
OBIT DEVELOPMENT MEMO SERIES NO. 8 1

Testing Obit with a 100 GByte simulated dataset
W. D. Cotton, May 21, 2009

Abstract—When the EVLA correlator becomes operational
it will be capable of generating datasets orders of magnitude
larger than the VLA system was capable. This means that both
development and operational software will need to handle far
larger datasets than they have in the the past. In addition, far
greater performance will be required to process this data in a
timely fashion. This memo describes the generation of a 100
GByte simulated EVLA dataset and its use to test Obit pipeline
software. Processing of this data volume is shown to be tractable
with a single state of the art workstation. The use of multiple
cores (8) made a dramatic improvement in the processing speed
obtained; a factor or 5 or more in the imaging tests performed.

Index Terms—interferometry, performance

I. INTRODUCTION

THE era of data sets with volumes of 100s to thousands
of GByte has nearly arrived and data analysis software

needs to be prepared to handle this data in an efficient fashion.
Until actual datasets become available testing must be done
using simulated data. The following describes use of Obit([1],
http://www.cv.nrao.edu/∼bcotton/Obit.html) to simulate real-
istic data with a size of 100 GByte. This data is then passed
through a suite of editing, calibration and imaging processes
similar to what would be done to a typical continuum dataset.

II. SIMULATED DATA

The simulated data was generated using the VLA ”B”
configuration and consists of 19 ten minute scans over 9.5
hours of a ”target” source at 60◦ declination. These were
interspersed with one minute ”phase calibration” scans and a
single ”Flux density/bandpass” calibration scan of 10 min. in
length. Data samples were 2 second integrations and contained
1024 spectral channels divided among 32 ”IFs” and spanning
from 1.4 to 1.9 GHz. This generated a total of 2323269
visibility records of which 2003508 were on the ”Target”. In
full precision (3 floats per visibility) this is 106.3 GByte of
data and in ”compressed” (2 shorts per visibility) 35.5 GByte
of data.

The models used for the calibrator sources were 1 and
10 Jy point sources at the origin for the phase and ampli-
tude/bandpass calibrators respectively. The sky model used
for the target field was the CLEAN model derived from a
moderately deep VLA survey (22 µJy/beam RMS) pointing
using a similar setup. This sky model consists of 116 facets.
Therefore, the sky model was completely realistic in terms of
the distributions of positions, flux densities, sizes and shapes.

Gaussian noise of 0.5 Jy was added to each visibility
measurement (to give roughly 10 µJy/beam RMS in the

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

Manuscript received ; revised

Median Flag

 SetJy

 Calib

 GetJy

 CLCal

 Imager

 BPASS

 AutoFlag

Data

Image

Fig. 1. Steps included in the processing pipeline.

image); no primary beam gain or spectral index corrections
were applied. Simulated data were written into compressed
AIPS format and index (NX) and initial calibration (CL) tables
were generated.

III. TEST PROCESSING

Testing was performed on the Obit Development machine,
mortibus, in Charlottesville. This machine has dual quad core
Xenon processors for a total of 8 cores, a clock speed of 3
GHz, 8 GByte memory and a fast disk RAID system. Mort-
ibus uses the Dell SAS/SATA RAID 5, PERC 6/i Integrated
controller (made by LSI) with the Seagate 146GB15K RPM
SAS 3Gbps 2.5-in HotPlug Hard Drive.

The test processing consisted of a pipeline containing a
sequence of calibration, editing and imaging steps which
might be typical for a continuum observation. This pipeline is
described schematically in Figure 1 and listed in the appendix.
Each of these steps is described in the following:

1) Median Flag
Obit task MednFlag. This step looks for strong interfer-
ence or data drop outs on calibrators by comparing each
data sample with a running median amplitude. Data are
flagged by entries in a flagging (AIPS FG) table.

OBIT DEVELOPMENT MEMO SERIES NO. 8 2

2) SetJy
Obit task SetJy. This sets the flux densities of the
amplitude calibrator(s) in the AIPS SU table for use in
subsequent calibration steps.

