
OBIT DEVELOPMENT MEMO SERIES NO. 73 1

GPU-Based Visibility Gridding for Faceting
W. D. Cotton (NRAO), September 5, 2022

Abstract—This memo discusses the use of GPUs for convolving
radio interferometer visibilities onto a regular grid allowing the
use of FFTs. This convolutional gridding is one of the more
compute intensive parts of interferometric synthesis imaging but
has a number of properties making its implementation on GPUs
more difficult. An implementation of gridding using faceting in
Obit is described and examples are given of the application to
a realistic data set showing it to be competitive with optimized
CPU based gridding. On a machine with a recent GPU (4352
cores), GPU based gridding was nearly three times as fast as
the AVX512 implementation on 24 cores. On an older machine
whose GPU has 2560 cores, the GPU gridding was comparable
with the AVX2 implementation with 72 cores.

Index Terms—GPU, Interoferometric Synthesis

I. INTRODUCTION

RADIO interferometric “visibilities” are samples of the

spatial coherence function of an incoming wavefront at

random locations in the aperature plane. It is desirable to

convert these onto a regular grid to allow using FFT algorithms

to convert to the image plane. This is usually done by a

convolutional gridding of the randomly spaced samples onto

a regular grid [1] [2]. Each visibility is convolved with a

kernel with desirable properties and summed onto the regular

grid. This operation is one of the dominant compute intensive

portions of imaging, especially in the iterative deconvolution

schemes such as CLEAN [3][4] .

Graphics Processing Units (GPUs) are widely available and

relatively cheap and have potentially enormous computing

power with typically, many thousands of cores. It is desirable

to apply this power to gridding. Unfortunately, the gridding

problem is not a good match to GPUs’ abilities and com-

promises must be made. A previous attempt at GPU based

gridding is described in [5]. This memo evaluates such a

technique using the Obit package [6] 1. Examples using the

MeerKAT array are described.

II. PARALLELIZATION BASICS

Over a decade ago the speed of individual computer pro-

cessors stopped making dramatic improvements with time.

Instead, the number of processors (AKA “cores”) in a given

machine have increased. In addition, each core is a “vector”

processor that can do multiple operations in parallel with the

vector size the width of the memory bus. The current state

of the art is 512 bit memory buses which allow up to 16

floating point operations to be done at the cost of one. To take

advantage of this compute power, a given application must

be “parallelized” allowing different parts of the problem to

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

be handled by different cores in a series of “threads” using

vectorization.

This puts constraints on the algorithms used when the inputs

of one thread depends on the results computed in another,

known as a “dependency”. In the limit of a very large number

of parallel threads (thousands), this can be a serious constraint.

III. SYNTHESIS IMAGING OVERVIEW

The following gives a top level view of synthesis imaging

in the context of the CLEAN deconvolution technique as

practiced in Obit. The primary focus of this memo is on

convolutional gridding but the following describes how it fits

into the overall process.

A. Sky Curvature and Faceting

One of the fundamental problems to be dealt with in

syntheses imaging, especially at lower frequencies, is that the

images produced by the simple imaging process are flat while

the sky is curved [7] [8]. Away from the location where the

image intersects the sky, the image can become increasingly

defocused. There are several solutions used to deal with this

but the one used in Obit is “faceting”[9]; creating a mosaic

of facets which are all small enough that the defocusing is

negligible while collectively covering the desired field of view.

At frequencies near 1 GHz, typically dozens to hundreds

of facets are needed to cover the field of view of the array’s

antenna pattern. This allows a simple means of parallelization

as the same data, with some modification, is convolved onto

each of the grids. Faceting also allows the use of very compact

convolution kernels reducing the cost of gridding individual

facets. Faceting has the additional advantage that after the

initial set is formed, only facets with emission at an interesting

level need be formed in each major cycle.

B. Convolutional Gridding

Since each visibility measurement is treated as a delta func-

tion in aperature (AKA “uv”) space, the convolution of it with

the convolution kernel amounts to multiplying the convolution

kernel, sampled on the regular grid, by the complex visibility.

This product is then summed into the grid.

For reasons of efficiency, the convolution kernel needs to be

relatively compact. By the convolution theorem, a convolution

in the uv plane has the same effect as a multiplication in

the image plane. The form of the convolution function is

relatively arbitrary so can be chosen to have desirable features.

The kernel generally used in Obit is an anti-aliasing filter,

in the uv plane an oblate spheroid wave function [1] [2]

which in the image plane approximates a rectangular top hat

function greatly reducing out of band signals. This function is



OBIT DEVELOPMENT MEMO SERIES NO. 73 2

implemented as a 7x7 kernel with separable u and v functions.

To improve performance, the kernel is tabulated every 200th

of a pixel and used in the form of a lookup table.

