
Mustang Obit User Documentation

Obit: Merx mollis mortibus nuper

Draft version: 0.1 June 13, 2008

Abstract
This document describes the user interface to the Obit software for analyzing data from the

Mustang (GBT 3mm bolometer) camera and the currently established techniques for such anal-
ysis. The Obit package provides a python based interactive, scripting and compiled task inter-
face to C language libraries. General information about the Obit package can be obtained from
http://www.cv.nrao.edu/∼bcotton/Obit.html. A detailed script for processing Mustang data along
with extensive annotation is given.

1

Contents

1.1 Introduction . 3
1.2 Obtaining Software . 3
1.3 Starting ObitTalk . 4
1.4 Quick Guide to ObitTalk . 5
1.5 Calibration Approach . 6
1.6 OTF Imaging . 7
1.7 Using CLEAN to Derive Sky Model . 8
1.8 OTF Data Format . 9
1.9 Examining OTF Data Using fv . 10
1.10 Mustang Data Analysis . 10

1.10.1 Calibration and Background Estimation . 13
1.10.2 Reading Data . 14
1.10.3 Pointing Calibration . 15
1.10.4 Annotated Processing Script . 15
1.10.5 Modifying the Script . 32

1.11 Major Obit Single Dish Routines . 34
1.11.1 GBTUtil.UpdateOTF . 34
1.11.2 GBTUtil.GetTargetPos . 35
1.11.3 OTF.ClearCal . 35
1.11.4 OTFGetSoln.POTFGetDummyCal . 35
1.11.5 OTFGetSoln.POTFGetSolnPARGain . 35
1.11.6 OTF.Soln2Cal . 36
1.11.7 OTFGetSoln.PFilter . 36
1.11.8 OTFGetSoln.PMBBase . 36
1.11.9 OTF.makeImage . 37
1.11.10 OTF.ResidCal . 38
1.11.11 OTF.SelfCal . 39
1.11.12 CleanOTF.PClean . 39
1.11.13 PARCal.CleanSkyModel . 40
1.11.14 PARCal.FitCal . 41
1.11.15 PARCal.InitCal . 43
1.11.16 PARCal.PlotData . 44

2

1.1 Introduction

The Obit package provides a flexible environment for developing astronomical data analysis tech-
niques but also provides sufficient efficiency to effectively apply these techniques to real astronomical
applications. This is achieved by a python interface to C language libraries. This interface provides
interactive, scripting and compiled task capabilities. Obit includes a package for analyzing single
dish “On-the-Fly” (OTF) imaging data such as that from the Mustang (GBT 3mm bolometer)
camera.

The techniques for using the Obit software, as well as the software itself, are still undergoing
development with the increasing experience with the instrument. The Mustang data analysis is
currently largely implemented by means of python scripts which can be easily modified but which
requires some detailed knowledge. When the techniques become well established, they will be
converted into a compiled task given a set of parameters.

The following sections tell how to obtain the Obit software and a simplified guide to the python
user interface (ObitTalk). Subsequent sections describe the general calibration and imaging tech-
niques employed, a description of the data format as well as a discussion of the current analysis
script. In general, Obit allows multiple native data formats and both FITS and AIPS image and
tables formats are supported. However, there is no suitable AIPS equivalent of the OTF format so
only a FITS version is supported. More information about Obit can be obtained from
http://www.cv.nrao.edu/∼bcotton/Obit.html. Documents of particular relevance are

• Preprint of paper describing the Obit package (PASP 2008, 120, 439)
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/Obit.pdf

• ObitTalk (python interface) User document
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/ObitTalk.pdf

• ObitTalk software architecture
document ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/ObitTalkSoft.pdf

• Obit C language software architecture document
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/OBITdoc.pdf

• Obit Single disk OTF architecture document
ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/ObitSD.pdf

• Obit C language documentation
http://www.cv.nrao.edu/ bcotton/Obit/ObitDoxygen/html/index.html

• ObitSD C language documentation
http://www.cv.nrao.edu/ bcotton/Obit/ObitSDDoxygen/html/index.html

1.2 Obtaining Software

Obit and related software is available from http://www.cv.nrao.edu/∼bcotton/Obit.html. At
present there is no system of stable releases so using the anonymous Subversion (SVN) interface
is recommended. Obit depends heavily on third party software which is described on this page.
Support of the Obit package is limited. The components of the Obit/ObitTalk package are:

• Obit
Basic Obit package and the support for images and radio interferometry.

3

• ObitSD
Obit “On The Fly” (OTF) single dish imaging package.

• ObitView
Image display used by Obit.

• ObitTalk
Scripting and interactive interface to Obit software.

These software packages come with installation instructions and config scripts to build them. Of
particular interest is a tarball distribution of Obit which includes the third party software and an
installation script. This is available from the Obit home page.

1.3 Starting ObitTalk

The interactive and scripting python interface is ObitTalk which is a python interpreter with basic
Obit packages preloaded. For using “standard” installations of Obit on NRAO machines setting
the OBIT, OBITSD and PYTHONPATH environment variables as described in the following is
unnecessary. For an installation using the Obit installation tarball, use the setup.sh or setup.csh
scripts generated by the installation script in the root directory of the Obit installation to set these
variables.

Before starting ObitTalk, the environment variables OBIT, OBITSD and PYTHONPATH may
need to be set. The variables OBIT and OBITSD tells ObitTalk where to find the Obit task
parameter definition (TDF) files and executables and should point to the base of the Obit and
ObitSD directory trees. In particular, $OBITSD/TDF should point to the directory with the TDF
files and $OBITSD/bin/ should give the directory with the executables. In tcsh, if Obit is installed
in your home directory in subdirectory Obit you could use:

% setenv OBIT "$HOME/Obit"

Set PYTHONPATH to the standard Obit python directories and any directories in which you want
to put your own python modules. For example, using tcsh and setting PYTHONPATH to use both
ObitSD and Obit modules:

% setenv PYTHONPATH "$OBITSD/python":"$OBIT/python"

Note the colon separating the directory names.
If you wish to use the ObitView image display, you can start it before ObitTalk. If ObitView

is in your path:

% ObitView &

will start the display server. If this fails to start the display, see the discussion of ObitView in the
ObitTalk User Manual.