3) Calib
Obit task Calib. This step determines the calibration
gains for the amplitude and phase calibrators using either
a point model or a CLEAN sky model. Solutions are
written into a AIPS SN table.

4) GetJy
Obit task GetJy. This task uses the gain solutions to
derive the flux density of the phase calibration source
from the amplitude calibration source. The phase cali-
brator gains in the AIPS SN table and the flux densities
in the AIPS SU are modified.

5) CLCal
Obit task CLCal. This step takes the calibration gains
from the AIPS SN table and applied them to the initial
calibration (AIPS CL) table and writes a new table which
is used for subsequent processing.

6) AutoFlag
Obit task AutoFlag. This editing process helps remove
RFI by flagging any data with excessive values of Stokes
I or V as well as doing a time domain search for periods
of excessive fluctuations. Data are flagged by entries in
a flagging (AIPS FG) table.

7) BPASS
AIPS task BPASS. This task applies the prior calibration
and determines the channel specific gain corrections.
The version used in this test (DEC06) failed on all
solutions and was not actually used.

8) Imager
Obit task Imager. This step takes the data, applies the
calibration and editing tables and then images, decon-
volves and optionally does phase and/or amplitude and
phase self–calibration on each of the target sources. This
produces final self–calibrated, deconvolved, flattened
images. A blowup of a region of the image is shown
in Figure 2.

IV. VLACAL.PY

A “pipelined” processing script can be written using the
calibration/editing/imaging routines in the Obit/python module
VLACal.py. The functions are described below and in more
detail in the appendix.

• VLAAutoFlag
Does Automated flagging.

• VLABPCal
Bandbass calibration

• VLACal
Basic Amplitude and phase cal.

• VLAClearCal
Clear previous calibration

• VLAMedianFlag
Data flagging based on deviations from a running median.

• VLASetImager
Setup to run Imager to image/deconvolve/selfcalibrate.

• VLASplit
Write calibrated data

V. TIMINGS

A. Multi-threading
Several of the more CPU intensive operations, such as

generating the simulated data, the median window editing and
the imaging/deconvolution/self–calibration have been written
to allow using multiple cores if available. These were run
allowing the maximum of 8 available on mortibus. This results
in a very substantial processing speedup.

B. Timing Results
The timing results for the various stages are given in Table

I. For operations for which multi-threading was enabled the
CPU time as well as the ratio of CPU to real time are also
given. Eight cores were available so the maximum possible
ratio is 8.

VI. DISCUSSION

It is clear from Table I that imaging and deconvolution
are by far the most expensive operations. These tests did
not include self calibration but this is expected to increase
the processing time by a factor of several. Each cycle of
self calibration includes a calculation of the model visibil-
ity, a calculation of the self–cal gains, and then reimag-
ing/deconvolution. The cost of this will be dominated by the
imaging/deconvolution. The additional time for each loop of
self calibration is therefore, very roughly, the time of the initial
imaging/deconvolution.

The original single threaded version of MednFlag took 1071
minutes and was clearly too slow to be useful for this size
dataset. Therefore, the critical routine was recast to run in
parallel threads and reduced the run time to a merely painful
level.

Several tests were performed using the imaging task Imager.
The first was a simple image with no CLEANing; the imaging
parameters resulted in 144 facets needed to cover the field of
view and anticipated outliers. The final image was 3599x3599
pixels. The second test was a moderate depth unconstrained
CLEAN which used 40 major cycles and 1883 CLEAN
components before reaching the minimum flux density.

The most dramatic result from Table I is the dramatic impact
of using multiple cores. The various tests runs of Imager
had CPU/real time ratios in excess of 5; meaning single core
operations would have taken at least a factor of 5 longer. The
simple image task would have taken at least 44 hours with a
single core rather than the 7 1/4 hours with 8.

In conclusion, it appears tractable to process EVLA datasets
of order 100 GByte on a state of the art work station on which
a substantial number of cores are available.

APPENDIX

Following are the documentation for the VLACal python
module and the pipeline processing script.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

OBIT DEVELOPMENT MEMO SERIES NO. 8 3

Fig. 2. Region of simulated image. Stretch is the square root of the pixel values intended to show the weaker features.

