frequency

of serious memory errors in the absence of error correction is Ill. M EMORY ACCESS

explored and found to be quite rare. A. memory latency

Digital memory is arraigned in a hierarchy with increas-
ing size with increasing latency. The details depend on the
particular hardware but generally include registers, e&h

o main memory and disk storage. Computing is more efficient
I MAGING of data from modern radio interferometers cafyhen data accessed resides in low latency memory. The longer

be a very compute intensive operation. Data are samplggncy storage is generally read in continuous blocks into
along continuous tracks of locations in the aperture (AKfywer |atency storage. GPUs have a further complication tha
pupil) plane, essentially the Fourier transform of the i®agnemory accesses can be “coalesced” among threads of a
plane. Use of the efficient discrete Fast Fourier TransfoffRread block which greatly speeds access in a restricted set
(FFT) algorithm to convert such data to the image plane is ngf circumstances. These all mean that memory access should
possible. The current technique is to convolve the ind&ldupe a5 sequential as possible and a thread block should access
data samples with a continuous function of limited extemg; t 5 contiguous block of memory with the appropriate alignment
resultant function can then be re-sampled onto a reguldr gﬁroperties in a given cycle.
and accumulated onto the vertices of this grid. The requltin gpys are optimized for image—like operations so put a high
regular grid can then be subjected to the FFT algorithrremium on sequential access of blocks of memory with fairly
The GPU implementations in this memo use nVidia carggstrictive alignment properties. CPUs are better atrigjtta
programmed in CUDA. random pattern in memory and frequently have relativelgdar
caches to increase performance. GPUs tend to have more

_ _ I_I' IMAC_;'N_G CONSIDERATIONS registers but smaller cache than CPUs.
While gridding radio interferometer data can be compute

intensive, it is only part of a more complex set of operation8. memory updates

National Radio Astronomy Observatory, 520 Edgemont Rd., IGttesville, A further m_emo_ry issue is the problem of updating mem'
VA, 22903 USA email: bcotton@nrao.edu ory from multiple independent threads. A common operation

Index Terms—interferometry, computation efficiency, multi—
threading, GPU

I. INTRODUCTION

OBIT DEVELOPMENT MEMO SERIES NO. 36 2

consists of 1) reading a word from memory, 2) modifying it, O
3) replacing it in memory. In general, there is no guarantee ‘
that when thread A performs this operation that thread B will
not have modified the memory in question between steps 2 ‘
and 3; this is know as a race condition. In the context of ﬁlﬂ
gridding, there are two solutions, first, have multiple grid |

one per active thread and second, “atomic” operations. In !
an atomic operation, the several steps are coupled and the E
memory in question is “locked” against modification by other
threads during the operation.

Either of these solutions comes at some cost. Multiple \
grids require more memory and any necessary combination
operations. Multiple grids are practical for a limited nusnb 1
of threads, especially when multiple facets are being gddd |
parallel but becomes impractical for the thousands of tisea
available in GPUs. :

Atomic adds avoid the complication of multiple grids but {77
impose a substantial overhead. Locking CPU memory can
dramatically increase the time for an operation; GPUs may |
have hardware support for atomic operations but still inepos ‘
an overhead and threads updating a given memory word run
sequentially. For nVidia GPUs programmed in CUDA there
is the additional complication that neither CUDA arrays nor

pinned host memory support atomic operations. Fig. 1. Schematic view of the visibility grid showing the> 0 half plane

The.imerferometric gridding a|90r?thm described above {§iys the additional columns needed to include the footprihe convolution
a relatively poor match to best practices for CPUs and a ve@mrnel in theu < 0 half plane. Square boxes are the footprints of the

r match for GPUs. The relativelv arbitrary | tion t convolution kernels of the varioqs visib_ility me_asuremelhib,eled V1...V6.
poo atch for GPUs € relalively a bitra y locatio Shud V4 straddles the u=0 line and its conjugate is shown dotte¥4h. The

footprint of a given visibility in th_e grid allows for limit8 footprints for V1 and V6 overlap allowing the possibility afrace condition
blocks of contiguous memory which seldom conform to thehen they are accumulated onto the grid.

memory alignments for efficient GPU access. The arbitrary
location of visibility samples in u—v space puts pressure on

—

memory caching, usually favoring CPUs. finite width, this will still result in cells in theu < 0 half
plane being accessed. Complex logic inside of inner loops
IV. GRIDDING IMPLEMENTATIONS are always a hindrance to performance so extra columns are

added to the grid for the few columns in negative u. When the

, .) idding is finished, these columns need to be “flipped” and
algorithms for single-threaded CPU, multi-threaded CP : . :
multi-threaded + AVX and GPU implementations. All per- e complex conjugate added to the corresponding conjugate

