
OBIT DEVELOPMENT MEMO SERIES NO. 72 1

Multisource Peeling in Obit
W. D. Cotton, July 7, 2021

Abstract—“Peeling” is the generic name for determining and
applying a direction dependent gain to a limited portion of an
image, usually to reduce the artifacts due to a particularly strong
source. Various artifacts increase in severity with increasing
distance from the pointing center and the most troublesome
sources may be ones that appear weak due to strong attenuation
by the antenna pattern. While a single strong source can
frequently be “fixed” using self calibration some variation of
direction dependent calibration may be needed if there are several
strong and well separated sources. This memo describes a peeling
technique for multiple sources with imaging artifacts. Example
usage is given.

Index Terms—imaging, interferometry

I. INTRODUCTION

PEELING is a generic technique for applying direction

dependent calibration to a portion of a field of view

for images derived from radio interferometer arrays. This is

usually to reduce the artifacts from a particularly strong source

with direction dependent gain effects due to pointing errors,

the rotation of an asymmetric antenna pattern or spatial vari-

ations in atmospheric phase. These effects produce apparent

time varying changes in source brightness or position resulting

in non convolutional errors in the image. This technique

applied to a single strong source has been covered in [1].

These errors produce artifacts degrading the image. If

the direction specific gain corrections can be independently

determined for multiple sources and applied to the data, the

level of artifacts can be reduced or eliminated. This memo

evaluates such a technique using the Obit package [2] 1. This

is an updated version of [1].

II. PEELING

The term “peeling” is used by a number of authors to

mean slightly different things although usually some variant

of determining and correcting the direction independent gains

over some subset(s) of an image. In the following, “peeling”

will be used for the process of:

1) Initial image with direction independent self calibration.

This will identify any source(s) needing peeling and

produce a model of the sky.

2) Generate a sky model (CC table) excluding the peel

region.

3) Subtract the Fourier transform of the sky model without

the peel source from the initial self calibrated uv data.

4) Self calibrate the peel source only dataset producing a

corrected image and gain table describing the differences

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

between the direction independent gains and those for

the peel source.

5) Subtract a corrupted version of the peel sky model from

the data. This step is composed of

a) Generate a direction independent self calibrated

version of the full data set (“data”).

b) Generate a model visibility data set (“model”)

identical in structure to “data”.

c) Invert (1/gain) the total peel self cal gain table

copying to the “model” data and replace blanked

solutions with (1,0). Replacing failed solutions

with (1,0) helps deal with the baselines and fre-

quencies for which the peel source is too faint to

give valid solutions. When the peel source is too

weak, using a gain of (1,0) causes little harm while

flagging these otherwise usable visibilities could

seriously degrade the final result.

d) Applying the inverse corruption table to the Fourier

transform of the peeled sky model writing to the

“Model” dataset.

e) Subtract the “Model” data a visibility at a time

from “data”.

6) Repeat steps 2-5 per source to be peeled with the initial

CC table and uvdata file being the output of the previous

cycle.

7) Image the final “data” dataset which should result in an

image with greatly reduced artifacts.

8) Restore the corrected peel sky model to the final CLEAN

image.

A. “Manual” Peeling in Obit

The basic components of the process outlined in Section II,

excluding the first and the last 2 steps, are implemented in

python module python/PeelScripts.py.

1) SelectCC: The step in Section II bullet 2 is implemented

in routine SelectCC. This generates a CC table excluding the

region around position pos radius in extent. The documentation

for routine SelectCC is given in Figure 1.

2) UVSub4Peel: The step in Section II bullet 3 is imple-

mented in routine UVSub4Peel. This sets up for the subtrac-

tion of the sky model missing the peel source which generates

a new uv dataset. The routine returns a UVSub task interface

object which may be further modified prior to execution. The

documentation for routine UVSub4Peel is given in Figure 2.

3) ImagePeel: The step in Section II bullet 4 is imple-

mented in routine ImagePeel. This sets up imaging with self

calibration of the peel source only data set. A task object for

MFImage is returned which may be further modified prior to

execution. The documentation for routine ImagePeel is given

in Figure 3.

OBIT DEVELOPMENT MEMO SERIES NO. 72 2

4) SubPeel: The step in Section II bullet 5 is implemented

in routine SubPeel. This routine subtracts the corrupted sky

model of the peel source from a copy of the original data.

Imaging this dataset will give the full field of view without the

peel source. The documentation for routine SubPeel is given

in Figure 4.

5) RestorePeel: The CLEAN model of the peeled image

can be added back into CLEAN image derived from the data

produced in the previous step. Images derived by MFImage

will have all total intensity planes restored. The documentation

for routine RestorePeel is given in Figure 5.

