OBIT DEVELOPMENT MEMO SERIES NO. 2

Note on Parallel Processing of Spectral Line Data
in Obit

W. D. Cotton, October 1, 2008

Abstract—This memo describes a prototype implementation
of parallel processing of spectral line data. The current test was
run on a single, dual core machine but is extend-able to use on
a cluster. Dividing the bulk of the processing into two streams
on a dual core workstation reduced the processing time for a
test case in half relative to the time required for a single stream
of processing. This improvement should scale well to a larger
number of nodes on a cluster.

Index Terms—Computing efficiency, clusters, interferometry

I. INTRODUCTION

HE data rates for interferometers currently under devel-

opment (e.g. EVLA, ALMA, LOFAR, MeerKAT) will
produce vastly more data than the current generation of
interferometers and many cases will require parallel com-
puting and especially clusters. Many of the most compute
intensive problems are among the ‘“embarrassingly simple”
to run on a parallel system. While embarrassingly simple
in principle, these problems involve substantial bookkeep-
ing and data transfer to get the data to where the CPU
cycles are available. The following discusses an initial at-
tempt at running one of the “simple” cases, spectral line
imaging and deconvolution in a parallel fashion in Obit ([1],
http://www.cv.nrao.edu/~bcotton/Obit.html). This test does
not make use of a cluster but, with minor modifications, should
be able to make use of Obit’s existing cluster interface.

II. SPECTRAL LINE IMAGING

The problem considered here is that of applying calibration
to a spectral line data set and then imaging and deconvolving
each image plane to produce a 3 dimensional image with
RA and dec on two axes and frequency or velocity on the
third. In a single stream processing, the channel images are
simply produced one at a time and accumulated into an output
cube. This scheme involves a substantial overhead in that
the full data set must be accessed for each channel and the
calibration process rerun. The processing of each channel is
completely independent and is easily separated into a number
of processing streams in a parallel system.

In the parallel scheme, there are three logical components,
two of which are essentially serial and the third can be
parallel. The two serial operations are the initial splitting of
the data into a number of data files and the accumulations of
partial cubes into the full image cube. The actual imaging of
individual image planes can be highly parallel.

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu
Manuscript received ; revised

The separation of the data into multiple files is needed to
avoid the I/O collisions when multiple processing streams try
accessing the main data file at the same time. On a cluster, the
data files to be processed can be moved to the node on which
they will be processed. The collection of the intermediate
image cubes into the final cube must be serial to avoid the
write conflicts if this is attempted by multiple threads or
processors. Fortunately, the bulk of the work is in the imaging
and deconvolution.

The implementation of these three steps in the Obit envi-
ronment is described in the following.

A. Calibrating and splitting into multiple files

The initial step is to use task SplitCh which calibrates and
divides the dataset into a specified number of output files.
Thus, a single pass calibration is made through the main data
file. On a cluster, the output files would be written on a set of
disks visible to the processing nodes. An example script for
this phase is in the appendix as Figure 3.

B. Imaging and deconvolution of individual channels

Multiple parallel processing streams are initiated, each given
a set of the output files from SplitCh. For each channel to
be processed, the data for that channel is extracted from the
SplitCh output and then imaged, deconvolved and collected to
create partial image cubes corresponding to the channels in
the SplitCh files. These partial cubes are left where they are
visible to the master, control script.

The Obit distributed computing model is implemented in the
python scripting environment ObitTalk and is derived from
its predecessor, ParselTongue [2]. In this model, each data
directory known to the scripting engine has an associated
URL, either local or a remote system such as a node on
a cluster. To execute tasks (or remote scripts), the scripting
engine checks which machine the data to be operated on
resides and executes the task on that machine. This makes use
of an xmlrpc protocol interface which operates over local area
networks, clusters or wide area networks in addition to single
computer applications. Using this remote execution capability,
multiple parallel processing streams can be distributed over
nodes of a cluster or network.

An example stream python script is in the appendix as
Figure 4.

C. Collection into the full cube

After all the processing streams are finished, the partial
image cubes are left where the master script can access them.

OBIT DEVELOPMENT MEMO SERIES NO. 2

SplitCh

Stream 2

Stream 3
[]
[]
[]
Stream n

MCube

Fig. 1. General data flow and processing configuration. SplitCh divides a
spectral line data set into multiple parts which are then fed to multiple, parallel
processing streams. MCube accumulates the images into a single cube.