; d th i idding th t of .cells. A representation of the gridding process is illusilain
olrrtne(zj i _eb_??me o;:er?hlons, gri |r_1§; S fame s¢€ O'djl gure 1 which shows overlapping visibility footprints aode
ulated visibiiies onto the same grids. bala were griaae erlapping into thex < 0 half plane. In practice, there will

onto multiple facets using & x 7 convolution separated be a very large number of potentially overlapping convoti

into u and v factor; and pre—tabula}ted. GPU "T.‘p'e'”f.‘e”ta“of?&ne|s. Gridding parameters are given a structure shown in
were programmed in CUDA, CPU implementations in c. Thﬁ'le appendix in sectioGridinfo Structure

operations used for each visibility are:
« Rotate u,v,w for facet

Several test-bed programs were constructed to test ggdd

« Calculate position phase shift per channel A. Single-threaded CPU

« Rotate phase of visibility per channel The gridding routine is given in the Appendix in section

« Apply data weighting o Single-Thread codeas routine gridkernel and the routine to

« Compute center grid ceI_I for visibility _ . “flip” the extra u columns is routine gridFlipKernel. Eachllca

. _Compute index for fractional cell convolution functions, gridKernel grids all the channels for a given visibilitytd
inu,v. the grid for a given facet.

o For each cell in convolution kernel:

— Multiple visibility by convolution function in u, v)
— Accumulate into grid B. Multi-threaded CPU

The gridding is for a single Stokes parameter and is there-A multi-threaded implementation of the test gridding in
fore Hermitian; meaning only a single half plane needs to li¢hich each call to the gridding routine processes all the
accumulated. Data in the < 0 half plane are folded onto channels for a given visibility into the grid for a given face
the v > 0 half plane. Since the convolution function is ofEach facet is gridded in a separate thread.

OBIT DEVELOPMENT MEMO SERIES NO. 36 3

In order to reduce the overhead of thread start-up, thedhrea
pools of the gthreads library is used and the threadingf itsel
uses gthreads. The fast sine/cosine approximations in¢sé w
used.

C. Multi-threaded CPU+AVX

Intel Advanced Vector Extensions (AVX) technology is
available on recent CPUs allowing significant performance
enhancements. This uses the wide memory bus to operate
on 8 floats simultaneously. The detailed implemention teste
is structured in a similar fashion to the two pass GPU
implementation described below. An implementation based o B
AVX intrinsics was included in a multi—-threaded version loé t
test program.

AVX

10

D. GPU

Two variations of GPU implementations were tested. The
first, a simple one pass implementation where each thread
gridded all channels of a given visibility on a given facet.
The relative performance of this implementation was poaa so
second, two pass implementation was tested. The CUDA code B
for the single pass implementation is given in the appenalix i
sectionone pass GPU code

The two pass implementation allowed for more efficient -
memory access but requires an outer loop over channel. The
first pass calculates the visibility to be gridded for a given
channel and facet and saves this as well as the cell and
convolution kernel location in GPU memory for each vistlili
A second pass then has one thread per cell in the convoluti
kernel per real and imaginary part. This allows contiguouss
blocks of memory to be updated each cycle. The secor® S
pass uses shared memory to speed access to the comBon
data saved from the first pass. A different ordering of the 4
tabulated convolution function also speeds access byitarat
the entries for a given fractional cell to be contiguous. The
CUDA code for the two pass implementation is given in the

two pass
- GPU -

appendix in sectiontwo pass GPU code One difference 3| . orzaeppass e
between CPU and GPU implementations was that in CPU single U

. . - CPU

implementations, the computation of the phase to rotath eac

visibility to a given facet used double (64-bit) precisionda 2
the GPU implementation used single (32-bit) precision.

V. TIMING TESTS 1

Each of the implementations was tested using 100 iterations
of gridding 10240 visibilities of 1024 channels into 7 facet
for 2048 x 2048 cell images. This is roughly the equivalent
of gridding several hours of EVLA B configuration data k2 lhotse k2 Ihotselnotse k2 lhotse lhotse k2 lhotse fhotse
without baseline dependent time averaging. The data used
uv coverage derived from a simulated EVLA data-set. THad- 2. Bar chart of performances relative to single-thrdad®U time on

o e same machine for the various tests. Green is single ttde@Be), blue
gridding parameters of the 7 facets were set to the samesvalld@nreaded CPU, yellow is threaded AVX and red GPU implemintat
in order to test the results for memory errors in the GPU im-
plementations without error correction. GPU implemenotagi
used multiple streams to get maximal overlap of data transfe
and computation.

Timing tests were performed on two machines, k2 and
lhotse. k2 has an nVidia GTX25 GPU and Ihotse has both