TABLE I
TIMINGS OF PROCESSING STEPS

Process Real Time CPU time CPU/Real Comments
min. min.

Simulate 574 4017 7.0 Full script run
Median Flag 265 831 3.1 8 threads
SetJy 0.02 Average
Calib 1.3 Amplitude calibrator
Calib 4.6 Phase calibrator
GetJy 0.02
CLCal 0.15
AutoFlag 92.0
BPASS 1.7 1.1 0.68
Imager 436 2650 6.1 Image only
Imager 1066 6067 5.7 Image + CLEAN

OBIT DEVELOPMENT MEMO SERIES NO. 8 4

The on-line help for VLACal is given in the following.
FUNCTIONS

VLAAutoFlag(uv, target, err, doCalib=0, gainUse=0, doBand=0,
BPVer=0, flagVer=-1, flagTab=1, VClip=[0.0, 0.0],
IClip=[0.0, 0.0], RMSClip=[0.0, 0.0], RMSAvg=0.0, maxBad=0.25,
timeAvg=1.0, doFD=False, FDmaxAmp=0.0, FDmaxV=0.0, FDwidMW=5,
FDmaxRMS=[0.0, 0.0], FDmaxRes=6.0, FDmaxResBL=6.0,
FDbaseSel=[0, 0, 0, 0])

Does Automated flagging

Flag data based on any of a number of criteria
See documentation for task AutoFlag for details
uv = UV data object to flag
target = Target source name or list of names, blank = all
err = Obit error/message stack
doCalib = Apply calibration table
gainUse = CL/SN table to apply
doBand = If >0.5 apply bandpass cal.
BPVer = Bandpass table version
flagVer = Input Flagging table version
flagTab = Output Flagging table version
VClip = If > 0.0 VPol (clipping level, fract. amp)
IClip = If > 0.0 IPol (clipping level, fract. amp)
RMSClip = Abs and fractional clip levels for

Time domain RMS filtering
RMSAvg = Max RMS/Avg for time domain RMS filtering
maxBad = Maximum fraction of baselines for

correlator or antenna to be
flagged before all are flagged

timeAvg = Flagging interval (min)
doFD = do frequency domain editing?
FDmaxAmp = Maximum average amplitude
FDmaxV = Maximum average VPol amp
FDwidMW = Width of the median window
FDmaxRMS = Channel RMS limits
FDmaxRes = Max. residual flux in sigma
FDmaxResBL = Max. baseline residual
FDbaseSel = Channels for baseline fit (start, end, increment,IF)

VLABPCal(uv, BPCal, err, newBPVer=1, doCalib=2, gainUse=0,
doBand=0, BPVer=0, flagVer=-1, solInt=0.0, refAnt=0,
ampScalar=False, specIndex=0.0, noScrat=[])

Bandbass calibration

Do bandbass calibration, write BP table
uv = UV data object to calibrate
BPCal = Bandpass calibrator, name or list of names
err = Obit error/message stack
newBPVer = output BP table
doCalib = Apply calibration table, positive=>calibrate
gainUse = CL/SN table to apply
doBand = If >0.5 apply previous bandpass cal.
BPVer = previous Bandpass table (BP) version
flagVer = Input Flagging table version
solInt = solution interval (min), 0=> scan average

OBIT DEVELOPMENT MEMO SERIES NO. 8 5

refAnt = Reference antenna
ampScalar= If true, scalar average data in calibration
specIndex= spectral index of calibrator (steep=-0.70)
noScrat = list of disks to avoid for scratch files

VLACal(uv, target, ACal, err, PCal=None, FQid=1, calFlux=None,
calModel=None, calDisk=0, solnVer=1, solInt=10.0, nThreads=1,
refAnt=0, ampScalar=False, noScrat=[])