Task MCube then concatenates these partial cube into a total
cube. The intermediate data products are then deleted leaving
only the initial dataset and the output image cube.

The total processing scheme is represented in Figure 1. An
example script for this phase is in the appendix as Figure 5.

III. TIMING TEST

In order to test this scheme on a real (if small) application,
hard-coded scripts were written to perform these operations.
These are given in the appendix. The test consisted of imaging
109 channels of a 128 channel VLBA observation of SiO
masers in a circumstellar envelope. Each channel was im-
aged on a 1024 x 1024 pixel grid and channels containing
significant emission were CLEANed. The data to be imaged
were calibrated, extracted from the full datasets and stored in 8
intermediate files. Due to the relatively poor uv plane coverage
of this multiple snapshot data, the autoWindow feature was
used. The data imaged were Stokes I in one transition of a
two transition, full Stokes data set which consisted of 168
MByte of “compressed” data.

The processing was on a dual core Linux workstation so the
testing used two parallel processing streams, each processing
4 of the SplitCh output files. In order to compare the execution
time to more traditional methods, the data were processed in
three fashions, 1) single stream (traditional) processing using
one thread, 2) single stream processing using two threads and
3) a two stream parallel processing. The timing results are
given in Table I and a color coded velocity image of the
resulting cube is given in Figure 2.

I'V. DISCUSSION

The timing test gave the expected result that dividing the
data into two parallel processing paths required half the
execution time of the traditional approach. In this case, the

Fig. 2.
approaching, red receding.

Color coded velocity image resulting from test processing, blue is

TABLE I
TIMING RESULTS

test Wall clock run time (min)
Single stream, 1 thread 5.68
Single stream, 2 threads 5.23
Two stream total: 2.70
SplitCh 0.02
MCube 0.37
stream 2.22

alternate parallel scheme, using two threads for the griding
and model subtraction netted only minor improvement (8%).
With only minor modifications to the scripts, this scheme can
be adopted to use ObitTalk’s ability to spread processing over
a network or nodes of a cluster with subsequent reductions in
the computation time. For modest size data sets, NFS cross
mounting of disks may be an adequate means of moving data
among nodes of a cluster. For larger data sets, data transport
time may become a major factor and more efficient means
may be necessary.

For a toy problem such as the one presented here, a set
of hard coded scripts as were used is practical. For larger
or more routine pipeline processing, either more intelligent
scripts or, better, building much of the process into a single
task will be necessary. The means to communicate among
multiple compiled ¢ processes using xmlrpc currently exists
in Obit and a test proof of concept exists.

Imaging of spectral line datasets is probably the easiest of
the large computing problems to break into parallel streams;

OBIT DEVELOPMENT MEMO SERIES NO. 2

so simple that script based systems as the one presented here
will work. Other problems are not quite so straightforward.
Calculating the multiple facets needed for “fly’s eye” wide
field imaging is another obvious case. In this case, the con-
struction of the facets while inherently parallel, is a part of a
much larger process and is best dealt with by embedding it in
a compiled task rather than in a python script.

APPENDIX

The following python fragments give the details of breaking
the spectral line imaging problem into parallel streams.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439-448, 2008.

[2] M. Kettenis, H. J. van Langevelde, C. Reynolds, and B. Cotton, “‘Parsel-
Tongue: AIPS Talking Python,” Astronomical Data Analysis Software and
Systems XV, ASP Conference Series, Vol. XXX, C. Gabriel, C. Arviset, D.
Ponz and E. Solono, eds, p. 497, 2005.

OBIT DEVELOPMENT MEMO SERIES NO. 2

Script to be executed from ObitTalk to process

Split data

uv = UV.newPAUV ("input", "myStar","Full",1,1, True, err)
source = "star"

spl = ObitTask("SplitCh")

setname(uv,spl)

spl.outDType="AIPS"

nm = uv.Aname

spl.outNames=[nm, nm, nm, nm, nm, nm, nm, nm]
spl.outClass=["Partl","Part2","Part3","Partd", \
"Part5","Partoe","Part7","Part8"]
[1,2,3,4,5,6,7,8]

[1,2,4,6,1,2,4,6]

spl.outSeq
spl.outDisk
Selection

spl.BChan = 10
spl.EChan = 118
spl.BIF =1
spl.EIF =1
spl.Stokes = "I"