OBIT DEVELOPMENT MEMO SERIES NO. 36 4

an nVidia GTX780 and Tesla K20c GPUs. |hotse has t@st for the two pass gridding on the GTX285 on k2 was run
cores hyper-threaded, an Intel(R) Xeon(R) CPU E5-1650 0O far extended periods and the log examined to determine the
3.20GHz with cache size= 12288 KB and 64 GBytes of mainequency of significant memory errors. In 342 hours of tegti
memory. k2 has 4 cores hyper-threaded, an Intel(R) Core(TM3ing 634 executions of the timing program, no errors were
i7 CPU 940 @ 2.93GHz, cache size = 8192 KB and 12 GBytketected by this test.
of memory. The GTX285 has 30 processors with 240 cores,
the GTX780 has 12 processors with 2304 cores and the Tesla VII. DiscussioN
K20c has 13 processors with 2496 cores. The Tesla K20c wa®\ previous comparison, multi-threaded CPU and GPU
used with error correction enabled, the other GPUs have D&FT based interferometer model calculations [6] showed a
error correction. The GTX780 and Tesla K20c GPUs werramatic performance advantage of the GPU whereas the best
compute capability 3.5 while the GTX285 was 1.3. k2 dogserformance of a GPU in the present test was not quite as good
not support the AVX extensions so the threaded—AVX versias the simple multi—threaded result and threaded use of AVX
was only tested on lhotse. intrinsics resulted in a speed 2.8 times better than the GPU.
Timing results are given in table I. The “ratio” column givesThe difference between the gridding and model calculation
the ratio of the single—threaded CPU time to the wall clodiests is the pattern of memory usage. The earlier DFT test
time of the given test for the given computer. The results ahad far more computing per memory access and the pattern

also presented in Figure 2. of memory usage was a good match to optimum GPU usage.
The current gridding test, in contrast, has fewer companati
VI. MEMORY ERRORS per memory access and the pattern of memory access is a very

- . . . poor match to optimum GPU usage.

n_/|d|q makes two lines of GPUs, one intended for gaming The two pass version of the GPU gridding routines to allow
applications (represented here by the_GTX28_5 af‘d GTX?ST%)r a better pattern of memory access resulted in a 50-60%
and the other for more g_enera! computing apphcatlon (freze treduction in run times for the GTX285 and GTX780 GPUs
T?ZIQ KZQC)' The_two |me§ d|ftf)er- by ahpproxmgt:zlz]a faCt%md an 85% reduction for the Tesla K20c using memory error
of 4 in price (gaming versions being cheaper) but the 9aMIAY e ction. A variant of the GPU two pass test was run wherein

:/r:ersmrt\s Itgclktmemoryt (terr]ror correftlgn. M(Iatmory errors ha\fﬁe outer loop was over visibility and the inner loop over
€ potential fo corrupt the computed resufts. channel. This has the property that multiple channels of a

Interferometric imaging involved a large amount of avelsiven visibility will access the same region of the grid wées

aging of noisy data making it relatively insensitive to GPL? ependent visibilities will tend to be scattered on thil.gr
tmhem(;ry. errotr?.. I;urthsrtr;ore, tTte orlijzrﬁof .thg (;:)(}Iecutlon Rh inner loop over channel will increase the cache hit ratib b
d_;fea St's no ')éi an _er?su SW't_ ier I'rI]I elal be”lam also increase the frequency of collisions in the atomic tgsla
ffferent runs. Bit errors in the mantissa will generallytnOry g jncreased contention for atomic access appears to have
produce significant errors in the result but errors in then Si%verwhelmed the better cache hit ratio as this variant took 6

or exponent bits might, times longer on the GTX780 and over 25 times longer on the

'I_'he timing tes_t involved computing multiple facet grid%TXZSS. Padding the length of the rows to minimize bank
which are done independently but for purposes of dEteCt'Egnﬂicts in the second pass of the two pass implementation

memory errors, the gridding parameters were all set to tﬂgd negligible effect on the GTX780 and slightly increased
same. At the end of the processing, the grids retrieved fr run time on the GTX285

the GPUs were compared and any difference greater than %he use of AVX intrinsics in the multi~threaded implemen-

part in 10" was flagged as an error. A loop over the UMing. tion is clearly superior to the GPU implementations wste
for this application. The threaded+AVX test case ran 2.&8m
faster than the two pass GPU test. It seems likely that much
of this advantage is the more efficient memory access from
reading and writing blocks of 8 floats. The single thread per

TABLE | facet grid removes the need for atomic adds. More CPU cores
Timing Results can be effectively used with a corresponding speed up byusin
a grid per core and then combining the grids for each facet
Method CPU/GPU Device| Real time | ratio when the gridding is complete. This technique resulted in a
s 45% speedup on smeagle (16 cores with AVX) when using 14
Single-Threaded CPU k2 1024 | 1.0 cores over using 7
Single-Threaded CPU Ihotse 806 | 1.0 0 sing 7. . .
Multi-Threaded(7) CPU K2 316 | 32 The use of memory error correction increased the run time
Multi-Threaded(7) CPU Ihotse 188 | 4.3 by 50-80% while the occurrence of significant memory errors
Multi-Threaded+AVX Ihotse 67 | 12.0 appears quite low. More testing of the occurrence rate of
1 pass GPU k2/GTX285 3086 | 0.26 . o
1 pass GPU lhotse/GTX780 319 | 25 memory errors is needed to determine if the slower, and
1 pass GPU Ihotse/tesla K20 576 | 1.4 more expensive GPUs with error correction are warranted.
2 pass GPU k2/GTX285 1930 | 0.42 In nearly a week and a half of continuous testing, no errors
2 pass GPU Ihotse/GTX780 205 | 3.9 d d b impl lativelV i - o
2 pass GPU lhotse/tesla K20 312 | 26 were detected by a simple (relatively insensitive) test un t

GTX285.

