
OBIT DEVELOPMENT MEMO SERIES NO. 86 1

Linear Image Mosaic Formation
W. D. Cotton (NRAO), November 25, 2024

Abstract—Details of a set of python scripts combining collec-
tions of pointing images into mosaics are discussed. These scripts
should cover a fairly wide range of cases.

Index Terms—Linear Image Mosaic

I. INTRODUCTION

W IDE area radio interferometric sky surveys usually
cover an area substantially larger that that viewed

with good sensitivity in the area covered by a single antenna
pointing. For such surveys, the survey area is covered by a
pattern of overlapping pointings designed to give relatively
constant sensitivity. This technique is usually referred to as
forming a mosaic.

One approach to combining the overlapping data-sets is by
means of a “linear mosaic” in which the individual data-sets
are imaged and then combined into one or more “mosaics”
covering the survey area. This memo describes a technique
for linear image mosaic formation in the Obit package [1]1 .

II. OPTIMAL LINEAR MOSAIC COMBINATION

The optimal weighting of overlapping images is weighting
by the inverse variance of the noise. This weighting is achieved
using weighting inversely proportional to the antenna gain
squared. Noting that each pointing image has had the sky
multiplied by one power of the gain, [2] gives the combination
as:

M(x, y) =

∑n
i=1 Pi(x, y)I

′
i(x, y)∑n

i=1 P
2
i (x, y)

, (1)

where M(x, y) is the output mosaic as a function of sky
coordinates, n is the number of pointing images, Pi is the
antenna power gain pattern on the mosaic grid for pointing
i and I ′ is the pointing image evaluated on the grid of the
mosaic. The result of this process, M(x, y), will have the
primary beam correction applied.

Pointing images will have one or more image planes. These
may be either a “spectral line” cube or multiple sub-bands in a
“continuum” image. These need to be individually combined
into a mosaic with a similar structure.

In order to ensure a constant spatial resolution in the
resultant mosaic image(s), the input pointing images can be
convolved to a common resolution. Any known errors in the
coordinates of the pointing images can be corrected prior to
combination.

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

III. OBIT IMPLEMENTATION

The following sections describe how to create mosaics in
Obit. The pointing FITS images, possibly gzip compressed,
together with a template file used to define many of the
aspects of the resultant mosaic files, are placed in the FITS
data directory defined in script Mosaic.py described below.
Executing the mosaicing scripts will result in the output
FITS mosaic(s) in the FITS data directory. Intermediate data
products are stored in AIPS format and are deleted upon script
completion. Using multithreading, enabled in script Mosaic.py,
and putting the AIPS directories on RAM disk will enhance
performance.

A. Linear Mosaic

The linear mosaicing scheme described in section II reads
through a list of pointing images and accumulates each
pointing image, interpolated to the grid of the mosaic times
the antenna gain function and the square of the antenna
antenna gain function. These are the

∑n
i=1 Pi(x, y)I

′
i(x, y)

and
∑n

i=1 P
2
i (x, y) terms in Eq. 1. The input pointing images

and the resultant mosaic image are in FITS format files in
a common directory. The pointing images may be gzip com-
pressed to minimize storage. Pointing cubes may be supplied
either for multi-subband continuum images or spectral line
cubes.

This is implemented in a set of python scripts to be executed
from ObitTalk. These files are kept in $OBIT/share/scripts and
should be copied to your working directory to be edited and
renamed for the details of your project. These files are:
• Targ.py This file defines the desired mosaic including

the name, center position, size and pixel spacing, Stokes
parameter or transition name and whether or not the
output is to be in Galactic, as opposed to Equatorial
coordinates. The parameters which can be set are:

– stktrans: The Stokes type or line transition
name, input pointing file names are
<file root>.<stktrans>.fits where <file root>
is defined in PointingList.py. Files may be gzipped
with suffix “.gz”.

– size: Mosaic image size in pixels.
– cells: The pixel cell size in arcseconds.
– galactic: True if the coordinates are to be converted

from Equatorial to Galactic.
– targets: A list of tuples defining the desired

mosaic images. Each entry is of the form
(’Name’,[RA/GLong,Dec/GLat], [major,minor,PA])
where ’Name is the root of the mosaic FITS file
name, full name <name>.<stktrans> Mosaic.fits,
[RA/GLong,Dec/GLat] is the center position in
Equatorial or Galactic coordinates in degrees and

OBIT DEVELOPMENT MEMO SERIES NO. 86 2

[major,minor,PA] is the beam size to which each
pointing image resolution is to be convolved to
(arcseconds, arcseconds, degrees). If no convolution
is desired, the beam should be replaced by None.
Mosaic FITS files will be written in the directory
fitsdir set in Mosaic.py.