Then, if the script ObitTalk is in your path:

% ObitTalk [scriptname]

should start ObitTalk. If the environment variable AIPS ROOT is defined, ObitTalk will make
AIPS tasks and data available. If the optional script name is given, then the python interpreter
will do some simple AIPS initialization and execute the python script “scriptname”. If no script is
specified then ObitTalk will ask for your AIPS number and do its AIPS initialization (if AIPS is
available) and go into an interactive python session. The python prompts are:

>>>

4

1.4 Quick Guide to ObitTalk

Python is a basically “Object–oriented” language and much of the ObitTalk software follows this
methodology. “Object–oriented” in this context means little more than variables are more substan-
tial than that floats and strings and simple arrays (although these also exist). A python (hence
ObitTalk) variable is a relatively arbitrary thing and can be a scalar number, string, an array or
list of variables or the interface to a dataset such as an image or OTF data. In addition, functions
which operate on the object can be attached to the object.

In ObitTalk, the interface to a data set is assigned to a variable and this variable is used to
specify operations on that dataset. Similarly, the interface to a task (compiled program executed
outside of the python interpreter) is an object with parameters and functions as members.

The usual object–oriented syntax is that “class methods” (functions which can operate on an
object) are invoked like this:

>>> object.function(arguments)

where “object” is the python object, “function” is the function name and “arguments” are the
additional arguments, the object is implicitly an argument, by convention called “self” in python.
In python documentation of function interfaces, “self” appears as the first argument of the func-
tion although it is invoked as shown above. Note: many Obit functions have objects as explicit
arguments, these use the form:

>>> module.function(object, other_arguments)

where module is the name of the module defining function.
Before a module can be used, it must first be imported into python. This is done using the

python “import” command:

>>> import OTF

to import the basic OTF package. The documentation on that package can then be obtained:

>>> help(OTF)

for the entire package or

>>> help(OTF.AtmCal)

for a non class function or for a class function:

otf=OTF.OTF("otf") # An object of type OTF

>>> help(otf.Open)

The following modules are of interest to single dish imaging:

• OTF - OTF (”On the Fly”) data

• OTFDesc - OTF data descriptor (header)

• OTFUtil - OTF Utilities

• OTFRec - OTF data record class

• OTFGetAtmCor - OTF Atmospheric correction utilities

• OTFGetSoln - OTF calibration solution utilities

• OTFSoln2Cal - Utilities to convert OTF solution to calibration tables

• GBTUtil - GBT OTF Utilities

5

• CCBUtil - GBT CCB utility package

• CleanOTF - Single dish (Hogbom) CLEAN

• GBTDCROTF - Convert GBD DCR data to OTF format

• PARCal - Mustang calibration/editing utilities

• History - History class

• Image - Image class

• ImageDesc - Image Descriptor (header)

• ImageMosaic - Image Mosaic class

• ImageUtil - Image utilities

• InfoList - Obit associative array for control info

• ODisplay - Interface to ObitView display

• OErr - Obit message/error class

• OPlot - pgplot interface

• TableDesc - Table descriptor (header) class

• TableList - Table list for data object (Image, UVData, OTF)

• Table - Table class

• TableUtil - Table utilities

• History - History class

1.5 Calibration Approach

The principle difficulty with imaging short wavelength radio continuum single dish data is the large
and variable background signal. This background comes from the atmosphere, the telescope and
the instrument itself and can vary on a wide variety of timescales. The offset of the measured
signals from zero is particularly difficult to determine and generally must be determined from some
knowledge of the (astronomically interesting) sky. The basic approach in Obit Single Dish software
(ObitSD) is to iteratively model the background signals, image the sky, subtract a model of the
astronomical sky from the data and reestimate the backgrounds. The estimate of the background
is determined from the residual data (sky model subtracted) by a low pass filtering. As the quality
of the model improves, higher temporal frequency components of the residuals are included. This
technique uses the redundancy in the data to separate the constant astronomical sky from the
variable background signals. The zero level is set essentially by the constraint that the sky brightness
in some regions imaged are zero. This technique works best if the telescope beams can be swept
over the field of view sufficiently fast that the modulation of the signal due to the beam sweeping
over the astronomical sky is faster than the time scale of the variations of the background signals.

The redundancy in the data are of two forms. The first is that each resolution element in the
image is covered multiple times by the instrument, hopefully along different trajectories on the sky

6

as in the “basket–weaving” technique. These multiple observations of each piece of the sky help
separate the constant portion of the signal from the time variable component.

For instruments with multiple pixels, such as the Mustang bolometer array, there is additional
information. The contributions of the atmosphere will be essentially the same in all detectors, i.e. a
common mode signal, as the various beams strongly overlap through the regions of the atmosphere
in which the bulk of the brightness variations occur. In the case of Mustang, much of the background
variation from the instrument itself (e.g. the 1.4 Hz variations due to the refrigerator pump) are
also common mode. For sources smaller than the detector array, these common mode backgrounds
are easily distinguished from the source signals which appear in only a few pixels.

The implementation of the ObitSD calibration is an iterative one. The OTF data is kept in
a single FITS file and the calibration is manipulated with tables of a pair of types; a “solution”
(OTFSoln) table and a total “calibration” (OTFCal) table. The structures of these tables are
identical and contain a number of multiplicative and additive (both per detector and common) and
other corrections. The usage of the two types is different. A “solution” table is an incremental
set of calibrations, usually derived from data after the application of a total calibration table. A
new total calibration table is then derived by the application of the solution table to the previous
calibration table. This new total calibration can then be applied to the data. In addition to the
calibration tables, there is a “flagging” table (OTFFlag) which can be used to describe data to be
ignored (actually given zero weight). More details of these tables are described in section 1.8.

1.6 OTF Imaging

In the “On-the-Fly” imaging technique, the telescope is swept across the field of view in a pattern
that will cover all of the field to be imaged while sampling data at a constant rate. The data
sampling should be fast compared the the time it takes the beam to move its own width or the
sky will be smeared out. In this mode, the sky is sampled at uniform times but at positions not
constrained to the pixels on a well defined grid. As this is the case, the actual position on the sky
of each detector must be accurately known at all times.

The conversion of the “randomly” sampled data to a regular grid proceeds in a number of steps
collectively called “griding”.

1. “Convolution” and re-sampling on a grid
Each sample is considered as a delta function and is multiplied by a continuous “griding”
(AKA “convolution”) function. The gridding function is centered on the datum and is sampled
on a grid centered on the pixel nearest to the datum and which is of finite support. This
results in a grid of data*griding function as well as a grid of griding function values.