OBIT DEVELOPMENT MEMO SERIES NO. 36

The GTX285 run time in Table | was twice the single—
threaded CPU time and 7 times slower than the multi-threaded
CPU run time on the same machine. This older model of GPU
appears not to be competitive with CPUs for this application

ACKNOWLEDGMENT

| would like to thank Scott Ransom for advice on GPU
usage and for the use of his workstations for testing.

APPENDIX

OBIT DEVELOPMENT MEMO SERIES NO. 36 6

GridInfo Structure
The following is structure used to contain the gridding paeters and arrays..

[+ Header file for testGid */

/* Gridding info for GPU x/

typedef struct {

[** Nunber of facets =*/

| ong nfacet;

[=+ Nunber of channels =/

| ong nchan;

[** Nunmber of random paraneters in visibilities =/
| ong nrparm

/** length in floats of visibilities */
long | envis;

[+*+ Size of facets (cells) =*/

| ong nx, ny;

/*+x Size of each grid (nx x ny/2+l1+convWdth/2 x 2 floats) =/
| ong sizeGid;

[+ Convol ution kernal width */

| ong convW dt h;

[*+ Nunber of convolution entries per cell =*/
| ong convNper Cel | ;

[*x Scaling for u,v to cells =/

fl oat uscale, vscale;

/** guardband in u, v in |anbda */

fl oat guardu, guardv;

[l++ shift parameters per facet [3] */
float xshift;

[+ UYW Rotation matrix per facet [3][3]*/
float =rotUV,

/** Frequency scaling array (nchan) =/
float *freqArr;

[*x gridding kernal =*/

fl oat xconvfn;

/** Facet grids, each sizeGid floats */
float =grids;

} Gidlnfo;

Single—-Thread code
The following is the source code executed in each threadeofhlti-threaded version.

/'l Processes all channels in a visibility for a given facet

/! Gid has hal fWdth extra colums in u added to avoid conplication near u=0

/1 The extra rows in the conjugate region need to be added to half plane before FFT.

voi d gridKernel (GPUGidIinfo =gridlinfo, gfloat *vis_in, int kvis, int ifacet, gfloat *debug)
{

glong ivis kvis » gridlnfo->lenvis; // beginning of visibility

gl ong hal fWdth = gridl nfo->convW dt h/ 2; /1 half width of convol ution kerna
glong full Wdth = gridl nfo->convW dt h; /1 full width of convol ution kerna
gl ong convNper Cel | = gridl nfo->convNperCel | ; /1 resolution of kernal

glong ichan, iu, iv, icu, icv, jvis, lrow, halfv, it, off, iphase;
gf l oat =*rot &gridl nfo->rot UV[ifacet+9];
gfl oat *shift &gridlnfo->shift[ifacet*3];

gfl oat =*grid gridlnfo->grids+(ifacetxgridlnfo->sizeGid);
gf l oat *convfn gri dl nf o- >convf n;
gf |l oat =gp;

gfloat u,v,w, uu, vv, w
gfloat vr, vi, vw, vvr, vvi, tr, ti;
gf | oat phase, ¢, s, phaseSign, freqgFact;

OBIT DEVELOPMENT MEMO SERIES NO. 36

gf | oat *convu, =*cconvu, =*convv;

gdoubl e dshift[3], dphase;

static const gdouble twopi = 2+xG Pl;

static const gdouble itwopi = 1.0/ (2*G Pl);

lrow = 2+(1 + gridlnfo->nx/2 + halfWwdth); // length of grid rowin gfloats

hal fv = gridlnfo->ny/2;

dshift[0] = (gdouble)shift[O0];
dshift[1] = (gdouble)shift[1];
dshift[2] = (gdouble)shift[2];

[l Assume random paraneters start with u,v,w

u = vis_in[ivis];
v = vis_in[ivis+l];
w = vis_ in[ivis+2];

!/l rotate u,v,w for facet

uu = uxrot[0] + vxrot[1l] + wrot[2];
VvV = uxrot[3] + vxrot[4] + wrot[5];
WW = uxrot[6] + vxrot[7] + wrot[8];

[l Only gridding half plane, need to flip to other side?
if (uu<=0.0) {
phaseSign = -1.0;

[*uu = -uu; */
[*xvv = -vv;*/
[*ww = -ww, */

} else { /] no flip
phaseSign = 1.0;
}
/1 1oop over channels
for (ichan=0; ichan<gridlnfo->nchan; ichan++) {
/1 real part of vis
jvis = ivis + gridlnfo->nrparm+ ichanx3;
fregFact = phaseSign » gridlnfo->freqArr[ichan];

u=uu x» freqFact; // Scale u,v,wto channe
v = vv * freqFact;

w = ww * freqFact;

vVvr = vis_in[jvis];

Vvi = vis_in[jvis+1];

vw = vis_in[jvis+2];