An annotated sample is given in Figure III-A.
• PointingList.py This file lists the pointing images to be

considered for incorporation into each mosaic. This gives
the root names, the J2000 pointing positions, a weight
scaling factor and, potentially, astrometric corrections to
be applied to the pointing image. The parameters which
can be set are:

– data: This is a list of tuples for each pointing image
to be considered, (’Name’,’hh:mm:ss.s’,’dd:mm:ss.s’,
factor, off ra, off dec) where ’Name’ is the file name
root, the full name is <file root>.<stktrans>.fits,
<stktrans> is set in PointingList.py and the file
resides in the directory fitsdir set in Mosaic.py.
The pointing position in J2000 coordinates is given
as ’hh:mm:ss.s’ and ’dd:mm:ss.s’ (note as strings),
factor is a relative weighting scale factor, and off ra,
off dec are pointing offsets in arcseconds to be
applied to the image. These values are converted onto
pixels (signed for RA) and added to the reference
pixel of the input image:
d = acc.Desc.Dict;
ox=(cat[name][3]/3600.)/d[’cdelt’][0];
oy=(cat[name][4]/3600.)/d[’cdelt’][1];
d[’crpix’][0] += ox;
d[’crpix’][1] += oy
acc.Desc.Dict = d; acc.UpdateDesc(err)

An annotated sample is given in Figure III-A.
• Mosaic.py This file gives other control parameters such

as where the FITS and AIPS data are to be kept and the
number of threads to use in processing. This is the top
level script and calls the others as needed. The parameters
which can usefully be set are:

– minWt: Minimum summed weight for each pixel.
Those with lower weights are blanked.

– doGPU: Use a GPU for image interpolation if en-
abled. GPUs are VERY unforgiving when they run
out of memory.

– minChan: Minimum channel number (plane) to in-
clude, 1 rel.

– maxChan: Maximum channel number (plane) to in-
clude.

– antSize: Antenna diameter (m) used for primary
beam correction. MeerKAT images processed in Obit
will be recognized.

– datadisk: disk for data (FITS) 0=CWD.
– fitsdir: Directory (wrt datadisk or absolute) for input

and output FITS images.
– accumdisk: AIPS disk number to use for accumula-

tors. Make this a RAM disk if possible for improved
performance.

– maxd: How far in degrees from the pointing center to

TABLE I
OBIT SUPPORTED PROJECTION CODES

Projection code Type
-SIN Sine
-TAN Tangent
-ARC Arc
-NCP North Celestial Pole
-GLS Global Sinusoid
-MER Mercator
-AIT Aitoff
-STG Sterographic

consider the input images to overlap a given mosaic
image.

– nThreads: How many threads to use? This should
not be more than the number of cores available.

– prtLv: Level for diagnostic messages, 0-2.
An annotated sample is given in Figure III-A.

• mosaicBasic.py This file has the software to generate the
mosaics from the parameters specified in the previous
files and may not need to be modified. However, if a
customized beam pattern is needed it can be implemented
here, see Section III-B. The output mosaic is defined by
the specifications given in Targ.py and the FITS header
of a template file, tmpl.fits, in the FITS data directory.

• CheckPos.py This file contains a routine to determine
if a given pointing image overlaps with a given mosaic
and may not need to be modified. It is given a parameter,
maxd, set in Mosaic.py to specify the maximum distance
from the pointing center to consider an overlap with the
mosaic.

Each run of the script will result in a log file of the process-
ing as defined in Mosaic.py. For undetermined reasons, only
one execution of Mosaic.py will work in a given execution of
ObitTalk. The script is executed from ObitTalk:

>>> exec(open("Mosaic.py").read())

Other considerations:
1) No Prior Primary Beam Correction: The pointing im-

ages should not have had a primary beam gain correction
applied. The mosaicing process will make this correction.

2) Pointing Image Coordinates: The pointing image FITS
files should define the image coordinates with WCS keywords
as used by Obit; i.e. CTYPEn, CRPIXn, CDELTn, CRVALn,
CROTAn with a supported projection, see Table I.

3) Frequency/Velocity Axis: The third axis should be de-
fined in frequency rather than velocity.

4) Template File: There should be a template FITS image
file, tmpl.fits, in the FITS data directory with the pointing
images whose header is used to populate the output mosaic
header. The coordinate projection specified in this file should
be one supported by Obit; these are given in Table I. The pixel
contents of this file are not used.

OBIT DEVELOPMENT MEMO SERIES NO. 86 3

Fig. 1. Targ.py
Parameters defining output mosaics
stktrans = ’I’ # Stokes or line transition name
galactic = False # Output in Galactic coordinates?
size = [1200,1200] # size of master accumulations/mosaic
cells = 1.5 # cellsize (asec)
triplets of mosaic name root, center position (deg, deg) and
beam (asec,asec,deg) or none
Mosaic FITS files have names <mosaic name root>.<stktrans>_Mosaic.fits
Example
targets = [\

(’myMosaic_’,[91.5, 19.0], [8.0,8.0,0.0]), \
]
#exec(open("Mosaic.py").read()) # to execute top level script

Fig. 2. PointingList.py
Convert pointing list to catalog of pointings
generates dict cat name:(ra, dec, factor, offx, offy)
FITS file names <file root>.<stktrans>.fits (stktrans from Targ.py)
FITS input can be gzipped
Pointing center positions are as ’hh:mm:ss.s", "dd:mm:ss"
factor is an addition weight scaling factor
offx, offy offsets in ra,dec (asec) (observed-unbiased)
Example:
file root RA(J2000) Dec(J2000) factor off_ra off_dec
data = [\