Once the data are convolved to the regular grid, it is Fourier

transformed to the image plane to produce the “dirty” image.

The point spread function (psf = the instrumental response to a

point source) is produced by replacing the complex visibilities

with 1+0i and performing the same operation to produce the

“dirty” beam.

By the convolution theorem, convolving with this kernel is

the equivalent of multiplying the image by the Fourier trans-

form of the kernel. The Fourier transform of the convolving

kernel is divided into the resultant image to correct for the

artifacts introduced in the gridding.

C. CLEAN

Sampling of visibilities in the uv plane is always incomplete

and uneven and this affects the quality of the image. Concep-

tually, this is dealt with by a “sampling” function which is

zero where the visibility has not been measured and a positive

value (“weight”) where it has. The weight is a function of

the quantity and quality of the data going into the visibility

sample.

In practice, the dirty image is the convolution of the true sky

with the dirty beam. This generally requires a deconvolution

to obtain the best representation of the true sky. Because the

sampling function contains zeroes, a non linear deconvolution

is needed. The CLEAN algorithm is widely used for this as

it is a very simple and robust algorithm (although does not

always converge to a plausible solution). The result of CLEAN

is a set of sky model components (delta functions, Gaussians,

wavelets...).

A typical image/deconvolution consists of the following:

1) Grid the visibility set onto a regular axis.

2) Fourier Transform (FFT) the grid to produce dirty image

and beam. Correct for the effects of gridding convolu-

tion.

3) Partial deconvolution of dirty/residual image with dirty

beam to produce a partial sky model (CLEAN compo-

nents).

4) Fourier transform the sky model to the locations of

visibility measurements and produce a residual dataset.

5) Repeat steps 1–4 until the image residuals have reached

the noise level.

6) Restore the final residual image with the CLEAN com-

ponents convolved with the Gaussian approximation of

the core of the dirty beam.

When the desired field of view is larger than can be

adequately imaged using a single facet, a mosaic of facets

covering the field of view can be imaged and deconvolved in

parallel. The deconvolution of each facet needs to include the

artifacts (“sidelobes”) resulting from emission in other facets.

D. Sky Model Subtraction

An evaluation of the instrumental response to the partial

sky model is needed in the deconvolution described above. In

the simple case of a single facet, the Fourier transform of the

grid containing the sky model can be interpolated to the uv

locations of the visibility measurements. For multiple facets,

this FFT/interpolate needs to be done independently for each

facet. This operation is commonly referred to as “degridding”

Visibility datasets from modern instruments tend to be large

and many passes through the data are undesirable. In the

case of large numbers of facets, it is desirable to use a DFT

(’Discrete Fourier Transform’) based sky model calculation in

which the response to each component in the CLEAN model

is calculated for each visibility sample and summed. This may

involve a HUGE amount of computing but modern hardware,

especially GPUs are REALLY good at this [10] and may

outperform the grid/FFT based method.

IV. GPUS

Graphic Processing Units (GPUs) are devices attached to

computers with their own memory and processing units. They

were originally optimized for video games but have a relatively

general set of arithmetic instructions and can be used for

general purpose computing. Data must be transferred to and

from the device to be employed from a program running in

the host CPU.

GPUs have a large number (thousands) of relatively slow

processors that are deployed in blocks of threads to loop

through a given problem. Memory latency is very long but

if access is sequential through a large block of memory, such

as an image, this latency is largely hidden.

A. Sky Model (“degridding”

The bulk of the computing for a DFT degridding consists of

the sincos calculation of the dot product of each sky model’s

components sky coordinates with the u,v,w uv plane coordi-

nates of each visibility. This operation has no dependencies,

involves a large amount of computing per data point and there

are optimized sincos2 vector (SSE,AVX) and GPU functions.

B. Gridding

Gridding visibilities onto a regular grid presents several

difficulties for GPU processing. The first is that each of the

thousands of threads may be updating the same grid. An error

occurs if the value in a cell changes between the time when

a thread reads it and when the new value is rewritten. More

recent NVIDIA devices have an “atomic add” function which

assures that the cell value is not changed between read and

write but this slows the processing, especially when there are

many collisions.

Another problem is that the latency of GPU memory access

is many cycles and the relatively random arrangement of

visibility samples does not result in large scale sequential

access through the grid. Thus, memory access can be a major

bottleneck.

These two problems push the design of a GPU gridding

routine in opposite directions. The dependency/atomic add

2The bulk of the work is the same for a sine and cosine evaluation and if
both are needed, a sincos function is more efficient.



OBIT DEVELOPMENT MEMO SERIES NO. 73 3

problem is reduced by having the bulk of the threads hitting

widely disjoint sections of the grid while the memory latency

is reduced by having the different threads hitting the same

regions of the grid.