/+ Data valid? positive weight and w thin guardband */
if ((vw>0.) && (u<gridlnfo->guardu) && (fabs(v)<gridlnfo->guardv)) {
/1 position shift, double and subtract n pi turns
dphase = (uxdshift[0] + v+dshift[1l] + wdshift[2]);
i phase = (gl ong) (dphase=*itwopi);
phase = dphase - iphase * twopi
s = sin(phase);
c = cos(phase);
VI = C*VVI - S*VVi;

Vi S*VVI + C*VVi
/1 weighted data
VI %= VW,

Vi *= VW,

/1 convert to cells

u *= gridl nfo->uscal e;

v *= gridl nfo->vscal e;

iu = (glong) (u+0.5) - hal fWdth;

if (v>=0.0) iv (glong) (v+0.5) + gridlnfo->ny/2 - hal fWdth;
el se iv (glong)(v-0.5)+ gridlnfo->ny/2 - hal fWdth;

OBIT DEVELOPMENT MEMO SERIES NO. 36

/1 start in convolution function
it = (glong)(convNperCell * (u - (int)u));
convu = convfn + it;
if (v>0) it = (glong)(convNperCell + (v - (glong)v));
el se it = (glong)(convNperCell * ((glong)v - v));
convv = convfn + it;
for (icv=0; icv<full Wdth; icv++) {
off = iux2 + (iv+icv)xlrow
gp = grid + off;
cconvu = convu;
for (icu=0; icu<full Wdth; icu++) {
tr = vr*(xcconvu)*(*convv);
ti = vi=*(*cconvu)*(*convv);
*gp += tr; gpt+,
*gp += ti; gp++
cconvu += convNper Cel |
} // end u convol ution | oop
convv += convNper Cel |
} // end v convol ution | oop
} /] end valid
} /1 end channel | oop
} // end gridKerne

/1 Flip/add conjugate rows in grid
/1 block.x = vrow, threads in block = facet
void gridFlipKernel (GPUGidlnfo »gridlinfo, glong ifacet, glong vrow)
{
gl ong hal f Wdth = gridl nfo->convW dt h/ 2; /1 half width of convol ution kerna
gfloat *grid = gridlnfo->grids+(ifacet+gridlnfo->sizeGid);
gfloat *gi, *go
glong iu, vc, lrow

lrow =1 + gridlnfo->nx/2 + halfWdth; // length of grid row
vc = gridlnfo->ny - vrow /] conjugate row nunber
/1 1oop over u colums
gi = grid + vcxlrow + hal fWdt h;
go = grid + vrowlrow + hal fWdth + 1;
for (iu=0; iu<hal fWdth; iu++) {
go[0] += gi[0];
go[1] -= gi[1];
go += 2; gi -= 2;
}

}
} // end gridFlipKerne

one pass GPU code
The following is the source code for the kernel used for grigdn the one pass GPU test.

/1 Integrated gridding routine, |oops over channels

/1 Blocks are 16 x 16 visibilities

/1 Gidcells are facets x blocks of visibilities

/1 NB: &id has halfwWdth extra colums in u added to avoid conplications
/1 near u=0. The extra rows in the conjugate region need to be added to
/1 half plane before FFT (gridFlipKernel).

/1 gridlnfo = structure with gridding controls and arrays (testGid.cuh)
/1l vis_in = Visibility array, 1 Stokes, assunmed to start with u,v,w
__global __ void gridKernel (Gidlinfo *gridinfo, float *vis_in)

{

int kvis = bl ockl dx. y*bl ockDi m x*bl ockDi m x +

OBIT DEVELOPMENT MEMO SERIES NO. 36 9

t hr eadl dx. x*bl ockDim x + threadldx.y; // vis nunber

int ivis = kvis * gridlnfo->lenvis; /1 beginning of visibility

int ifacet = bl ockl dx. x; /1 facet number

int hal fWdth = gridl nfo->convWdt h/ 2; /1 half width of convol ution kerna
int full Wdth = gridl nfo->convW dt h; /1 full width of convol ution kerna
int convNperCell = gridlnfo->convNperCell; /1 resolution of kerna

float =rot = &gridlnfo->rotUV[ifacet=*9]; /1 (u,v,w) rotation matrix per facet
float =shift = &gridlnfo->shift[ifacet=*3]; /1 position shift paraneters per facet
float =grid = gridlinfo->grids+(ifacetxgridlnfo->sizeGid); // u-v grid per facet
float *convfn = gridl nfo->convfn; /1 tabul ated convol ution function

fl oat guardu = gridl nf o- >guar du; /1 u guardband (wavel engt hs)

fl oat guardv = gridl nf o- >guar dv; /1 v guardband (wavel engt hs)

float =gp;

int iu, iv, icu, icv, jvis, lrow, ichan, icufn, icvfn, offset;
float u,v,w, uu, vv, wWw, vr, vi, vw, vvr, vvi, tr, ti;

fl oat phase, c, s, phaseSign=1.0, freqFact;

float *convu, *cconvu, *convv, cu, CcVv;

lrow = 2«(1 + gridinfo->nx/2 + halfwdth); // length of grid rowin floats

/1 Assunme random paraneters start with u,v,w

u = vis_in[ivis];
VvV = vis_in[ivis+l];
w = vis_in[ivis+2];