Calibration

spl.Sources =[source]

spl.doCalib 2

spl.gainUse = 0

spl.flagVer = 1

spl.doPol = False # Already done
spl.doBand = -1 # Already done
spl.g # Run SplitCh

Two asynchronous processing streams
procScl = ObitScript("Streaml",file="ProcScl.py")
twl = go(procScl)

procSc2 = ObitScript("Stream2",file="ProcSc2.py")
tw2 = go(procSc2)

Wait to finish
twl.wait()
tw2.wait()

Fig. 3. Python script fragment to run SplitCh and run the asynchronous scripts procScl and ProcSc2.

OBIT DEVELOPMENT MEMO SERIES NO. 2

Proc script 1 for processCh
Run Imager for stream 1

Files from SplitCh for this stream

nm = "myStar"

outNames =[nm, nm, nm, nm]
outClasss=["Partl","Part3","Part5","Part7"]
outSegqs =[1,3,5,7]

[
outDisks =[1,4,1,4]

Imaging parameters

source = "star"

cells = 0.00005

nx = 1024; ny=1024

niter = 1000
Beam=[0.00039,0.000170,0.0]
minFlux = 0.05

RAShift = 0.0067

DecShift = 0.0086

Setup task, set parameters not defaulted
img = ObitTask("Imager")

img.Stokes = 'I’
img.Sources = [source]
img.Beam = Beam
img.minFlux = minFlux
img.RAShift = [RAShift];
img.DecShift= [DecShift]
img.NField =1
img.Niter = niter
img.nx = [nx];
img.ny = [ny];
img.dispURL = "None"
img.chInc =1
img.chAvg =1
img.autoWindow = True

Loop over files, imaging
for i in range(0,len(outNames)):
tmpUV = UV.newPAUV("part", outNames[i], outClasss[i], \
outDisks[i], outSeqgs[i], True, err)
OErr.printErrMsg(err,"Error with split uv data")
setname (tmpUV, img) ;
img.outName = img.inName
img.outClass "I"+img.inClass.strip()
img.outDisk = img.inDisk
img.outSeq img.inSeq
img.out2Disk img.inDisk
img.out2Seqg = img.inSeq
img.g # Run Imager
end

Fig. 4. Python script for one processing stream.

OBIT DEVELOPMENT MEMO SERIES NO. 2

Count output channels
count = 0
for i in range(0,len(spl.outNames)):
if spl.outNames[i][1:5]!=" "
tst = (source+spl.outNames[i])[0:12]
inImg = Image.newPAImage("part", tst, ’'I’+spl.outClasss[i], \
spl.outDisks[i], spl.outSeqgs[i], True, err)
OErr.printErrMsg(err,"Error counting image planes")
count += inImg.Desc.Dict["inaxes"][2]

Combine
mc = ObitTask ("MCube")

mc.DataType = "AIPS"

mc.axNum = 3

mc.axDim = count # Number of output channels
mc.axPix = 1 # first start plane
mc.outName = uv.Aname

mc.outClass="ICube"

mc.outSeq = 1

mc.outDisk = 1

mc.copyCC True # Copy Clean Component tables
Loop over files, concatenating, cleaning temporary files
for i in range(0,len(spl.outNames)):
if spl.outNames[i][1:5]!=" "
tst = (source+spl.outNames[i])[0:12]
inImg = Image.newPAImage("partI", tst, ’‘I’+spl.outClasss[i].strip(), \
spl.outDisks[i], spl.outSeqgs[i], True, err)
OErr.printErrMsg(err,"Error with temp image")
setname(inImg, mc)

mc.g # Run MCube
mc.axPix += inImg.Desc.Dict["inaxes"][2] # next start plane
Cleanup

inImg.Zap(err); del inImg

tmpUv = UV.newPAUV("partUV",spl.outNames[i], spl.outClasss[i], \
spl.outDisks[i], spl.outSegs[i], True, err)

tmpUv.Zap(err); del tmpUv

tmpUv2 = UV.newPAUV("Imager", source, "Imager", \
spl.outDisks[i], spl.outSegs[i], True, err)

tmpUv2.Zap(err); del tmpUv2

end

Fig. 5. Python script fragment to accumulate the partial image cubes and cleanup intermediate files.