A subtle complication is that the order of execution of

blocks of cuda code is not defined and thus the order in which

visibilities are accumulated onto their respective grids. Due to

the limited precision of floats, numerical operations done in

different orders will give slightly different results. Two runs

of the same operation on the same data will not give identical

results.

V. GPU GRIDDING IN OBIT

Obit uses NVIDIA GPUs programmed in cuda. The nature

of imaging in Obit using tasks like MFImage [11] naturally

lends itself to parallelization. With faceting, the same data is

gridded onto the different grids using a very compact convo-

lution kernel. Furthermore, the frequency space is divided into

bins that are gridded and imaged separately and each consists

of a large number of individual frequency channels, of order of

a thousand total for big continuum problems. These frequency

channels are closely spaced in uv space, hence the same area

of the grid reducing the latency problem. The many facets

and frequency bin grids can be used to reduce the dependency

problem. There are a number of axes along which the data

can be split.

1) Visibility - the data from a given baseline at a given

time.

2) Channel - the many frequency channels in a dataset.

3) Facet - the many sub fields of view

4) Frequency bin - the sub band set of images

Cuda allows the looping to be defined along up to 3

axes. In the Obit implementation these are 1) visibility, 2)

channel, 3) facet. Which frequency bin is determined by the

frequency channel. If there are eight or more facets, the

maximum number of samples per block of 1024 threads is 8,

16, 8 on each of the axes. For a smaller number of facets,

these are 32,32, 1. This seems to be a good compromise

between reducing the problems of dependence and latency.

Two processing streams were used to overlap host/device data

transfers and computation.

VI. TIMING EXAMPLES

A comparison of execution times was made for GPU and

CPU based gridding for a large MeerKAT L band dataset on

a difficult portion of the sky to image; this continuum image

is dominated by a number of extended HII regions. Testing

used Obit task MFImage which allows separate control of

using the GPU for gridding and degridding. Each test was

run repeatedly, once with GPU gridding and once with an

optimized multi threaded, vectorized CPU gridding; each test

used a GPU for degridding. Otherwise the data, software and

control parameters were the same. A final run was made

without using a GPU to compare the basic speeds of the test

machines.

A. Test Data

The test MeerKAT dataset has 1,869,089 visibilities with 8

spectral windows of 119 channels each. Imaging was done

in Stokes I to a radius of 0.5◦ with outlying facets to 1◦

centered on sources brighter than 50 mJy in SUMMS using

a total of 42 facets and 14 × 5% fractional bandwidth

frequency bins. CLEANing used 100,000 point components

and autoWindowing [12] to set the CLEAN window. The GPU

was allowed to use up to half the total global memory for grids.

The field of view contained multiple bright and extended

sources which required many cycles of autoWindowing to

construct the CLEAN window. This is a difficult CLEANing

case with over 24 Jy of emission in the field.

B. Test Machines

Furthermore, the tests were run on two different CPU/GPU

combinations. One machine is cheeta which has 72 (hyper-

threaded) cores of Intel Xenon CPU E5-2695 v4 @ 2.1 GHz

with 256 GByte of RAM, 150 GBytes of which were in a

RAM disk for scratch files. Other disk was SSD. Cheeta has

a 256 bit memory bus and supports AVX2. This machine

has two GPUs (only one was used for these tests) NVIDIA

GeForce GTX 1080 with 20 Multiprocessors with 128 cores

each (2560 cores total) and a clock speed of 1508 kHz. The

CUDA capability is 6.1 with 7 GByte of global memory.

The other test machine is smeagle with 24 (hyperthreaded)

cores of Intel Xeon Gold 6136 CPU @3.00 GHz with 256

GByte of RAM, 150 GBytes of which were in a RAM

disk for scratch files. The other disk was software RAID-5.

Smeagle has a 512 bit memory bus and supports AVX512.

This machine has an NVIDIA GeForce RTX 2080 Ti GPU

with 68 Multiprocessors with 64 cores each (4352 cores total)

and a clock speed of 1508 kHz. The CUDA capability is 7.5

with 10 GByte of global memory.

C. Timing Tests

Timing tests were run using a GPU for both gridding and

degridding, degridding only and for neither. The test involves a

seriously nonlinear component, CLEAN deconvolution, mean-

ing the total amount of work was not constant as differences

in the order of numeric operations will cause the numerical

results to differ enough to take different path to the final

solution. This is especially true of tests using the GPU for

gridding as the order of execution of threads is not defined. The

various test results are given in Table I. The resultant images

are visually indistinguishable when blinked against each other.

A simple comparison is the wall clock time to make the

initial set of 42 images and beams, this is the same in all tests

and can be determined from the log file. This is given in Table

I as “1st”; this time also includes the FFT and correction for

the gridding convolution. The entire test process is dominated

by the gridding when the GPU is used for degridding so the

total run time divided by the number of images formed is also

an estimate of the efficiency of the gridding. This ratio is given

in Table I as “time/image”.