// rotate u,v,w for facet

uu = uxrot[0] + v*rot[1l] + wrot[2];
vv = uxrot[3] + vxrot[4] + wrot[5];
WW = uxrot[6] + vxrot[7] + wrot[8];

[l Only gridding half plane, need to flip to other side?
if (uu<=0.0) {
phaseSign = -1.0;
} else { // no flip
phaseSign = 1.0;
}
/1 1oop over channels
for (ichan=0; ichan<gridlnfo->nchan; ichan++) {
/1 index of real part of vis
jvis = ivis + gridlnfo->nrparm + ichanx3;

vvr = vis_in[jvis];
vvi = vis_in[jvis+l];
VW = vis_in[jvis+2];

/1 Data valid? positive weight and w thin guardband
if ((vw>0.) && (uu<guardu) && (fabs(vv)<guardv)) {
fregFact = phaseSign *» gridlnfo->freqArr[ichan];

u=uu + fregFact; // Scale u,v,wto channe
v = vv * freqFact;
w = ww * freqFact;

/1 position shift

phase = phaseSign * (uxshift[0] + v+shift[1l] + wshift[2]);
__sincosf (phase, &s, &c);
VI = C*VVI - S*VVi;

Vi = s*Vvvr + C*VVi;

/1 wei ght data

VI %= VW,

Vi *= vw,

/1l convert to cells

u == gridl nfo->uscal e;

v *= gridlnfo->vscal e;

OBIT DEVELOPMENT MEMO SERIES NO. 36

iu = lroundf(u); /1 to grid cell nunber
iv = |l roundf(v);

/1 start in convolution function

icufn = I roundf ((convNperCell*(iu + 0.5 - u)));

convu = convfn + icufn
icvfn = I roundf ((convNperCell+(iv + 0.5 - v)));
convv = convfn + icvfn;

Cv = *convyv,

iu -= hal fWdth; /1l to absolute grid coordinates

iv += gridinfo->ny/2 - hal fWdth;
for (icv=0; icv<full Wdth; icv++) {
offset = (iu)*=2 + (iv+icv)=*lrow
gp = grid + offset;
cconvu = convu;
cu = (*cconvu)*cv;
for (icu=0; icu<fullWdth; icu++) {
tr = vr*cu;
ti = vi*cu;
/] atom c update of grid
at om cAddFl oat (gp++, tr);
at om cAddFl oat (gp++, ti)
cconvu += convNper Cel |
cu = (*cconvu)*cv;
} // end u convolution | oop
convv += convNper Cel |
CV = *CONvv;
} // end v convol ution | oop

} // end data valid

}

} /1 end channel | oop
/1 end gridKerne

two pass GPU code
The following is the source code for the kernel used in the pass GPU test.

extern _ shared__ float Cvx[]; [/ block convolution fn,

u then v

/1 Routine allow ng float atom cAdd on | ess capabl e systens

/! address = pointer for nmenory to update
/1 val = value to add
/1 returns previous value in address
__device__ float atom cAddFl oat (fl oat* address, float val)
{
#if __ CUDA_ARCH _ >=200
return atoni cAdd(address, val);
#el se
unsi gned int* address_as_ul = (unsigned intx)address;
uni on float Equiv {
unsi gned int iarg;
fl oat farg;
i

uni on floatEquiv arg, assuned, old;
old.iarg = raddress_as_ul;
do {

assuned.iarg = old.iarg;

arg.farg = val +assuned. farg;

#

old.iarg = atomni cCAS(address_as_ul, assuned.iarg,
} while (assuned.iarg !'= old.iarg);
return old.farg;
endi f

arg.iarg);

10

OBIT DEVELOPMENT MEMO SERIES NO. 36

} // end aton cAddFl oat

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

First pass gridding routine, saves visibilities, center grid cells

and first convolution indices in d_gridContr, d_gridCentr and_gridCfn
Bl ocks are 16 x 16 visibilities

Gid cells are facets x blocks of visibilities

NB: &id has halfWwdth extra colums in u added to avoid conplications
near u=0. The extra rows in the conjugate region need to be added to
hal f plane before FFT (gridFlipKernel).

gridinfo = structure with gridding controls and arrays (testGid. cuh)

vVis_in = Visibility array, 1 Stokes, assuned to start with u,v,w
d_gridContr = device storage for visibilities (r,i) per vis, per facet
d_gridCentr = device storage for center grid cells (u,v) per vis, per

d _gridCfn = device storage for first convolution indices (u,v) per vis/facet
i chan = (0-rel) channel nunber