2. Accumulation onto a grid
The data times the griding function and the griding function samples are accumulated onto
a pair of grids covering the region of the sky to be imaged.

3. Normalization
When all of the data have been multiplied by the griding function, re sampled and accumulated
onto the grids, the image is normalized by dividing the sum of the data*griding function grid
by the sum of the griding function grid on a pixel-by-pixel basis.

4. deMode [optional]
If the bulk of the pixels in an image are expected to have no emission, this can be enforced by
using the deMode option. The mode of the pixel distribution is determined, this is presumed

7

to be the actual background level which should be zero, and the value of the mode is subtracted
from all pixels in the image.

In general, not all data are of the same quality, e.g. varying sensitivity among detectors,
and each datum may be assigned a statistical weight. These weights are included in the process
described above by replacing the griding function with the product of the griding function times
the weight of the datum being gridded.

In the griding procedure, the griding function plays a critical role and the function chosen is
generally a compromise. One of the compromises is sensitivity against resolution. Using a “fatter”
griding function will include more data in each pixel and thus give lower noise at the cost of reduced
resolution.

Obit currently provides the following griding functions as separable functions on a rectangular
grid, generally the default parameter values are adequate.

• Pillbox
The pillbox function is 1 inside the area of the pixel and 0 outside. The following parameters
are allowed:

– Parm[0] = half-width in cells of support [def 0.5]

– Parm[1] = Expansion factor

• Gaussian
This is a Gaussian centered on the central image grid cell. The following parameters are
allowed:

– Parm[0] = half-width in cells of support [def 3.0]

– Parm[1] = Gaussian with as fraction of raw beam [def 1.0]

• Exponential*Sinc
The following parameters are allowed: This is as exponential times a Sinc (sin x/x) centered
on the central image grid cell. The following parameters are allowed:

– Parm[0] = half-width in cells of support [def 2.0]

– Parm[1] = 1/sinc factor (cells) [def 1.55]

– Parm[2] = 1/exp factor (cells) [def 2.52]

– Parm[3] = exp power [def 2.0]

• Spherodial wave function
This is a prolate spheroidal wave function centered on the central image grid cell. The
following parameters are allowed:

– Parm[0] = half-width in cells of support [def 3.0]

– Parm[1] = Alpha [def 5.0]

1.7 Using CLEAN to Derive Sky Model

In order to use the method outlined in Section 1.5, a sky model must be derived from the image
obtained from the data. The use of a griding function in the image formation in general has a point
spread function (psf) larger than the intrinsic resolution of the telescope so is not directly useful.

8

Figure 1.1: Screen-shot of interactive CLEAN window editing using ObitView.

In addition, there are artifacts in the image resulting from imperfect background estimation that
should not be included in the sky model.

The sky model used in ObitSD is that obtained from a CLEAN deconvolution of the image
derived from the data. This has the advantage that the CLEAN components can be restored with
an approximation of the actual telescope beam, meaning that the telescope response can then
be determined from a simple interpolation of the CLEAN restored image. In addition, CLEAN
windowing can be used to constrain the region in which emission is allowed. In the CLEAN sky
model, the residuals are not included which gives the region outside of the CLEAN window zero flux
density. CLEAN windows can be either hard-coded into the processing script, set interactively or
use Obit’s automatic windowing algorithm. A screen-shot of an interactive window setting session
using ObitView is given in Figure 1.1

1.8 OTF Data Format

The GBT archives data on a per scan basis with each logical component of the system (e.g antenna
controller and receiver) logging its own data into separate FITS files. For use in the ObitSD OTF
package, these files are read and converted into a single FITS file in a form similar to a relational
database. The data are kept in a single table with antenna pointing positions interpolated from the

9

Antenna FITS files together with other information. Separate tables contain auxiliary information
such as target information, offsets of each detector from the antenna pointing and a scan index. In
addition, calibration and editing can be specified as tables which can be applied as the data are
read. The standard tables are described in the following:

• OTFScanData
Raw sky brightness data, pointing and other time variable information. A row in this table
corresponds to all data at a given time.

• OTFArrayGeom
Table giving the geometric offsets of a feed/detector array from the pointing axis of the
telescope.

• OTFTarget
Table of sources or targets. These are referred to in the OTFScanData table as an index into
this table.

• OTFIndex
Scan table [optional] giving start and stop times and row numbers in the OTFScanData table
as well as targets etc. This index is used to improve data access times.

• OTFFlag
Table describing “flagged” data - data to be ignored.

• OTFCal
Cumulative calibration table. This table gives multiplicative and additive corrections to the
raw sky brightness measurements in the OTFScanData table as well as corrections to the
nominal telescope pointing direction.

• OTFSoln
Differential calibration (“Solution”) table.

A screen-shot of fv displaying an OTF FITS file with data and calibration tables is shown in Figure
1.2.

1.9 Examining OTF Data Using fv

The plotting facilities in Obit are currently limited (see section 1.11.16 or in ObitTalk, import
PARCal; help(PARCal.PlotData)) and the most general way to view Mustang data is using the fv
utility from GSFC. A display of a segment of data from a number of detectors is shown in Figure
1.3.

1.10 Mustang Data Analysis

The following describes in some detail the current state of Mustang data analysis in Obit. This
is currently in the form of a script which is modified to the details of the processing. This allows
both modifying the detailed parameters of the processing and the steps actually involved.

10

Figure 1.2: Screen-shot of the fv display of an OTF FITS file containing data, calibration and
editing tables.

11

600 800 1000 1200

0

0.5

1

1.5

RowNumber

DATA[1,13,1,1]

m87OTFCal.fits.gz_4_1

Figure 1.3: fv display of a section of data from several detectors.

12

1.10.1 Calibration and Background Estimation

Calibration consists of a number of steps allowing the Mustang detector outputs to be converted
into Jy, data weights to be estimated, and the background signal levels estimated. This information
is entered into “solution” (OTFSoln) tables and accumulated into “calibration” (OTFCal) tables.
Individual calibration steps are described in the following; each of these generates an OTFSoln
table.

Gain and Weight Calibration

The gain of each detector is determined from scans with a cyclic firing of the Mustang internal
calibration source. The function OTFGetSoln.POTFGetSolnPARGain reads through an entire
OTF data file and in scans in which the cal signal is switched on and off, determines the difference
(strength of the cal). Then this routine calculates the multiplicative terms to convert counts into Jy
given the cal strength in Jy. This routine also (optionally) determines the statistical data weights
from the RMS in all scans converted into Jy.

