
OBIT DEVELOPMENT MEMO SERIES NO. 63 1

Distributed Processing in c in Obit
W. D. Cotton January 27, 2020

Abstract—There are limits to the capacity of a single multicore
shared memory system and for larger problems processing must
be spread over nodes of a group or cluster of disjoint memory
machines. This requires a different approach to dividing up the
work than is optimal for vectorizatiion or over a number of cores
in a shared memory system. This memo describes a conceptial
design and test implementation for distributing processing over a
number of processes without shared memory inside a c language
program. This design uses xmlrpc for communicating control
information and a globally visible distributed file system to
communicate data.

Index Terms—parallel processing

I. I NTRODUCTION

T HE speed of individual processing elements in computers
long ago began approaching physical limits (speed of

light, size of molecules ...) and faster computations require
some form of parallelization. These include, vectorization
(SSE, AVX on modern CPUs), multiple cores with shared
memory and multiple nodes with disjoint memory. Each of
these require different approaches for optimal use.

Vectorization is very fine grained parallelization and re-
quires compact organization of data in memory. Similarly,
threading for performance enhancement works best with tight
loops and a compact organization of data in memory. Spread-
ing processing over disjoint memory nodes is almost by
definition coarse grained parallelization and the problem needs
to be split along lines that require a minimum of interaction
amoung nodes.

Obit currently makes heavy use of vectorization [1],[2],
[3], [4], [5], [6], [7], and multithreading [8], [9], [10], [4],
[5]. The simple case of spectral line imaging using multiple
nodes is described in [11]. Data from the current generation
of interferometer arrays can be processed with patience and
beefy workstations using vectorization and multiple threads.
Instruments now in the design phase (ngVLA, MeerKAT+)
will require clusters of disjoint memory systems. This memo
discusses a framework for using multiple nodes inside a given
c program using the Obit package [12]1.

II. OBIT OBJECTS

Before describing how processing can be divided up
amoung a set of disjoint memory nodes it is first necessary
to give a toplevel desctiption of the internal working of Obit
software.

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

1http://www.cv.nrao.edu/∼bcotton/Obit.html

A. ObitInfoList

Naked c is rather primitive with very limited data types and
more complex ones need to be implemented. An ObitInfoList
is a associative array, a set of named rectangular arrays of
a given native datatype. These are similar to python dicts
(but much more limited) and are widely used in Obit to
pass information around. Task parameters are parsed from the
input text parameter and converted into an ObitInfoList. Most
high level objects (images, uv data, etc.) have an ObitInfoList
member used to define and underlying disk resident data and
to pass control parameters to class routines. This minimizes
changes needed when new parameters are added as they are
(usually) not defined in the call sequence.

B. Data Objects

There are various data classes, visibilities, images and tables
that are implemented as c structs. The base data class is
the ObitData from which ObitUV (uv data) and ObitImage
(image) are derived. Tables are physically associated witha uv
data or image. Two disk resident forms are implemented, AIPS
format and a variant of (AIPSish) fits with the details (mostly)
confined to the lower level interface routines. Images and uv
data are passed to software via descriptions: file name and
disk for FITS and, AIPS name, class, sequence, type and disk
for AIPS data. These descriptions are turned into a memory
resident interface object. Tables are defined by the table type
and number for the associated image or uv data.

Class functions operate on memory resdent objects which
are not easily passed between processes on disjoint memory
platforms. There are a set of routines that convert between
the memory resident structures and a description contained
in an ObitInfoList. An image object can be created us-
ing ObitImage:ObitImageFromFileInfo and a uv data ob-
ject via ObitUV:ObitUVFromFileInfo. An infolist describ-
ing an image or uv data can be obtained using Obit-
Data:ObitDataGetFileInfo; this ObitInfoList can be passed
across the interface to another node as described in Section
III.

III. O BIT IMPLEMENTATION OF XMLRPC

XMLRPC is a standard interprocess protocol for making
remote calls from a “client” to a “server” using XML to
pass the information between the processes. The client thread
suspends until the response from the server is received. Server
processes are attached to a given port number on the host cpu
and a given server process is then defined by the host URL and
port number. The server implements some number of named
services.

In the Obit implementation, an ObitInfoList is used to pass
information to and receive information from the interface with

OBIT DEVELOPMENT MEMO SERIES NO. 63 2

an intermediate XML form used in the transfer. This interface
is not intended to be used for bulk data which is best shared
via a distributed, globally visible file system. This interface is
implemented in the ObitRPC and ObitXML classes with addi-
tional features for parallel processing in ObitMultiProc.This
interface is already used for Obit software to communicate
with the ObitView image viewer and for remote processing.

IV. D EMONSTRATION DISTRIBUTED PROCESSING

The model of distributed processing described in this
memo uses a master node with compute server pro-
cesses on remote nodes. A rudimentary compute server
process is in tasks/FuncContainer.c which obtains its ba-
sic information via a input text file; examples are in
Obit/share/data/FuncContainerInput1.inp and FuncContainer-
Input2.inp. The “test” function test message logging, reads
an image, computes an RMS and logs the result.