__global __ void gridPrepKernel (Gidinfo =gridlinfo, float *vis_in,

float »d_gridContr, int =d _gridCentr, int »d_gridCfn, int ichan)

int kvis = bl ockl dx. y*bl ockDi m x*bl ockDimy +
t hreadl dx. x*bl ockDim x + threadldx.y; // vis nunber
int ivis kvis = gridlnfo->lenvis; /1 beginning of visibility
int ifacet bl ockl dx. x; /1 facet numnber
float =rot &gridlnfo->rotUV[ifacetx9]; /1 (u,v,w) rotation matrix per facet
float =shift &gridl nfo->shift[ifacet3]; /1 position shift paraneters per facet

float =gridContr
i nt *gridCentr

i nt *gri dCfn &d_gridCfn[ifacet*2xgridlnfo->nvis]; /1 pointer to facet storage
int hal fWdth gri dl nf o- >convW dt h/ 2; /1 half width of convol ution kerna
i nt convNper Cel | gri dl nf o- >convNper Cel | ; /1 resolution of kerna

int jvis, iu, iv, icufn, icvfn;
float u,v,w, uu, vv, ww, vr, vi, vw, vvr, vvi, tr, ti;
fl oat phase, c, s, phaseSign=1.0, freqFact;

/1 ignore vis nore than the nax
f (kvis>=gridlnfo->nvis) return

/1 Assunme random paraneters start with u,v,w
vis_in[ivis];

vis_in[ivis+1];

vis_in[ivis+2];

/1 rotate u,v,w for facet

u
\'
w

uu = uxrot[0] + v*rot[1l] + wrot[2];
vv = uxrot[3] + vxrot[4] + wrot[5];
WW = uxrot[6] + vxrot[7] + wrot[8];

/1 Only gridding half plane, need to flip to other side?
if (uu<=0.0) {

phaseSign = -1.0;
} else { /] no flip

phaseSign = 1.0;

}

/1 channel s val ues: index of real part of vis
jvis = ivis + gridlnfo->nrparm + ichanx3;

vvr = vis_in[jvis];

vvi = vis_in[jvis+l];

VW = vis_in[jvis+2];

/1 Data valid? positive weight and w thin guardband
if ((vw>0.) && (uu<gridlnfo->guardu) && (fabs(vv)<gridlnfo->guardv)) {

&l gridContr[ifacet+2«gridlnfo->nvis]; // pointer to facet storage
&l gridCentr[ifacet*2+«gridinfo->nvis]; // pointer to facet storage

OBIT DEVELOPMENT MEMO SERIES NO. 36 12

fregFact = phaseSign *» gridlnfo->freqArr[ichan];

u=uu *» freqFact; // Scale u,v,wto channe
v = vv * freqFact;
w = ww * freqFact;

/1 position shift

phase = phaseSign * (uxshift[0] + vxshift[1] + wshift[2]);
__sincosf (phase, &s, &c);

VI = C*VVI - S*VVi,;

Vi = s*Vvvr + C*VVi;

/1 wei ghted data

tr = vr = vw,

ti = vi * vw

/1l convert to cells

u == gridl nfo->uscal e;

v *= gridlnfo->vscal e;
iu = Iroundf(u); /1 to center grid cell nunber
iv = lroundf(v);

i cufn = convNper Cel | x| roundf (convNperCell *x(iu + 0.5 - u));
i cvfn = convNper Cel | | roundf (convNperCell x(iv + 0.5 - v));
iu -= hal fWdth; /1l to absolute grid coordinates
iv += gridinfo->ny/2 - hal fWdth;
} else { [// data invalid

tr
ti
iu
i v
i cufn
icvin ;

} /1 end data invalid

. 0;
. 0;

cooooo

/1l save to device nenory

gridContr[2xkvi s] =tr;
gridContr[2«kvis+l] = ti;
gridCentr[2+kvi s] =iu
gridCentr[2xkvis+1l] = iv;
gri dCf n[2«kvi s] = icufn;
gri dCf n[2+xkvi s+1] = icvfn;

} // end gridPrepKerne

/1 Second pass gridding routine, uses visibilities, center grid cells
/1 and first convolution indices in d _gridContr, d_gridCentr and_gridCfn
/1 Blocks are (uconv, x r,i) x vconv entries in the convolution
/1 threads are (w dthx2, wi dth)
/1l Gidcells are facets x visibilities
/1 threads are (width*2, wi dth)
/1 gridlnfo = structure with gridding controls and arrays (testGid. cuh)
/1 d_gridContr device storage for visibilities (r,i) per vis, per facet
/1 d_gridCentr device storage for center grid cells (u,v) per vis, per facet
/1 d_gridCfn device storage for first convolution indices (u,v) per vis/facet
/1 ichan = (0-rel) channel number
__global __ void gridAccunKernel (Gridlnfo =gridlnfo,
float ~rd _gridContr, int »d_gridCentr, int *d_gridCfn, int ichan)

{
int kvis = bl ockl dx.y; /1 vis nunber
int ifacet = bl ockldx.x; /1 facet numnber
int hal fWdth = gridl nfo->convW dt h/ 2; /1 half width of convol ution kerna
float =grid gridlnfo->grids+(ifacet)*gridlnfo->sizeGid; // facet grid

i nt cw gri dl nf o- >convW dt h; /1 convol ution wdth

OBIT DEVELOPMENT MEMO SERIES NO. 36

int i, jri, ju, jv, iuc, ivec, lrow, offset, icufn, icvfn;
float tt, =*gp;
__shared__ float gridContr[2]; /'l shared menory to speed access

