
OBIT DEVELOPMENT MEMO SERIES NO. 61 1

Notes on icc and AVX
W. D. Cotton, May 24, 2019

Abstract—Timing tests are described comparing various com-
binations of optimizing compilers and hand coded AVX intrinsics
in a multi–threaded program. For the radio interferometric
imaging test case, the hand coded routines reduced the run
time by 10% for both the gcc and icc compiler runs. The
Intel compiler, icc, reduced the run time by 20% with and
without the AVX intrinsics enabled. Both using a good optimizing
compiler and hand-coding critical routines make a substantial
improvement in performanence.

Index Terms—compilers, vectorizing

I. I NTRODUCTION

M ANY operations in imaging radio interferometric data
are quite compute intensive but, if properly imple-

mented, allow a fair degree of prallelization. Both vectorica-
tion and multi–threading are extensively used for performance
gains. This memo discusses vectorization as implemented in
the program MFImage in the Obit package [1]1. Both use
of the Intel optimizing compiler, icc, and hand-coded AVX
“intrinsics” routines are examined.

II. SHARED MEMORY PARALLELISM

There are two simple (shared memory) means of parallelism
in modern CPUs, multi–threading to spread work over mul-
tiple cores and vectorization to perform multiple arithmetic
operations in the same cycle on a given core. This memo only
considers the latter and the influence of compilers in utilizing
the vector hardware. Multiple thread operations also can make
heavy use of vectorized functions.

The vector units operate on blocks of data the size of
the memory bus. For the older models, this is 128 bits
corresponding to 4 floats or 2 doubles. Since most radio
interferometry operations are on floats, this vectorication gets
up to a factor of 4 performance improvement. More recent
computers have a 256 bit wide bus and vector oparations are on
8 floats. 128 bit vector operations are implemented in various
versions of SSE and the 256 bit vector operations in a version
of AVX.

The two main ways of implementating vector operations in
software are 1) letting the compiler figure it out or 2) using
the “intrinsics”, c function calls that get mapped to vector
assembly-level instructions. Different compilers have different
levels of knowledge of the vector units hence, produce code
with different levels of performance. The expensive Intel
compiler, icc, generally gives the best performance as it was
developed by the CPU chip maker but the freebee gcc lags
behind in vectorization. Software using the intrinsics canbe

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

hand coded and run on any compiler and can, in principle,
even out perform a good compiler.

This note compares Obit software which uses extensive
hand–optimized routines employing the intrinsics compiled
with various options using icc and gcc. Timings of various
software options and compilers are given.

III. O BIT INTRINSICS IMPLEMENTATION

Obit software is intended to be run on machines using 128
or 256 bit (or more) memory buses hence requires either SSE
or AVX intrinsics. Which set is controlled by #ifdefs using
command line options to control. SSE is always assumed to
be available but AVX and AVX2 are optional.

Various compute intensive functions in Obit have opti-
mized SSE/AVX implementations. Heavy use is made of
the sincos function from the opensource avxmathfun.h and
sse mathfun.h libraries and many float array (ObitFArray
class) functions have avx implementations. A vectorized rou-
tine critical to radio interferometry is the uv data gridding
routine which has a hand-coded avx version [2].

IV. COMPILERS

The tests described below used either the Intel compiler
icc (version 16.0.2) or the GNU gcc compiler (version 4.4.7).
Use of AVX is enabled/disabled using compiler options
set in the Makefiles; -DHAVESSE=1, -DHAVEAVX=1 (-
DHAVEAVX2=1 for AVX2) control the Obit #ifdefs and -
msse -mavx -mavx2 enable SSE, AVX and AVX2 in the
compiler. Compilation used the -O3 optimization compiler
switch.

V. TEST CASE

The test case is a run of Obit wideband/widefield imaging
task MFImage run on a small EVLA dataset. This data had
19,147 visibilities in S Band with 16 IFs averaged to 54
channels. Imaging was to a radius of 0.25 degrees producing
an image of 1062×1062 pixels using 7 facets; CLEANing
proceeded to 1500 components. This test case contains a good
mix of I/O and CPU bound components, scalar, vector and
multi-threading.

The tests were run on zuul05 running Redhat 6, this has 16
× 2 GHz cores with AVX, 64 GByte RAM, RAID and SSD
disks and a GPU. The GPU was not used in these tests. Output
and scratch files were on the SSD and up to 16 threads were
allowed. No other users were on this machine at the time of
the tests.



OBIT DEVELOPMENT MEMO SERIES NO. 61 2

TABLE I
TIMING TESTS

compiler Obit AVX Real CPU rel. Real rel CPU
sec sec

gcc N 135 656.2 1 1
gcc Y 123 535.0 0.91 0.82
icc N 110 471.3 0.81 0.72
icc Y 94 346.3 0.70 0.53

Notes: “rel Real” and “rel CPU” are the ratio of the time to thatfrom the
gcc/no AVX test.

VI. T IMINGS

Timings are the average of multiple runs using the Obit real
and CPU time values. All test runs allowed up to 16 parallel
threads. Results are given in Table I where “compiler” is the
compiler used, “Obit AVX” is “Y” or “N” indicating if the
Obit AVX intrinsics were enabled, “Real” is the elapsed time,
“CPU” is the CPU time used.

VII. D ISCUSSION

The results shown in Table I show that vectorization from
use of both hand–optimized AVX intrinsics and the Intel
(icc) compiler in a multi–threaded program result in increased
performance. For both the icc and gcc tests, use of AVX
intrinsics reduced the run time by about 10% and using both
icc and the AVX intrinsics reduced the run time by 30%
relative to using neither. Either with or without AVX enabled,
icc produces a runtime 20% less than gcc.

Both using the Intel compiled and hand–coded routines
make a substantial performance improvement; the use of the
Intel compiled does not appear to reduce the utility of hand–
optimization of critical routines. For larger, more realistic
problems, the optimized portions of the program take a larger
fraction of the computation, probably resulting in larger per-
formance gains.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

[2] W. D. Cotton, “Comparison of GPU, Single- and Multi-threading for
Interferometric Gridding,”Obit Development Memo Series, vol. 36, pp.
1–14, 2014.