III. EXAMPLE MULTISOURCE PEEL

The test dataset is from MeerKAT observations at L band

This field contains multiple strong sources with varying direc-

tion dependent gains giving rise to multiple sets of artifacts.

Initial imaging used Obit/MFImage with a field of view of

1.2◦ with outliers to 1.8◦ and a Briggs Robust factor of -

1.5. Cleaning used up to 100,000 CLEAN components and 2

iterations of phase only self calibration. Four strong sources

with radial patterns of artifacts are seen in Figure 6. The

artifacts are from some combination of antenna pointing errors,

asymmetries in the antenna pattern and ionospheric phase

variations.

The troublesome sources were peeled as described in Sec-

tion II and the results shown in Figure 7. Detailed before

and after images of the regions around the peeled sources are

shown in Figure 8. The artifacts from the direction dependent

gains are almost completely removed.

A. Scripting

The probability of correctly getting through a complex

sequence like that needed here manually is vanishingly small.

A template work file that can be suitable modified and

used to “cut and paste” commands into python is shown

in Figures 9&10 and is included in the Obit distribution as

$OBIT/python/PeelWork.py (svn 633 and later). This starts

with a self calibrated dataset and the derived image with a

CC table giving the self calibrated sky model. This “script”

liberally generates new versions of datasets and some cleanup

may be needed during the processing if disk space becomes

an issue.

IV. DISCUSSION

A relatively generic technique for peeling sources showing

artifacts is described and an example of its application are

shown. Clear artifacts resulting from the varying antenna

gain/atmospheric phase towards multiple sources are almost

completely eliminated. It does not appear to be necessary

to reimage the data after subtracting each source when the

sources to be peeled are of comparable strength. Residual

artifacts are at a higher level for more resolved and complex

sources peeled.

This procedure makes heavy use of DFT model visibility

calculations. A local built from source installation of Obit

allowing usage of a GPU can dramatically speed the process.

ACKNOWLEDGMENT

I would like to thank the MeerKAT staff, especially Fer-

nando Camilo for assistance and for providing the MeerKAT

data.

REFERENCES

[1] W. D. Cotton, “Manual Peeling in Obit,” Obit Development Memo Series,
vol. 54, pp. 1–5, 2017. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/Obit/ManualPeel.pdf

[2] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

OBIT DEVELOPMENT MEMO SERIES NO. 72 3

SelectCC(im, inCC, outCC, radius, peelPos, err)

Select/copy CCs more than radius from peelPos

This generates a CC table which can be subtracted from the

uv data and remove all sources but the peel source area.

* im = Python Image with CC Tables

* inCC = input CC version

* outCC = output CC version

* radius = radius (deg) of zone of exclusion

* peelPos= [RA, Dec] in deg.

* err = Python Obit Error/message stack

Fig. 1. SelectCC function

UVSub4Peel(uv, source, im, inCC, err, nfield=1, doGPU=False,\

gainUse=1, flagVer=-1, nThreads=1, noScrat=[0, 0, 0], \

taskLog=’’, debug=False)

Sets up for subtraction of non peel sources from data

UV data should be have calibration tables from self calibration

Output data will be on the same disk as the input, seq=1,

class=’4Peel’ and with the name of the source (up to 12 char)

Returns UVSub task object

* uv Dataset to be subtracted from

* source source name

* im Python Image with CC Tables

* inCC input CC version, should have had the peel source

CCs removed using SelectCC

* err Python Obit Error/message stack

* doGPU Use GPU if available?

* nfield Number of facet images

* gainUse CL (SN) table to apply, -1=> no cal

* flagVer FG table to apply, -1=> no flag

* noThreads number of threads to use

* noScrat AIPS disks not to use for scratch

* taskLog Log file

* debug If True leave debug Input file in /tmp

Fig. 2. UVSub4Peel function

OBIT DEVELOPMENT MEMO SERIES NO. 72 4

ImagePeel(uvsub, peelPos, err, nxy=512, Niter=1000, minFlux=0.001, \

maxPSCLoop=2, minFluxPSC=0.01, solPInt=1.0, minSNR=3.5, \

Robust=0.0, doGPU=False, seq=1, nThreads=1, noScrat=[0, 0, 0], \

taskLog=’’, debug=False)

Sets up to image subtracted uv data from UVSub4Peel,

self calibrate peel source.