The weight calibration removes variations in data, calculates the cal signal deflection and the
weight of each detector in each scan from the inverse variance of data. For rach detector, the
following is done:

1. Determined cal from averaging each segment and differencing transitions;

2. Corrects data for cal value

3. Fit polynomial (5th order) to data

4. Determine rms deviation

5. Clip points > 5 sigma from 0

6. Refit polynomial

7. Redetermine rms deviation

8. Flag scans with weights with entries further than 10X low or 5X high from the median weight

Baseline Calibration

The “baseline” for each detector in each scan is estimated using OTFGetSoln.PFilter which per-
forms a low pass filter on the data from each detector and estimates the background for each
detector from this filtered data stream.

Common Atmosphere/ Detector Offset Calibration

For multi-beam systems such as Mustang, the atmospheric contributions to the background are
expected to be largely common among all the detectors. The routine OTFGetSoln.PMBBase fits
a polynomial common atmosphere and a single offset per detector per scan.

13

Automated Editing

Mustang data frequently contains spikes which should be removed from the data stream. This
is done using the statistics of each residual data stream (i.e. the data after a source model is
subtracted) by a comparison of the RMS of the values in each detector’s residual data stream with
the detector model data stream (data stream in which the data has been replaced by the model).
In each time period of a specified length, the RMS about the mean of each the residual and model
data streams are determined for each detector. If a residual RMS exceeds the larger of a fixed value
or a multiple of the model RMS, then an entry for that detector is made for that time sample in
the OTFFlag table causing subsequent processing to ignore that data segment. The model data
stream is used to avoid confusing minor errors arounnd bright sources with bad data.

Residual Calibration

To estimate background fluctuations on short time scales comparable to the time required for
the telescope beam to traverse the region of emission, the sky model (CLEAN model) needs to
be subtracted from the data. To the degree that the sky model is correct, the residuals will be
purely background signals. This subtraction is performed using OTFUtil.PSubImage. The resulting
residual data can be converted into background estimates by an appropriate low-pass filtering. The
details of the filtering will depend on whether the background signal to be estimated is dominated
by components common to all detectors or specific to individual detectors. The residual calibration
process is performed by OTF.ResidCal and supports the following filtering types:

• solType=”Gain”
Solve for multiplicative term from ”cals” in data for each detector.

• solType=”Offset”
Solve for additive terms from residuals to the model for each detector. The median residual
in each solInt for each detector is used as the background estimate.

• solType=”GainOffset”
Solve both gain and offset.

• solType=”Filter”
Additive terms from filtered residuals to the model for each detector. The time series of
detector residuals for each detector is low pass filtered to determine the background estimates.

• solType=”MultiBeam”
A common mode background for all detectors is estimated. The center averaged median of
the individual detectors in each integration is low pass filtered to remove timescales shorter
than solInt to obtain the background estimate.

Since the cal signal is not generally used during Mustang observations, the “Gain” solution types
are not applicable; the ”MultiBeam” is the most useful for Mustang data.

1.10.2 Reading Data

Before the data can be processed, it must be converted from the form stored in the GBT archive
to the form used by the Obit software. This is done using function GBTUtil.UpdateOTF which
looks at the ScanLog.fits file in the DataRoot directory (as defined in the relevant script) to see
which scans, if any, are not already included in the output OTF data file. These scans are then

14

read using task PAROTF and appended to the output OTF data file. This allows updates from
the GBT archive during the observations to obtain the latest data.

PAROTF performs a number of operations on the archive data. Most important of these is to
average the 1 kHz samples to typically 20 Hz. Another operation is to filter the 1.4 oscillations of
the detectors due to the pump frequency of the refrigerator. A sample of data before and after this
filtering is shown in Figure 1.4.

Time stream filtering:

1. Averaging.
The data streams are time averaged using boxcar averaging to the requested integration time.

2. Remove jumps in baseline
Determines a 9 point running median and when there is a persistent jump not associated
with a cal state change, then the following data is adjusted by the difference. Multiple jumps
may be detected.

3. Filter 1.4 Hz signal from refrigerators
If the requested averaging time is 50 or 100 msec, then a IIR notch filter is applied to the
averaged data. These filters use a third order Bessle bandstop filter between 1.38 and 1.45
Hz. For other averaging times a notch filter using the ObitTimeFilter class is used to filter
between 1.39 and 1.44 Hz.

The following script fragment shows how to convert data from the archive to OTF format

import GBTUtil

Root of archive (or copy) data directory

DataRoot="/media/usbdisk/bcotton/FITS/TPAR_17/"

outFile = "TPAR_19OTF.fits" # Name of output FITS file

outDisk = 0 # 0 means current working directory

Update OTF with any new scans in archive

outOTF = GBTUtil.UpdateOTF ("PAROTF","Rcvr_PAR",outFile, outDisk, DataRoot, err, \

avgTime=0.05)

OErr.printErrMsg(err, "Error creating/updating OTF data object")

1.10.3 Pointing Calibration

Pointing offsets can be obtained from daisy scans on calibrators at the correct focus. This can be
done using FitCal in python module PARCal.

1.10.4 Annotated Processing Script

The following is a template script for processing Mustang data with a segment-by-segment ex-
planation. This script may be obtained from $OBITSD/share/scripts/scriptMustangTemplate.py.
If ObitView is to be used for interactive CLEAN window editing, it should be started from the
directory in which the input OTF data to be processed resides. The FITS file PARGaussBeam.fits
should also be present in the same directory, this file gives the beamshape assumed for the GBT.
This file (in gzip compressed form) is available in $OBITSD/share/data/PARGaussBeam.fits.gz.
The processing script should also be executed from the command line in this directory as

> ObitTalk script_name

15

Figure 1.4: The upper plot shows the time sequence of 10 Hz averaged data from a single Mustang
detector as a function of time (seconds). The lower plot shows the same data after a 1.4 Hz notch
filter.

16

The details of the script can be edited, however, generally this will only involve the parameters
defined in the section described in Section 1.10.4.

The execution of this script will result in a number of output files in directory ./FITSdata
whose names are derived from the name of the target (“target” in the following).

• targetDirty.fits The final “dirty” image

• targetClean.fits The final “CLEAN” image

• targetWt.fits The weight image, sum of data weights times griding weights. These are
needed to properly combine data from different observations.

• targetOTFCal.fits Final calibrated and edited OTF data being imaged.