OBIT DEVELOPMENT MEMO SERIES NO. 73 4

TABLE I
TIMING TESTS

Machine GPU 1st Run images time/image
min. min. sec.

smeagle Y 2.00 76.2 1796 2.54
smeagle N 5.67 194.1 1991 5.85
smeagle X 5.58 460.6 1899 14.55
cheeta Y 3.48 172.2 2262 4.04
cheeta N 3.50 151.7 2017 4.51
cheeta X 3.83 319.6 2103 9.19

Notes:
GPU: Y or N indicates whether the gridding used a GPU, X = no GPU.
1st is the wall clock time for the initial imaging of the 42 images and beams.
Run is the total wall clock time.
images is the total number of images made.
time/image is the total run time divided by the number of images made.

VII. DISCUSSION

Table I shows a difference in the relative efficiency of GPU

based gridding between smeagle and cheeta. On smeagle, the

GPU gridding reduces the run time by a factor of 2.5 with

a factor of 2.8 for the time to make the initial images and

beams. Cheeta on the other hand showed little difference in

the gridding time between using, or not, the GPU for gridding.

The difference between the two machines is that cheeta has

many more, if slower, CPU cores than smeagle while its GPUs

have about half the number of cores. In the head-to-head CPU

comparison in Table I cheeta is 40% faster that smeagle. The

more capable GPU on smeagle makes a big difference. On

both machines, using the GPU for degridding made a factor

of 2 difference in the total run time.

The finite precision of the calculations and the nonlinear

nature of the CLEAN algorithm resulted in some variance

of the number of images formed in each run. For the GPU

gridding based tests, repeats of the same run will results

in different number of images formed. This is due to the

indeterminacy of the order of thread execution. CPU based

runs on the same machine are more repeatable.

REFERENCES

[1] F. R. Schwab, “Optimal Gridding of Visibility Data in Radio Interfer-
ometry,” in Indirect Imaging. Measurement and Processing for Indirect

Imaging. Australia, Cambridge University Press, Cambridge, England,

New York, NY, L C # QB51.3.E43 I53 1984. ISBN # 0-521-26282-8.

P.333, 1983, 1983, pp. 333–+.

[2] ——, “Optimal Gridding of Visibility Data in Radio Interferometry,”
in Indirect Imaging. Measurement and Processing for Indirect Imaging,
J. A. Roberts, Ed., 1984, pp. 333–+.

[3] J. A. Högbom, “Aperture Synthesis with a Non-Regular Distribution of
Interferometer Baselines,” A&A Suppl., vol. 15, p. 417, Jun. 1974.

[4] B. G. Clark, “An efficient implementation of the algorithm ’CLEAN’,”
A&A, vol. 89, pp. 377–+, Sep. 1980.

[5] W. D. Cotton, “Comparison of GPU, Single- and Multi-
threading for Interferometric Gridding,” Obit Development

Memo Series, vol. 36, pp. 1–14, 2014. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/GPUGrid.pdf

[6] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

[7] R. A. Perley, “Imaging with Non-Coplanar Arrays,” in Synthesis Imaging

in Radio Astronomy II, ser. Astronomical Society of the Pacific Confer-
ence Series, G. B. Taylor, C. L. Carilli, and R. A. Perley, Eds., vol. 180,
1999, pp. 383–+.

[8] ——, “Imaging with Non-Coplanar Arrays,” in Synthesis Imaging in

Radio Astronomy II, ser. Astronomical Society of the Pacific Conference
Series, G. B. Taylor, C. L. Carilli, and R. A. Perley, Eds., vol. 180, 1999,
pp. 383–+.

[9] W. D. Cotton, “Multi-facet CLEANing in Obit,” Obit Development

Memo Series, vol. 15, pp. 1–5, 2009. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/MultiClean.pdf

[10] ——, “Comparison of GPU and Multithreading for In-
terferometric DFT Model Calculation,” Obit Development

Memo Series, vol. 35, pp. 1–5, 2014. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/GPUDFTv2.pdf

[11] W. D. Cotton, J. J. Condon, K. I. Kellermann, M. Lacy, R. A. Perley,
A. M. Matthews, T. Vernstrom, D. Scott, and J. V. Wall, “The Angular
Size Distribution of µJy Radio Sources,” ApJ, vol. 856, no. 1, p. 67,
Mar. 2018.

[12] W. D. Cotton, “Performance Enhancement of the autoWindow tech-
nique,” Obit Development Memo Series, vol. 9, pp. 1–3, 2009. [Online].
Available: https://www.cv.nrao.edu/∼bcotton/ObitDoc/autoWin2.pdf


