OBIT DEVELOPMENT MEMO SERIES NO. 63 1

Distributed Processing in ¢ in Obit

W. D. Cotton January 27, 2020

Abstract—There are limits to the capacity of a single multicore A. ObitlnfoList

shared memory system and for larger problems processing must . L . _

be spread ove}r/ n)(/)des of a group %r cpl)uster of gisjoint mgmory Naked c is rather primitive Wlth very limited data types an.d
machines. This requires a different approach to dividing up the More complex ones need to be implemented. An ObitinfoList
work than is optimal for vectorizatiion or over a number of cores IS a associative array, a set of named rectangular arrays of
in a shared memory system. This memo describes a conceptiala given native datatype. These are similar to python dicts
desi%n anfd test implemgtrr]]tatitonhfor gistributing.prqgessin? overa (pyt much more limited) and are widely used in Obit to
number of processes without shared memory inside a ¢ language : ;

program. Tphis design uses xmirpc for conz/municating cogtro%J pass information around. Task parameters are.parse.d frem th
information and a globally visible distributed file system to INPUt text parameter and converted into an ObitinfoList.sko
communicate data. high level objects (images, uv data, etc.) have an ObitlistoL
member used to define and underlying disk resident data and
to pass control parameters to class routines. This minsnize
changes needed when new parameters are added as they are

(usually) not defined in the call sequence.

Index Terms—parallel processing

I. INTRODUCTION

HE speed of individual processing elements in computelfs Data Objects
long ago began approaching physical limits (speed of There are various data classes, visibilities, images aidga
light, size of molecules ...) and faster computations nequithat are implemented as ¢ structs. The base data class is
some form of parallelization. These include, vectorizatiothe ObitData from which ObitUV (uv data) and Obitimage
(SSE, AVX on modern CPUs), multiple cores with shareimage) are derived. Tables are physically associated amitt
memory and multiple nodes with disjoint memory. Each adata or image. Two disk resident forms are implemented, AIPS
these require different approaches for optimal use. format and a variant of (AIPSish) fits with the details (myjptl
Vectorization is very fine grained parallelization and reconfined to the lower level interface routines. Images and uv
quires compact organization of data in memory. Similarlgata are passed to software via descriptions: file name and
threading for performance enhancement works best with tigtisk for FITS and, AIPS name, class, sequence, type and disk
loops and a compact organization of data in memory. Spreddr AIPS data. These descriptions are turned into a memory
ing processing over disjoint memory nodes is almost bysident interface object. Tables are defined by the talpe ty
definition coarse grained parallelization and the problemds and number for the associated image or uv data.
to be split along lines that require a minimum of interaction Class functions operate on memory resdent objects which
amoung nodes. are not easily passed between processes on disjoint memory
Obit currently makes heavy use of vectorization [1],[2]platforms. There are a set of routines that convert between
[3], [4], [5], [6], [7], and multithreading [8], [9], [10], 4], the memory resident structures and a description contained
[5]. The simple case of spectral line imaging using multipl#én an ObitinfoList. An image object can be created us-
nodes is described in [11]. Data from the current generatitg Obitimage:ObitimageFromFileinfo and a uv data ob-
of interferometer arrays can be processed with patience gaet via ObitUV:ObitUVFromFilelnfo. An infolist describ-
beefy workstations using vectorization and multiple tokea ing an image or uv data can be obtained using Obit-
Instruments now in the design phase (ngVLA, MeerkKAT+pata:ObitDataGetFilelnfo; this ObitinfoList can be passe
will require clusters of disjoint memory systems. This memacross the interface to another node as described in Section
discusses a framework for using multiple nodes inside angiv8l!.
¢ program using the Obit package [12]
[1l. OBIT IMPLEMENTATION OF XMLRPC
XMLRPC is a standard interprocess protocol for making
Il. OBIT OBJECTS remote calls from a “client” to a “server” using XML to
Before describina h : - Jass the information between the processes. The clierddhre

g how processing can be divided D spend .) .

e L pends until the response from the server is receivedeiSer
amoung a set of disjoint memory nodes it is first necessal¥ocesses are attached to a given port number on the host cpu
to give a toplevel desctiption of the internal working of obi” . 1 0 por P
software. and a given server process is then defined by the host URL and
port number. The server implements some number of named

. . . services.
VA',\IZZ%%? Egﬂ%ﬁ;ﬁﬁ%ﬁgigﬁ%520 Edgemont Rd., IBtiesvile, In the Obit implementation, an ObitInfoList is used to pass
Lhttp://www.cv.nrao.edutbcotton/Obit.html information to and receive information from the interfacighw

OBIT DEVELOPMENT MEMO SERIES NO. 63

an intermediate XML form used in the transfer. This integfac

REFERENCES

is not intended to be used for bulk data which is best shargg) v p. cotton, “A Fast Sine/Cosine RoutineObit Development

via a distributed, globally visible file system. This interé is

implemented in the ObitRPC and ObitXML classes with addi-
tional features for parallel processing in ObitMultiPrddis
interface is already used for Obit software to communicate
with the ObitView image viewer and for remote processing. [3]

IV. DEMONSTRATIONDISTRIBUTED PROCESSING

The model of distributed processing described in this
memo uses a master node with compute server pro-
cesses on remote nodes. A rudimentary compute ser
process is in tasks/FuncContainer.c which obtains its ba-
sic information via a input text file; examples are in
Obit/share/data/FuncContainerinputl.inp and FuncQuosta
Input2.inp. The “test” function test message logging, eead

Memo Series, vol. 14, pp. 1-9, 2009. [Online]. Available:
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/Fasts. pdf

2] ——, “A Fast Sine/Cosine Routine: Revenge of the Vectard@ssors,”