A test master node process is in
Obit/share/scripts/testFuncCont.c. This has hardcoded
information and can be built by copying it to the tasks
directory and doing a “make testFuncCont”. This process
makes use of the ObitMultiProc class to manage the interface.
A suitable test FITS image is in ObitView/aaa.SomeFile.fits.

The default demonstration uses 2 remote processes, on
localhost but this can be changed to physically different
hosts by changing the URL in testFuncCont.c. In a directory
containing FuncContainerInput1.inp, FuncContainerInput2.inp
and aaa.SomeFile.fits execute the commands shown in Figure
IV. This starts 2 server processes watching different portsand
then the master process which uses the server processes to test
a simple case of passing image information to the servers and
logging information back. The output should look like what
is shown in Figure IV.

V. D ISCUSSION

This memo has discussed a plausible way to allow a c
program to be distributed over multiple nodes of a cluster.
The interface uses xmlrpc to pass commands and control
information and a distributed file system for bulk data. A very
simple demonstration of passing information over the interface
is given.

REFERENCES

[1] W. D. Cotton, “A Fast Sine/Cosine Routine,”Obit Development
Memo Series, vol. 14, pp. 1–9, 2009. [Online]. Available:
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/FastSine.pdf

[2] ——, “A Fast Sine/Cosine Routine: Revenge of the Vector Processors,”
Obit Development Memo Series, vol. 37, pp. 1–9, 2013. [Online].
Available: ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/FastSine2.pdf

[3] ——, “A Fast Exp(-x) Routine,” Obit Development Memo Series,
vol. 27, pp. 1–7, 2011. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/Obit/FastExp.pdf

[4] ——, “Comparison of GPU and Multithreading for Interferometric
DFT Model Calculation,” Obit Development Memo Series, vol. 35,
pp. 1–5, 2014. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/Obit/GPUDFTv2.pdf

[5] ——, “Comparison of GPU, Single- and Multi-threading for
Interferometric Gridding,”Obit Development Memo Series, vol. 36,
pp. 1–14, 2014. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/Obit/GPUGrid.pdf

[6] ——, “AVX2: First Look,” Obit Development Memo Series,
vol. 49, pp. 1–4, 2017. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/Obit/AVX2.pdf

[7] ——, “Notes on icc and AVX,” Obit Development Memo Series,
vol. 61, pp. 1–2, 2019. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/Obit/ICCAVX.pdf

[8] ——, “Note on the Efficacy of Multi-threading in Obit,”Obit
Development Memo Series, vol. 1, pp. 1–8, 2008. [Online]. Available:
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/Thread.pdf

[9] ——, “Implementation of Threaded Image Interpolation in Obit,” Obit
Development Memo Series, vol. 5, pp. 1–6, 2008. [Online]. Available:
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/Thread2.pdf

[10] ——, “Parallel facet imaging in obit,”Obit Development Memo Series,
vol. 6, pp. 1–3, 2009. [Online]. Available: ftp://ftp.cv.nrao.edu/NRAO-
staff/bcotton/Obit/ParallelFacets.pdf

[11] ——, “Note on parallel Processing of Spectral Lines in Obit,” Obit
Development Memo Series, vol. 2, pp. 1–6, 2008. [Online]. Available:
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/Line.pdf

[12] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

OBIT DEVELOPMENT MEMO SERIES NO. 63 3

Fig. 1. running demo

$OBIT/bin/FuncContainer -port 8770 -input FuncContainerInput1.inp &
$OBIT/bin/FuncContainer -port 8771 -input FuncContainerInput2.inp &
$OBIT/bin/testFuncCont

Fig. 2. demo output

Start job 0 on thread 0
Start job 1 on thread 1
Start on port 8770
Listing Of ObitInfoList
item=’outInfoFileName’ type=string, dim=[16,1,1], data= ’aaaSomeFile.fits’
item=’outInfoDisk’ type=long, dim=[1,1,1], data= 0
item=’outInfoTRC’ type=long, dim=[7,1,1], data= 61 61 1 1

1 1 1
item=’outInfoBLC’ type=long, dim=[7,1,1], data= 1 1 1 1 1

1 1
item=’outInfoIOBy’ type=long, dim=[1,1,1], data= 1

------------------------clip-----------------------------

testFuncCont: info 20200124T092210 0124T092210 test: Started on port 8771
testFuncCont: info 20200124T092210 0124T092210 test: some logging message nwork 32742
testFuncCont: info 20200124T092210 0124T092210 test: another logging message
testFuncCont: info 20200124T092210 0124T092210 test: yet another logging message
testFuncCont: info 20200124T092210 0124T092210 test: Image RMS 0.000453
testFuncCont: info 20200124T092210 0124T092210 test: Finished
testFuncCont: info 20200124T092210 0124T092210 test: Started on port 8770
testFuncCont: info 20200124T092210 0124T092210 test: some logging message nwork 32583
testFuncCont: info 20200124T092210 0124T092210 test: another logging message
testFuncCont: info 20200124T092210 0124T092210 test: yet another logging message
testFuncCont: info 20200124T092210 0124T092210 test: Image RMS 0.000453
testFuncCont: info 20200124T092210 0124T092210 test: Finished