Basic Amplitude and phase cal for VLA data

Amplitude calibration can be based either on a point flux
density or a calibrator model.
If neither calFlux nor calModel is given, an attempt is made
to use the setjy.OPType="CALC" option.
uv = UV data object to calibrate
target = Target source name or list of names
ACal = Amp calibrator
err = Obit error/message stack
PCal = if given, the phase calibrator name
FQid = Frequency Id to process
calFlux = ACal point flux density if given
calModel = Amp. calibration model FITS file

Has priority over calFlux
calDisk = FITS disk for calModel
solnVer = output SN table version
solInt = solution interval (min)
nThreads = Number of threads to use
refAnt = Reference antenna
ampScalar= If true, scalar average data in calibration
noScrat = list of disks to avoid for scratch files

VLAClearCal(uv, err, doGain=True, doBP=False, doFlag=False)
Clear previous calibration

Delete all SN tables, all CL but CL 1
uv = UV data object to clear
err = Obit error/message stack
doGain = If True, delete SN and CL tables
doBP = If True, delete BP tables
doFlag = If True, delete FG tables

VLAMedianFlag(uv, target, err, flagTab=1, flagSig=10.0, alpha=0.5,
timeWind=2.0, doCalib=0, gainUse=0, doBand=0, BPVer=0,
flagVer=-1, nThreads=1, noScrat=[])

Does Median window flagging

Flag data based on deviations from a running median
See documentation for task MednFlag for details
uv = UV data object to flag
target = Target source name or list of names, blank = all
err = Obit error/message stack
flagTab = Output Flagging table version
flagSig = Flagging level (sigma)
alpha = Smoothing parameter
timeWind = Averaging window (min)

OBIT DEVELOPMENT MEMO SERIES NO. 8 6

doCalib = Apply calibration table
gainUse = CL/SN table to apply
doBand = If >0.5 apply bandpass cal.
BPVer = Bandpass table version
flagVer = Input Flagging table version
nThreads = Number of threads to use
noScrat = list of disks to avoid for scratch files

VLASetImager(uv, target, outIclass=’’, nThreads=1, noScrat=[])
Setup to run Imager

return Imager task interface object
uv = UV data object to image
target = Target source name or list of names
outIclass= output class
FQid = Frequency Id to process
nThreads = Number of threads to use
noScrat = list of disks to avoid for scratch files

VLASplit(uv, target, err, FQid=1, outClass=’ ’)
Write calibrated data

uv = UV data object to clear
target = Target source name source name or list of names
err = Obit error/message stack
FQid = Frequency Id to process

The following python script was used for processing the simulated data.

Process 100 GByte Obit test
Data in user 105 on Mortibus
import OErr, OSystem, UV, AIPS, FITS

user = 105 # AIPS user number
############################# Initialize OBIT ####################################
On Mortibus define disk areas
adirs = [\

"/export/data_1/MORTIBUS_1", \
"/export/data_1/MORTIBUS_2", \
"/export/data_1/MORTIBUS_3", \
"/export/data_1/MORTIBUS_4", \
"/export/data_2/obit/MORTIBUS_5", \
"/export/data_2/obit/MORTIBUS_6", \
"/export/data_2/obit/MORTIBUS_7", \
"/export/data_2/obit/MORTIBUS_8" \
]

fdirs = ["/export/data_1/FITS","/export/data_2/FITS"]

Init Obit
err = OErr.OErr()
ObitSys=OSystem.OSystem ("Process100G", 1, user, len(adirs), adirs, \

len(fdirs), fdirs, True, False, err)
OErr.printErrMsg(err, "Error with Obit startup")

OBIT DEVELOPMENT MEMO SERIES NO. 8 7

Setup AIPS, FITS
AIPS.AIPS.userno = user
disk = 0
for ad in adirs:

disk += 1
AIPS.AIPS.disks.append(AIPS.AIPSDisk(None, disk, ad))

disk = 0
for fd in fdirs:

disk += 1
FITS.FITS.disks.append(FITS.FITSDisk(None, disk, fd))

############################# Set Processing parameters ##########################
from VLACal import *

Set processing parameters

Data
disk = 8 # Input data AIPS disk number
seq = 1 # Input data AIPS sequence number
inName = "Simulated2"# Input data AIPS name
inClass = "100G" # Input data AIPS class