Once an image has been created, the procedure can be rerun starting with the final result of
the previous run. To use this feature, copy the targetClean.fits file to the input data area and
re-execute the script.

Obit Initialization

The following imports the Obit modules the script will use and then initializes Obit. Part of this
initialization is defining a directory (./FITSdata) in which output, scratch and other temporary
files will be written. This directory should exist before executing the script.

Template ObitTalk script for processing Mustang data

import OSystem, OErr, InfoList, Image, Table, TableUtil, History, ODisplay

import OTF, OTFUtil, CleanOTF, OTFGetSoln, OTF

import GBTUtil, FITSDir

Init Obit

err=OErr.OErr()

FITS = ["./FITSdata"]

ObitSys=OSystem.OSystem ("Mustang", 1, 1, 1, ["None"], len(FITS), FITS, True, False, err)

OErr.printErrMsg(err, "Error with Obit startup")

Defining Parameters

The following specifies the parameters to be used in processing, these are:

• target is a list of target names to be imaged as specified in the OTFTarget table. The
center of the field imaged will be the position of first target specified as obtained from the
OTFTarget table.

• scans gives the beginning and end scan number to be considered, note that only targets
named in target in this range will actually be included.

• doOffset if True, solve for offsets on each detector with 3 times the time scale before each
common mode (“MultiBeam”) residual calibration. If this is false, only the common model
calibration is used.

• deMode if True then subtract the mode in the pixel distribution of each dirty image as it is
formed. This is to help stabilize extended emission and to damp instabilities.

17

• inFile is the name of the input OTF format FITS file.

• feeds is a list of detectors to include, an empty list means use all feeds.

• cells is the cell spacing of the output images in arcsec

• nx, ny are the dimensions of the image in pixels.

• niter is the number of iterations of CLEAN

• gain is the CLEAN loop gain

• minFlux is the minimum abs. flux density to which to CLEAN

• CLEANbox is a list of lists defining the CLEAN boxes. Each (inner) list consists of either:
[blc x, blc y, trc x, trc y] giving the bottom left corner (blc) and top right corner (trc)
x and y (1-relative) pixel numbers to define a rectangular box, or, [-1, radius, x, y] to
define a circular box of radius radius pixels centered on pixel (x,y) (1-relative).

• CalJy gives the value of the Mustang internal calibration signal in Jy. If a single value is
given, it is used for all detectors; alternately a value per detector can be given.

• solInt is the minimum integration time for smoothing residuals.

• BLInt is the baseline filter time in sec

• AtmInt is the atmospheric filter time in sec

• tau0 is the zenith opacity in nepers. This can be either a single, constant, scalar, or a time
ordered list of [time (days), zenity opacity(nepers)]. Zenith opacities may be measured from
a tipping scan or estimated from surface weather data. CLEO has a facility to derive a set
of estimated opacities.

• soln is a list of time scales (sec) for each cycle of the iterative calibration process. The
number of entries in the list determines the number of cycles.

• PointTab List of pointing offsets in time order each list entry is of the form [time(day) d Xel
(asec), d el (asec)]

• flagver Flag (OTFFlag) table to be used. There is no action if no OTFFlag table exists and
automated flagging is not enabled.

• flagInt Automated flagging interval (sec), <= 0 − > no automated flagging. The automated
flagging procedure is to image the selected data with the current best calibration, CLEAN
the dirty image and form a sky model. This sky model is then used to determine both a
residual and model data streams. A comparison of these streams using parameters maxRMS

and maxRatio proceeds as described in section 1.10.1.

• maxRMS Maximum allowable detector residual RMS in Jy in in each flagInt of the automated
flagging.

• maxRatio Maximum allowable ratio of the detector residual RMS to the equivalent model
RMS in each flagInt of the automated flagging

18

In the following script segment, generic values of these parameters are set and then redefined for
particular targets.

###

Define parameters

Root of data directory

DataRoot="/media/usbdisk/bcotton/FITS/TPAR_17/"

DataRoot = None # To suppress attempt to update from archive

Target to image and range of scans

target=["eskimo"]

scans = [55,72] # range of scans SET THIS

target = ["m87"]

scans = [93,104] # range of scans SET THIS

target=["orionKL","bolorionN","bolorionS"]

scans = [20,41] # range of scans SET THIS

Define data

OTF file

inFile = "TPAR_19OTF.fits" # Full TPAR_19

inDisk = 0 # 0 means current working directory

outDisk = 1 # Where resultant files will go (./FITSdata)

Use target name to define output files

outFile = target[0]+"OTFCal.fits" # Output calibrated data

dirtFile = "!"+target[0]+"Dirty.fits" # Final output dirty image

cleanFile= "!"+target[0]+"Clean.fits" # Final CLEAN output image

wtFile = "!"+target[0]+"Wt.fits" # Weighting image

BeamFile = "PARGaussBeam.fits" # Dirty Gaussian beam

priorFile= target[0]+"Clean.fits" # Prior model?

List of feeds to use, empty list = all

feeds=[]

Default Image Info

timerange=[0.0,1.0] # time range in days, All times

cells = 2.0 # cell spacing in asec

nx = 256 # no. cells in x

ny = 256 # no. cells in y

niter = 1000 # Number of iteration of CLEAN

gain = 0.1 # CLEAN loop gain

minFlux = 0.001 # Minimum image brightness to CLEAN

CLEANbox=[[-1,10, nx/2+1,ny/2+1]] # Clean window, circular at center

flagver = 1 # Flag table

Default Calibration info

CalJy = [38.5] # Cal values in Jy, one for all or per detector

solInt = 1.0 # Min solint in seconds

19

BLInt = 20.0 # Baseline filter time in sec

AtmInt = 10.0 # Atmospheric filter time in sec

Default editing info

flagver = 1 # Flag table

flagInt = 5.0 # Flagging interval (sec), <=0 -> no flagging

maxRMS = 1.0 # Maximum allowable detector residual RMS in Jy

maxRatio = 3.0 # Max. allowable ratio to equivalent model RMS

Table of pointing offsets in time order [time(day) d Xel (asec), d el (asec)]

PointTab=[\

[0.0, 0.0, 0.0], \

[1.0, 0.0, 0.0]]

*********** SET THIS ********

Table of opacities in time order [time(day), zenith opacity(nepers)]

tau0 = [[0.0000, 0.100], \

[1.0000, 0.100]]