Only does A&P self cal

Returns MFImage task object, output image "IPlMod’, uv ’UVPeel’, Seq seq

* uvsub task object from UVSub4Peel

* peelPos [RA, Dec] in deg of source to peel

* err Python Obit Error/message stack

* nxy Size in pixels of x,y

* Niter max number of iterations

* minFlux Min flux density first CLEAN

* maxPSCLoop max number A&P self cal loops

* minFluxPSC min peak for self cal

* solPInt solution interval for self cal

* minSNR min SNR of self cal solutions

* Robust Briggs Robust factor

* seq Sequence number for output

* doGPU Use GPU if available?

* nThreads number of threads to use

* noScrat AIPS disks not to use for scratch

* taskLog Log file

* debug If True leave debug Input file in /tmp

Fig. 3. ImagePeel function

SubPeel(uv, source, imp, uvp, err, flagVer=0, nThreads=1, \

addBack=False, seq=999, doGPU=False, noScrat=[0, 0, 0],

taskLog=’’, debug=False)

Subtract Peel model w/ solutions, then optionally

add back w/o corruptions

UV data should have calibration tables from self calibration

Output data will be on the same disk as the input, seq=seq,

class=’PelSub’ and with name = source (up to 12 char).

Returns Peel source subtractedd data

* uv Dataset with cal tables

Needs at least the self cal gain table

* source source name

* imp Peel source model (CC table from ImagePeel)

* uvp UV data the result of peel (ImagePeel)

* err Python Obit Error/message stack

* seq Sequence number for output

* addBack Add model back to data w/o corruptions?

* flagVer FG table to apply, -1=> no flag

* nThreads number of threads to use

* doGPU Use GPU if available?

* noScrat AIPS disks not to use for scratch

* taskLog Log file

* debug If True leave debug Input file in /tmp

Fig. 4. SubPeel function

OBIT DEVELOPMENT MEMO SERIES NO. 72 5

RestorePeel(peelMod, CCVer, image, err)

Restore CCs from one image onto another

If images are ImageMF then multiple planes restored.

* peelMod Image with CC table (as Image)

* CCver CC version on peelMod to restore

* image Output Image to which components to be added

* err Python Obit Error/message stack

* nThreads number of threads to use

Fig. 5. RestorePeel function

Fig. 6. Negative grayscale of portion of a field observed with MeerKAT without peeling. The stretch is -30 to 200 µJy/beam and the field shown is 55’ ×
46’.

OBIT DEVELOPMENT MEMO SERIES NO. 72 6

Fig. 7. Like Figure 6 but with peeling.

OBIT DEVELOPMENT MEMO SERIES NO. 72 7

Fig. 8. Negative grayscale detailed comparison of before (left) and after peeling (right) for the 4 sources peeled. The stretch is -30 to 200 µJy/beam and the
field shown is 7.8’ × 7.3’. Crosses show the location of the peeled source.

OBIT DEVELOPMENT MEMO SERIES NO. 72 8

#----------------------mySource -------------------------------------

source = ’mySource’; gainuse=0;

AUname=source; AUclass=’SCal’; AUdisk=2; AUseq=1 # Initial uv data

AIname=source; AIclass=’IPScal’; AIdisk=1; AIseq=1 # Self cal image w/ CC table

First source to peel

ra=’01:02:18.71’;dec=’-75:46:52.6’; seq=1

Second source to peel

ra=’01:11:33.96’;dec=’-75:38:10.5’; seq=2; gainuse=-1

AUclass=’UPeel’; AUdisk=2; AUseq=seq

Third source to peel

ra=’01:13:21.34’;dec=’-75:28:21.2’; seq=3; gainuse=-1; AUseq=seq

parameters likely to be changed

oDisk = 1 # output disk

FOV = 1.2 # Radius of full field of view (deg)

Robust=-1.5 # Briggs robust factor

Niter = 100000 # Maximum number of CLEAN components

minFlux=50.0e-6 # CLEAN depth (Jy)

nthreads=24 # How any threads?

doGPU = False # Use GPU for model calculation

from PeelScripts import *

For each pool source do steps 1-4

May need to clean up uv data files after they are no longer needed

1) select other non peel CCs

x=Image.newPAImage(’inIm’,AIname, AIclass, AIdisk, AIseq, True,err)

rad = ImageDesc.PHMS2RA(ra); decd= ImageDesc.PDMS2Dec(dec)

peelPos = [rad,decd]

select within 60" of peelPos

SelectCC(x,seq,seq+1,60./3600,peelPos,err)