Specify calibrators/targets
PCal = "Cal" # Phase calibrator
ACal = "Amp" # Amplitude calibrator
BPCal = "Amp" # Bandpass calibrator
specIndex = 0.0 # Spectral index of BPCal
targets1 = ["Target"] # targets
refAnt = 14 # Reference antenna
calFlux = 10.0 # Amplitude calibrator flux density

Processing
nThreads = 8 # Number of threads to use when possible
noScrat = [1,2,3,4] # Disks to avoid for scratch

Editing parameters
timeWind = 2.0 # Window width for median window editing
flagVer = 1 # Prior flagging table to apply
IClip = [1.0,0.1] # If > 0.0 IPol (clipping level, fract. amp)
VClip = [0.1,0.05] # If > 0.0 VPol (clipping level, fract. amp)
RMSAvg = 20.0 # Max RMS/Avg for time domain RMS filtering
timeAvg = 2.0 # Time domain flagging interval (min)

Imaging
FOV = 0.75 # Field of view radius in deg
xCells = 1.5 # Cell spacing in RA (asec)
yCells = 1.5 # Cell spacing in Dec (asec)
UVRange = [0.0,45.0] # UV range (klambda)
Robust = 0.0 # Imaging weight
OutlierDist = 1.2 # Distance (deg) to which outlying fields
OutlierFlux = 0.001 # Minimum outlier apparent flux density
logFile = "Imager.log"# Imager logging file, blank = none

CLEAN
Niter = 15000 # Maximum number of CLEAN components
Gain = 0.10 # CLEAN loop gain
minFlux = 50.0e-6 # Minimum CLEAN flux density
Beam = [5.0,5.0,0.]# CLEAN restoring beam size (asec,asec,deg)
autoWindow = True # Use auto window

OBIT DEVELOPMENT MEMO SERIES NO. 8 8

Self calibration
maxPSCLoop = 0 # No phase self cal
maxASCLoop = 0 # No amp+phase self cal

################################## Process #####################################
Define data
uv1 = UV.newPAUV("raw", inName, inClass, disk, seq, True, err)

Delete any prior calibration
VLAClearCal(uv1, err, doGain=True, doFlag=True, doBP=True)
OErr.printErrMsg(err, "Error resetting calibration")

Median window editing
VLAMedianFlag (uv1, " ", err, timeWind=timWind, flagVer=flagVer, noScrat=noScrat)

Amp & phase Calibrate
VLACal (uv1, targets1, ACal, err, PCal=PCal, \

calFlux=calFlux, nThreads=nThreads, \
refAnt=refAnt, noScrat=noScrat)

OErr.printErrMsg(err, " Error in calibration")

More editing
VLAAutoFlag (uv1, targets1, err, RMSAvg=RMSAvg, flagVer=flagVer, \

IClip=IClip, VClip=VClip, timeAvg=timeAvg)

Bandpass calibration
VLABPCal(uv1, BPCal, err, refAnt=refAnt, specIndex=specIndex, noScrat=noScrat)

Image
img = VLASetImager(uv1, targets1, outIclass="I100G",

nThreads=nThreads, noScrat=noScrat)
img.FOV = FOV # Field of view radius in deg
img.xCells = xCells # Cell spacing in RA
img.yCells = yCells # Cell spacing in Dec
img.UVRange = UVRange # UV range
img.OutlierDist = OutlierDist # Distance (deg) to which outlying fields
img.OutlierFlux = OutlierFlux # Minimum outlier apparent flux density
img.Robust = Robust # Imaging weight
img.Niter = Niter # Maximum number of CLEAN components
img.Gain = Gain # CLEAN loop gain
img.minFlux = minFlux # Minimum CLEAN flux density
img.Beam = Beam # CLEAN restoring beam size
img.autoWindow = autoWindow # Use auto window
img.maxPSCLoop = maxPSCLoop # Phase self cal
img.maxASCLoop = maxASCLoop # Amp+phase self cal
img.dispURL = "None" # No display
img.logFile = logFile # Imaging log file
img.g # Image/deconvolve