*********** SET THIS ********

set of time scales for iterations

soln = [(5*solInt), (2*solInt), (solInt)]

doOffset = True # Do Offset cal before each MultiBeam cal?

deMode = True # Subtract the mode of the image when forming

The following resets parameters for particular objects

Orion

if target[0]=="bolorionN":

BLInt = 30.0 # Baseline filter time in sec

AtmInt = 20.0 # Atmospheric filter time in sec

nx = 500; ny=500

solInt = 1.0

soln = [6*solInt, 3*solInt, solInt, solInt]

CLEANbox=[[177,49,332,333]]

niter = 50000

gain = 0.05

Crab

if target[0]=="crab":

BLInt = 15.0 # Baseline filter time in sec

AtmInt = 10.0 # Atmospheric filter time in sec

nx = 500; ny=500

solInt = 1.0

niter=50000

gain=0.05

#deMode = False # Don’t Subtract the mode of the image when forming

#doOffset = False # Don’t Do Offset cal before each MultiBeam cal?

soln = [6*solInt, 3*solInt, solInt, solInt]

CLEANbox=[[-1,101,252,253]]

20

minWt = 0.00001 # Minimum weight in imaging wrt maximum - big variation here

Eskimo

if target[0]=="eskimo":

inFile = "EskimoRawOTF.fits" # Eskimo nebula + cal only

solInt = 2.0

soln = [3*solInt, 2*solInt, solInt]

CLEANbox=[[-1,16,129,126]]

niter = 500

doOffset = False

M87

if target[0]=="m87":

inFile = "M87RawOTF.fits" # M87 data

niter = 5000

solInt = 1.0

soln = [(5*solInt),3*(solInt), (solInt), (solInt)]

CLEANbox=[[95,110,149,140]]

CLEANbox=[[-1,11,136,131],[-1,15,120,124],[-1,8,130,120],[-1,13,102,125]]

Updating Data During the Observations

When the analysis is proceeding during observations, the following will update the data file with
any new scans not already included. No data update will be attempted if DataRoot = None,
otherwise, it should be the root of the GBT archive for the observing session.

################################# Update data ###

Update OTF with any new scans in archive

inOTF = GBTUtil.UpdateOTF ("PAROTF","Rcvr_PAR",inFile, inDisk, DataRoot, err

avgTime=0.05)

OErr.printErrMsg(err, "Error creating/updating input data object")

inInfo = inOTF.List

print "Processing", target, "scans", scans

Prior CLEAN model

If a prior CLEAN model is to be used, it should be initialized. The “dirty beam” (GBT resolution)
image object is created.

########################### If prior model given #############################

dirty beam

dirtyBeam = Image.newPFImage("dirty beam", BeamFile, inDisk, True, err)

OErr.printErrMsg(err, "Error initializing dirty beam")

if priorFile and FITSDir.PExist(priorFile, inDisk, err):

print "Using prior model in",priorFile

prior = Image.newPFImage("prior model", priorFile, inDisk, True, err)

PSF = dirtyBeam

else:

prior = None

21

PSF = None

Initialize Calibration

The initial calibration is performed in the python module PARCal using function InitCal.

################################## Initial calibration #############################

PARCal.InitCal(inOTF, target, err,\

flagver=flagver, CalJy=CalJy, BLInt=BLInt, AtmInt=AtmInt,tau0=tau0, \

prior=prior, PSF=PSF, PointTab=PointTab)

The following describes the functionality of PARCal.InitCal. The first phase of the script deletes
any previous calibration tables from the data set and then creates a new initial OTFCal table (
version no. 1) with an time increment of a quarter of the solInt.

################################## Initialize calibration #############################

delete any prior calibration tables

print "Remove previous calibration"

OTF.ClearCal(inOTF,err)

Create an initial dummy table with a interval 1/4 of the shortest

Filter type solution interval.

inter = solInt/4

OTFGetSoln.POTFGetDummyCal (inOTF, inOTF, inter, 1, 1, err)

Gain/Weight calibration

The next step is to determine the detector gains and weights from calibration scans, these are
written the OTFSoln table 1. The values from a calibration scan are propagated in time until the
next calibration scan; this operation is done on the entire data set. The solution table derived is then
applied to OTFCal no. 1 producing OTFCal no. 2. OTFSoln tables are applied to OTFCal tables
using OTF.Soln2Cal whose parameters are passed in OTF.Soln2CalInput. See help(OTF.Soln2Cal)
for details.

################################## Gain/Weight calibration ############################

Gain/Weight calibration

print "Gain/Weight calibration"

inInfo = inOTF.List

inInfo.set("calJy", CalJy)

inInfo.set("doWate", True) # Do weight calibration

OTFGetSoln.POTFGetSolnPARGain(inOTF, inOTF, err)

Update OTF Cal table

OTF.Soln2CalInput["InData"] = inOTF # Input data object

OTF.Soln2CalInput["oldCal"] = 1 # Use initial cal table

OTF.Soln2CalInput["newCal"] = 2 # New cal table

OTF.Soln2Cal(err, OTF.Soln2CalInput) # Apply

22

Target specification

In subsequent processing steps, only data for the targets named in target, scans in the range given
in scans and times in timerange are processed.

################################## Target specification #################################

inInfo.set("Targets", target) # select only target data

inInfo.set("Stokes", " ") # Set Stokes

inInfo.set("timeRange", timerange) # Set timerange

inInfo.set("Scans", scans) # Select scans

inInfo.set("doCalSelect", True)

inInfo.set("flagVer", flagver)

inInfo.set("gainUse", 0)

Residual data from prior model for Baseline Cal

If an Image exists in the input data area with the same name as the output CLEAN image in the
output data area (./FITSdata) then its CLEAN model is used as the initial guess of the source.
A residual set of data is calculated applying the gain/weight calibration and this residual data is
used in the the subsequent Baseline filter calibration. If no prior model exists, then the input OTF
data is used.

########################### Residual data from prior model #############################

Get prior model, if any and compute residual OTF

if prior!=None:

print "Using prior model"

gainuse = 0

inInfo.set("gainUse", gainuse)

inInfo.set("doCalib", 1)

inInfo.set("flagVer", flagver)

resid = OTFUtil.PSubModel(inData, None, prior, PSF, err)

OErr.printErrMsg(err, "Error with residial data")

else:

print "No prior model used"

resid = inData

Baseline filter

The initial background estimation is the Baseline filter which estimates the background after apply-
ing OTFCal table no. 2 and then a low pass filter removing fluctuations on timescales shorter than
BLInt for each individual detector. This generates OTFSoln no. 2 which is applied to OTFCal no.
2 to generate OTFCal no. 3.