(’06000+17576’, ’06:00:00.00000’, ’17:57:36.0000 ’, 1.0, 0.0, 0.0), \
(’06000+18243’, ’06:00:00.00000’, ’18:24:18.0000 ’, 1.0, 0.0, 0.0), \
(’06000+19178’, ’06:00:00.00000’, ’19:17:48.0000 ’, 1.0, 0.0, 0.0), \
(’06000+19446’, ’06:00:00.00000’, ’19:44:36.0000 ’, 1.0, 0.0, 0.0), \
(’06000+18510’, ’06:00:00.00000’, ’18:51:00.0000 ’, 1.0, 0.0, 0.0), \

]
cat = {}
for d in data:

cat[d[0]] = (ImageDesc.PHMS2RA(d[1]), ImageDesc.PDMS2Dec(d[2]), d[3], d[4],d[5])

B. Antenna Pattern

An important part of the mosaic formation is an accurate
array primary beam (gain pattern). Unfortunately, this may
be difficult to obtain. The antenna pattern can be accurately
measured but in the presence of pointing errors, the effective
gain pattern of the array will be broadened. Thus, the antenna
pattern is usually what has to be used.

The default beam pattern used is a jinc function appropriate
(above 1 GHz) for the antenna diameter given by antSize and
centered at the celestial coordinate given in the pointing image
header as keywords OBSRA and OBSDEC. MeerKAT images
produced in Obit are recognized and a cosine squared beam
is used. Pointing images produced by Obit task MFImage are
recognized and the correct frequencies used to generate sub-
band antenna patterns.

If a custom antenna beam is needed, it can be implemented
in module mosaicBasic. A beam image with the same celestial
grid as the associated pointing image and with the same
channelization can be passed to routine PWeightImage as

argument WtImage. This pattern should be normalized to 1
at the pointing position.

An “on-the-fly” (OTF) beam can be implemented in module
mosaicBasic using optional arguments OTFRA and OTFDec
in the call to PWeightImage for “Aussie” mode OTF mosaics.
See [3] for an extended discussion of OTF imaging.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

[2] A. Brunthaler, K. M. Menten, S. A. Dzib, W. D. Cotton, F. Wyrowski,
R. Dokara, Y. Gong, S. N. X. Medina, P. Müller, H. Nguyen, G. N.
Ortiz-León, W. Reich, M. R. Rugel, J. S. Urquhart, B. Winkel, A. Y.
Yang, H. Beuther, S. Billington, C. Carrasco-Gonzalez, T. Csengeri,
C. Murugeshan, J. D. Pandian, and N. Roy, “A global view on star
formation: The GLOSTAR Galactic plane survey. I. Overview and first
results for the Galactic longitude range 28◦ < l < 36◦,” A&A, vol. 651,
p. A85, Jul. 2021.

[3] W. D. Cotton, “Simplified EVLA OTF Interferometry,” Obit
Development Memo Series, vol. 44, pp. 1–20, 2019. [Online].
Available: https://www.cv.nrao.edu/∼bcotton/ObitDoc/EVLAOTF.pdf

OBIT DEVELOPMENT MEMO SERIES NO. 86 4

Fig. 3. Mosaic.py
#exec(open("Mosaic.py").read()) # to execute from ObitTalk
import os
exec(open("Targ.py").read()) # Target mosaic list
exec(open("PointingList.py").read()) # Pointing list, read to pointings
pointings = []
for p in data:

pointings.append(p[0])
###
IStream = 1 # Processing stream
strId = ’S’+str(IStream)+stktrans # Stream Id, unique, <= 5 char
restart = False # Restarting?
ch0 = 0 # restart first at channel ch0
minWt = 0.35 # Minimum weight
doGPU = False # Use GPU?
minCh = 1 # Minimum channel number
maxCh = 16 # Maximum channel number
antSize = 25. # Antenna diameter (m)
datadisk = 0 # disk for data (FITS) 0=CWD
fitsdir = "./" # FITS data directory
accumdisk = 1 # AIPS disk for accumulators 1=>RAM disk if setup
accumseq = 10 # AIPS seq for accumulators
maxd = 0.6 # How far from pointing center (deg) for overlap
nThreads = 24 # How many threads
prtLv = 1 # Diagnostic print level, 0, 1, 2

OSystem.PAllowThreads(nThreads) # enable threading
print ("Target=",targets[0][0],"restart=",restart,"ch0=",ch0,"minWt=",minWt)
OErr.PInit(err, taskLog =’Stream’+str(IStream)+’.log’)
OErr.PLog(err, OErr.Info, " Start processing "+strId);
exec(open("mosaicBasic.py").read()) # Do it
OErr.PLog(err, OErr.Info, "End processing "+strId);
OErr.printErr(err)
OSystem.Shutdown()