Obit Development Memo Series, vol. 37, pp. 1-9, 2013. [Online].
Available: ftp://ftp.cv.nrao.edu/NRAO-staff/bcott@ibit/FastSine2.pdf
——, “A Fast Exp(-x) Routine,” Obit Development Memo Series,
vol. 27, pp. 1-7, 2011. [Online]. Available: ftp://ftp.cwao.edu/NRAO-
staff/bcotton/Obit/FastExp.pdf

[4] ——, “Comparison of GPU and Multithreading for Interferotrie

DFT Model Calculation,” Obit Development Memo Series, vol. 35,
pp. 1-5, 2014. [Online]. Available: ftp://ftp.cv.nraolgdlRAO-
staff/bcotton/Obit/ GPUDFTV2.pdf

——, “Comparison of GPU, Single- and Multi-threading for
Interferometric Gridding,”Obit Development Memo Series, vol. 36,
pp. 1-14, 2014. [Online]. Available: ftp://ftp.cv.nradléNRAO-
staff/bcotton/Obit/ GPUGrid. pdf

[6] —, “AVX2: First Look,” Obit Development Memo Series,

vol. 49, pp. 1-4, 2017. [Online]. Available: ftp://ftp.cwao.edu/NRAO-
staff/bcotton/Obit/ AVX2.pdf

an image, computes an RMS and logs the result. [7] . él“Notei <2>nzci)clc9 a}nod |‘AV])(’;Ot‘)|itbPe\/f?O?/rthm Merr;) /ﬁleg/%
: vol. 61, pp. 1-2, . [Online]. Available: ftp://ftp.cvao.edu -

A test master node process IS staff/bcotton/Obit/ICCAVX.pdf
Obit/share/scripts/testFuncCont.c. This has hardcodggf —— “Note on the Efficacy of Multi-threading in Obit,"Obit

information and can be built by copying it to the tasks
directory and doing a “make testFuncCont”. This proces
makes use of the ObitMultiProc class to manage the interface
A suitable test FITS image is in ObitView/aaa.SomeFile.fits
The default demonstration uses 2 remote processes,[
localhost but this can be changed to physically different
hosts by changing the URL in testFuncCont.c. In a directofAl
containing FuncContainerinputl.inp, FuncContainert@pop

Development Memo Series, vol. 1, pp. 1-8, 2008. [Online]. Available:
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/ Thkpdf

——, “Implementation of Threaded Image Interpolation in ©bObit
Development Memo Series, vol. 5, pp. 1-6, 2008. [Online]. Available:
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/Thsapdf

——, “Parallel facet imaging in obit,Obit Development Memo Series,
vol. 6, pp. 1-3, 2009. [Online]. Available: ftp:/ftp.cvan.edu/NRAO-
staff/bcotton/Obit/ParallelFacets.pdf

——, “Note on parallel Processing of Spectral Lines initDbObit
Development Memo Series, vol. 2, pp. 1-6, 2008. [Online]. Available:
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/Linpelf

and aaa.SomekFile.fits execute the commands shown in Figupg w. D. Cotton, “Obit: A Development Environment for Astramical

IV. This starts 2 server processes watching different pamts
then the master process which uses the server processss to te
a simple case of passing image information to the servers and
logging information back. The output should look like what

is shown in Figure IV.

V. DISCUSSION

This memo has discussed a plausible way to allow a ¢
program to be distributed over multiple nodes of a cluster.
The interface uses xmlrpc to pass commands and control
information and a distributed file system for bulk data. Aywer
simple demonstration of passing information over the fatar

is given.

Algorithms,” PASP, vol. 120, pp. 439-448, 2008.

OBIT DEVELOPMENT MEMO SERIES NO. 63 3

Fig. 1. running demo

$0BI T/ bi n/ FuncCont ai ner -port 8770 -i nput
$OBI T/ bi n/ FuncCont ai ner -port 8771 -i nput
$OBI T/ bi n/ t est FuncCont

FuncCont ai nerlnputl.inp &
FuncCont ai nerl nput2.inp &

Fig. 2. demo output

Start job 0 on thread O
Start job 1 on thread 1
Start on port 8770
Listing O ObitlnfoList

items’ out I nfoFil eNanme’ type=string, dime[16, 1, 1], data= ’'aaaSoneFile.fits
i tem=" out | nfoDi sk’ type=long, dimf[1,1,1], data= O
item=" outl nfoTRC type=long, dimf[7,1,1], data= 61 61 1 1
1 1 1
item=’ outl nfoBLC type=long, dimf[7,1,1], data= 1 1 1 1 1
1 1
item=" outl nfol OBy’ type=long, dinme[1,1,1], data= 1
------------------------ Clip----mmm e
test FuncCont: info 20200124T092210 01247092210 test: Started on port 8771
test FuncCont: info 20200124T092210 01247092210 test: some | oggi ng nessage nwork 32742
test FuncCont: info 20200124T092210 01247092210 test: another | oggi ng nmessage
test FuncCont: info 20200124T092210 01247092210 test: yet another |oggi ng nessage
test FuncCont: info 20200124T092210 01247092210 test: |Inmage RVS 0. 000453
test FuncCont: info 20200124T092210 01247092210 test: Finished
test FuncCont: info 20200124T092210 01247092210 test: Started on port 8770
test FuncCont: info 20200124T092210 01247092210 test: sone | oggi ng nmessage nwork 32583
test FuncCont: info 20200124T092210 01247092210 test: another | oggi ng nmessage
test FuncCont: info 20200124T092210 01247092210 test: yet another |oggi ng nessage
test FuncCont: info 20200124T092210 01247092210 test: |Inmage RVS 0. 000453
test FuncCont: info 20200124T092210 01247092210 test: Finished