################################## Baseline filter ####################################

print "Baseline Filter"

solint = BLInt/86400.0

inInfo.set("solInt", solint)

inInfo.set("doCalSelect", True)

inInfo.set("flagVer", flagver)

gainuse=2

23

inInfo.set("gainUse", gainuse)

inInfo.set("doCalib", 1)

OTFGetSoln.PFilter(inOTF, inOTF, err)

Soln2Cal parameters for filter cal (most defaulted)

OTF.Soln2CalInput["InData"] = inOTF # Input data object

OTF.Soln2CalInput["oldCal"] = 2 # Use Gain cal output

OTF.Soln2CalInput["newCal"] = 3 # New calibration

OTF.Soln2Cal(err, OTF.Soln2CalInput) # Apply

Residual data from prior model for Atmosphere Cal

If an Image exists in the input data area with the same name as the output CLEAN image in the
output data area (./FITSdata) then its CLEAN model is used as the initial guess of the source. A
residual set of data is calculated applying the Baseline calibration and this residual data is used
in the the subsequent Atmospheric (common mode) calibration. If no prior model exists, then the
input OTF data is used.

########################### Residual data from prior model #############################

Get prior model, if any and compute residual OTF

if prior!=None:

print "Using prior model"

gainuse = 0

inInfo.set("gainUse", gainuse)

inInfo.set("doCalib", 1)

inInfo.set("flagVer", flagver)

resid = OTFUtil.PSubModel(inData, None, prior, PSF, err)

OErr.printErrMsg(err, "Error with residial data")

else:

print "No prior model used"

resid = inData

Common atmosphere + offset

The next calibration, after applying OTFCal no. 3, is a common “atmospheric” term and a single
detector offset term in each scan. This generates OTFSoln no. 3 which is applied to OTFCal no.
3 to generate OTFCal no. 4.

print "Common atmosphere removal"

inInfo.set("Tau0", tau0) # Opacity table

inInfo.set("doCalSelect", True)

inInfo.set("flagVer", flagver)

gainuse=0

inInfo.set("gainUse", gainuse)

inInfo.set("doCalib", 1)

solint = AtmInt/86400.0

inInfo.set("solInt", solint)

clipsig = 5.0

inInfo.set("ClipSig", clipsig)

24

plotDet = -10

inInfo.set("plotDet", plotDet)

OTFGetSoln.PMBBase(resid, inOTF, err)

Soln2Cal for Atm cal

OTF.Soln2CalInput["InData"] = inOTF # Input data object

OTF.Soln2CalInput["oldCal"] = 3 # Use baseline cal output

OTF.Soln2CalInput["newCal"] = 4 # New cal table

OTF.Soln2Cal(err, OTF.Soln2CalInput) # Apply

Write pointing corrections to Soln table

If a table of pointing corrections is given in PointTab, this is written to a OTFSoln table and
applied to the OTFCal table.

############################### Pointing correction ##################################

if PointTab != None:

print "Apply pointing corrections"

inInfo.set("POffset", PointTab)

OTFGetSoln.POTFGetSolnPointTab(inData, inData, err)

OErr.printErrMsg(err, "Error with pointing corrections")

Soln2Cal for Point cal

OTF.Soln2CalInput["InData"] = inData # Input data object

OTF.Soln2CalInput["oldCal"] = 4 # Use baseline cal output

OTF.Soln2CalInput["newCal"] = 5 # New cal table

OTF.Soln2Cal(err, OTF.Soln2CalInput) # Apply

OErr.printErrMsg(err, "Error updating Cal table with Soln")

Editing data

If editing parameters are specified, the data is edited by first imaging the data with the current
calibration and then CLEANing it to form a sky model. Then flagging is done using a statistical
comparison of the residual data streams and the model data streams. Data to be discarded are
described in the OTFFlag table.

################################## Editing data #############################

if flagInt>0.0:

CleanSkyModelInput

input = PARCal.CleanSkyModelInput

input["InData"] = inOTF

input["DirtyName"] = cleanFile

input["CleanName"] = dirtFile

input["outDisk"]= outDisk

input["PSF"] = dirtyBeam

input["Niter"] = niter

input["Gain"] = gain

input["scan"] = scans

25

input["target"] = target

input["nx"] = nx

input["ny"] = ny

input["xCells"] = cells

input["yCells"] = cells

input["Window"] = CLEANbox

Make sky model

CCimage = PARCal.CleanSkyModel (err, input=input)

Editing

if flagver<=0:

flagver = 1

inInfo = inOTF.List

inInfo.set("maxRMS", maxRMS)

inInfo.set("maxRatio", maxRatio)

inInfo.set("flagVer", flagver)

inInfo.set("FGVer", flagver)

inInfo.set("doCalSelect", True)

inInfo.set("doCalib", 1)

inInfo.set("gainUse", 0)

OTFGetSoln.PFlag(inOTF, CCimage, inOTF, 1, err)

OErr.printErr(err)

Write calibrated output

In this section, the current calibration is applied to the target data and a new OTF data file is
written. This file is used for subsequent calibration and imaging and will contain the final calibration
when the procedure is done. A new, initial OTFCal table (no. 1) is generated.

Apply current calibration and use result for remaining calibration

print "Write calibrated data "

Delete output if it exists */

if FITSDir.PExist (outFile, outDisk, err):

zapOTF = OTF.newPOTF("Output data", outFile, outDisk, True, err)

zapOTF.Zap(err)

outOTF = OTF.newPOTF("Output data", outFile, outDisk, False, err)

OTF.PClone(inOTF, outOTF, err) # Same structure etc

OErr.printErrMsg(err, "Error initializing output")

Set time range

inInfo.set("timeRange", timerange)

inInfo.set("doCalSelect", True)

inInfo.set("flagVer", flagver)

gainuse=0

inInfo.set("gainUse", gainuse)

inInfo.set("doCalib", 1)

26

Copy/calibrate

OTF.PCopy(inOTF, outOTF, err)

OErr.printErrMsg(err, "Error selecting data")

Create an initial dummy table with a interval 1/4 of the shortest

Filter type solution interval.

inter = solInt/4

OTFGetSoln.POTFGetDummyCal (outOTF, outOTF, inter, 1, 1, err)

inInfo = outOTF.List

Setting Imaging/Calibration Parameters

The following section first looks up the position of the specified target from the input OTF data
and then uses previously specified parameters to initialize the structures which control subsequent
processing.