2) Subtract others

uvi=UV.newPAUV(’inUV’,AUname, AUclass, AUdisk, max(1,AUseq-1), True,err)

uvs=UVSub4Peel(uvi,source,x,seq+1,err,nThreads=nthreads,gainUse=gainuse)

uvs.doGPU=True; uvs.outSeq=seq

uvs.g

3) Image peel source

us=UV.newPAUV(’inUV’,AUname, ’4Peel’, AUdisk, AUseq, True,err)

mm=ImagePeel(uvs,peelPos,err,nThreads=nthreads,maxPSCLoop=4,solPInt=0.5, \

minFlux=0.0001,seq=seq)

mm.dispURL= "http://localhost:8765/RPC2"

mm.Sources=[source]; mm.Niter=5000; mm.refAnt=59; mm.minFluxPSC=0.005; mm.minFluxASC=0.005

mm.Robust=-1.5; mm.autoWin=False; mm.CLEANBox=[-1,5,0,0]

maxAWLoop = 1

addParam(mm,"maxAWLoop", paramVal=maxAWLoop, shortHelp="Max. middle CLEAN loop", \

longHelp=" maxAWLoop....Max. middle CLEAN Loop count\n"+ \

" Override the default behavior for the autoWin middle loop\n"+

" if > 0.\n")

mm.doGPU=doGPU

mm.g

Fig. 9. Example Peeling work file

OBIT DEVELOPMENT MEMO SERIES NO. 72 9

4) remove peel source

if (seq==1):

uv = UV.newPAUV(’inData’, AUname, AUclass, AUdisk, seq, True,err)

else:

uv = UV.newPAUV(’inData’, AUname, AUclass, AUdisk, seq-1, True,err)

uvp=UV.newPAUV(’inUV’, source[0:12], mm.out2Class, mm.out2Disk, mm.out2Seq, True,err)

imp=Image.newPAImage(’inIm’, source, mm.outClass, mm.out2Disk, mm.outSeq, True,err)

uvpeel=SubPeel(uv,source, imp, uvp, err, doGPU=doGPU, seq=seq, addBack=False, nThreads=nthreads)

Image data with no further selfcalibration, may need to fiddle

mf=ObitTask(’MFImage’)

setname(uvpeel,mf);mf.Sources = [source];

mf.doCalib=-1;mf.gainUse=0; mf.flagVer=1; mf.OutlierDist=1.2*FOV; mf.OutlierFlux=0.001

mf.Stokes=’I’;mf.doBand=-1; mf.BPVer=1; mf.doPol=False; mf.PDVer=2;

mf.outClass=’IPeel’;mf.outSeq=1; mf.FOV=FOV; mf.OutlierSize=515; mf.minPatch=500

mf.Niter=Niter; mf.BLFact=1.01; mf.PBCor=False; mf.prtLv=2; mf.autoWindow=True

mf.outDisk=oDisk; mf.out2Disk=oDisk; mf.out2Seq=1; mf.Catalog=’AllSkyVZ.FIT’

mf.doGPU=doGPU; mf.nThreads=nthreads; mf.Robust=Robust; mf.maxPixel=1000000

mf.Gain=0.05;mf.autoWindow=True; mf.ccfLim=0.50; mf.minFlux=minFlux;

mf.maxPSCLoop=0; mf.minFluxPSC=0.01; mf.solPMode=’P’; mf.solPType=’L1’; mf.solPInt=0.50;

mf.maxASCLoop=0; mf.minFluxASC=1.0; mf.solAMode=’A&P’; mf.solAInt=10.0; mf.solAType=’L1’

mf.avgPol=True; mf.autoCen=1000.0; mf.noNeg=False;

mf.dispURL= "http://localhost:8765/RPC2"

mf.logFile=source+’.MFImage.log’

maxAWLoop = 1

addParam(mf,"maxAWLoop", paramVal=maxAWLoop, shortHelp="Max. middle CLEAN loop", \

longHelp=" maxAWLoop....Max. middle CLEAN Loop count\n"+ \

" Override the default behavior for the autoWin middle loop\n"+

" if > 0.\n")

minFList = [0.00007,0.00005,0.00005, 0.00005]

addParam(mf,"minFList", paramVal=minFList, \

shortHelp="minFlux list after SC", \

longHelp=" minFList....minFluxes to use in IPol after selfcals\n")

mf.g # run imaging

Restore peeled sources

xpeel = Image.newPAImage(’peel’,source[0:12],’IPeel’, mf.outDisk, mf.outSeq,True,err)

nseq = seq; CCVer=1

for iSeq in range(1,nseq+1):

xi = Image.newPAImage(’mod’,source[0:12], mm.outClass, mm.outDisk, iSeq,True,err)

RestorePeel(xi, CCVer, xpeel, err)

Fig. 10. Example Peeling work file continued