__shared__ int gridCentr[2];
__shared__ int gridCfn[2];

/1 ignore vis nore than the nax
i f (kvis>=gridlnfo->nvis) return;

/1 global to shared nmenory, first two threads in block for u,v parts
if ((threadldx.x<2) && (threadldx.y==0)) {
i = threadl dx. x;

gridContr[i] = d_gridContr[ifacet=*2+gridlnfo->nvis+2«kvis+i];
gridCentr[i] = d_gridCentr[ifacet=*2+gridlnfo->nvis+2«kvis+i];
gridcnfi] = d_gridCin[ifacet*2+gridlnfo->nvis+2xkvi s+i];
}
/1 which part of contribution to grid
jri = t hreadl dx. x9%2; /1 real (0), or inmaginary (1)
ju = (threadl dx. x/ 2); /1 u index of convolution
jVv = t hreadl dx. y; /1 v index of convol ution
lrow = 2+(1 + gridlnfo->nx/2 + halfWwdth); // length of grid rowin floats

__syncthreads();

/1 data

tt = gridContr[jri]; /1 real/img val ue

iuc = gridCentr[O0]; /1l center cell inu

ive = gridCentr[1]; /1 center cell inyv

icufn = gridCfn[0]; /1 first element in u convolution function
icvin = gridCfin[1]; /1l first elenent in v convolution function

/1 Fetch convol ution values to shared nenory
if ((threadldx.y==0) && (jri==0)) Cvx[ju]

i f (threadl dx.x==0) Cvx[cw+j v]
__synct hreads();

gridlnfo->convfn[icufn + ju];
gridlnfo->convfn[icvin + jv];

/1 multiply by convolution fn.
tt = Cvx[ju] *Cvx[cwtj v];

/1 location in grid
offset = (iuc+ju)*2 + (ivc+Hv)*lrow + jri;
gp = grid + offset;

/1 atom c update grid
at omi cAddFl oat (gp, tt);
} /1 end gridAccunKernel

/1 Finish up gridding by adding nevative u cells to their conjugate points
/1 Bl ocks are facet

/1 Gidcells are rows in v

/1 block.x = vrow, threads in block = facet

/1 gridlnfo = structure with gridding controls and arrays (testGid. cuh)
__global __ void gridFlipKernel (Gidlnfo *gridlnfo)
{
long ifacet = threadldx.x; /'l facet nunber
| ong vrow = bl ockl dx. x; /1 v row nunber
long hal fwdth = gridl nfo->convWdth/ 2; /1 half width of convol ution kerna
long fullWdth = gridl nfo->convW dt h; /1 full width of convol ution kerna

13

OBIT DEVELOPMENT MEMO SERIES NO. 36 14

float *grid = gridlnfo->grids+(ifacet*gridlnfo->sizeGid); // facet grid
float *gi, =*go
long iu, vec, |lrow

lrow = 2#(1 + gridinfo->nx/2 + halfWdth); // length of grid row
vc = gridinfo->ny - vrow /1 conjugate row nunber

/1 1oop over u colums
gi = grid + vcxlrow,
go = grid + vrowlrow + 2+ful | Wdth;
for (iu=0; iu<hal fWdth; iu++) {
go[0] += gi[0];
go[1] -= gi[1]; /1 conjugate
go -= 2; gi += 2;

}
} // end gridFlipKerne

REFERENCES

[1] A. R. Thompson, J. M. Moran, and G. W. Swenson, literferometry and Synthesis in Radio Astronomy, 2nd &uifThompson, A. R., Moran, J. M.,
& Swenson, G. W., Jr., Ed. Wiley-Interscience, 2001.

[2] F. R. Schwab, “Optimal Gridding of Visibility Data in Raaliinterferometry,” inindirect Imaging. Measurement and Processing for Indiresaging.
Australia, Cambridge University Press, Cambridge, EndlaNew York, NY, L C # QB51.3.E43 153 1984. ISBN # 0-521-2@&2&2333, 19831983, pp.
333—+.

[3] R. A. Perley, “Imaging with Non-Coplanar Arrays,” iBynthesis Imaging in Radio Astronomy $kr. Astronomical Society of the Pacific Conference
Series, G. B. Taylor, C. L. Carilli, and R. A. Perley, Eds.|.\i80, 1999, pp. 383—+.

[4] W. D. Cotton, “Parallel Facet Imaging in ObitDbit Development Memo Serjesl. 6, pp. 1-3, 2009.

[5] ——, “A Fast Sine/Cosine Routine: Revenge of the Vectardessors,Obit Development Memo Serjesl. 37, pp. 1-9, 2013.

[6] ——, “Comparison of GPU and Multithreading for Interferotrie DFT Model Calculation,”Obit Development Memo Serjesl. 35, pp. 1-5, 2013.