OTF.ImageInput is a python structure (dict) containing the imaging parameters,
see help(OTF.makeImage) for details. This structure is filled with parameters as specified above.

OTF.ResidCalInput is a python structure (dict) containing the residual data calibration pa-
rameters, see help(OTF.ResidCal) for details.

################################## Set parameters ##############################

Get position from OTF

pos = GBTUtil.GetTargetPos(inOTF, target[0], err)

ra = pos[0] # ra of center

dec = pos[1] # dec of center

Imaging parameters

OTF.ImageInput["InData"] = outOTF

OTF.ImageInput["disk"] = outDisk

OTF.ImageInput["OutName"] = dirtFile

OTF.ImageInput["Beam"] = dirtyBeam

OTF.ImageInput["OutWeight"]= wtFile

OTF.ImageInput["ra"] = ra # Center RA

OTF.ImageInput["dec"] = dec # Center Dec

OTF.ImageInput["xCells"] = cells # "X" cell spacing

OTF.ImageInput["yCells"] = cells # "Y" cell spacing

OTF.ImageInput["nx"] = nx # number of cells in X

OTF.ImageInput["ny"] = ny # number of cells in Y

OTF.ImageInput["gainUse"] = 0 # Which cal table to apply, -1 = none

OTF.ImageInput["flagVer"] = flagver # Which flag table to apply, -1 = none

OTF.ImageInput["minWt"] = 1.0e-2 # Minimum weight in imaging - includes data weight

OTF.ImageInput["ConvType"] = 5 # Convolving fn = pillbox, 3 = Gaussian,

Calibration parameters (some reset in loop)

OTF.ResidCalInput["InData"] = outOTF # Input data object

OTF.ResidCalInput["solType"] = "MultiBeam" # Solution type

OTF.ResidCalInput["solInt"] = 500.0 # Solution interval (sec)

OTF.ResidCalInput["minFlux"] = 0.0 # Minimum Model brightness to use

27

OTF.ResidCalInput["Clip"] = 1000.0 # Minimum image brightness to use in model

OTF.ResidCalInput["gainUse"] = 1 # Prior calibration, 0-> highest

OTF.ResidCalInput["minEl"] = -90.0 # minimum elevation

OTF.ResidCalInput["flagVer"] = flagver # Which flag table to apply, -1 = none

Create initial image

Next, make the initial dirty image applying OTFCal no. 1.

############################## Create initial image ###################################

print "Make Dirty Image"

OTF.ImageInput["gainUse"] = 0 # Which cal table

if len(feeds)>0:

inInfo.set("Feeds", feeds) # Which feeds

DirtyImg = OTF.makeImage(err, OTF.ImageInput)

OErr.printErrMsg(err, "Error making initial image")

CLEAN parameters

Now fill in previously specified CLEAN parameters into the CleanOTF.CleanInput dict. See Clean-
OTF.PClean for details. The image display object, disp is also created here. The actual CLEAN-
ing is performed in OTF.SelfCal. Finally, the OTF.Soln2CalInput parameters are reset for use in
OTF.SelfCal.

################################# CLEAN parameters ####################################

Image display

disp = ODisplay.ODisplay("ObitView", "ObitView", err)

Image for cleaning

CleanImg = Image.newPFImage("Clean Image", cleanFile, outDisk, False, err)

Create CleanOTF

CleanObj = CleanOTF.PCreate("Clean", DirtyImg, dirtyBeam, CleanImg, err)

OErr.printErrMsg(err, "Error creating CLEAN object")

CLEAN parameters

CleanOTF.CleanInput["CleanOTF"] = CleanObj # Clean object

CleanOTF.CleanInput["disp"] = disp # Image display object

CleanOTF.CleanInput["Patch"] = 40 # Beam patch

CleanOTF.CleanInput["Niter"] = niter # Number of iterations

CleanOTF.CleanInput["Gain"] = gain # CLEAN loop gain

CleanOTF.CleanInput["BeamSize"] = 8.0/3600.0 # CLEAN restoring beam size in deg

CleanOTF.CleanInput["minFlux"] = minFlux # Minimum image brightness to CLEAN

CleanOTF.CleanInput["CCVer"] = 1 # Clean components table version

CleanOTF.CleanInput["Feeds"] = feeds # list of feeds to use

CleanOTF.CleanInput["noResid"] = True # Don’t include residuals in calibration

28

CLEAN window

for win in CLEANbox:

CleanOTF.PAddWindow(CleanObj, win, err)

Reset Soln2Cal parameters for self cal

OTF.Soln2CalInput["InData"] = outOTF # Input data object

OTF.Soln2CalInput["oldCal"] = 1 # Input cal table

OTF.Soln2CalInput["newCal"] = 2 # New cal table

Self calibration loop

This section contains the “self calibration” loop in which the backgrounds and sky model are
iteratively determined. This loop is of two forms depending on the value of doOffset. If doOffset
is True then each cycle consists of two parts; the initial calibration is per detector but with a time
scale three times that specified in soln. This is followed by a common mode (“MultiBeam”) imaging
and calibration based on the “Offset” calibration. If doOffset is False, each cycle consists of only
the (“MultiBeam”) imaging and calibration. Each part of the self calibration cycle is performed in
OTF.SelfCal and consists of:

1. Form a new dirty image using the most recent OTFCal calibration. If deMode is True, the
mode of the pixel distribution is subtracted from each pixel.

2. If ObitView is available, display dirty image and allow interactive specification of the CLEAN
window.

3. Clean the image

4. Make a “restored” image with the full telescope resolution but without residuals, clip below
zero. This is the sky model.

5. Scale the resultant sky model image to Jy/beam in the new beam size.

6. Subtract the sky model from the calibrated OTF data by interpolating the value at the
location of each data sample and writing a scratch copy of the data.

7. Derive the background signal estimations as specified by soln and write to OTFSoln 1 or 2
for the first and second parts of the cycle.

8. Apply OTFSoln no. 1 (or 2) to OTFCal no. 1 (or 2) and write OTFCal no. 2 (or 3).

The application of calibration here differs from the previous in that each cycle starts from the
initial (dummy) calibration. The time scale of the solutions for each cycle are obtained from the
soln array specified earlier. The number of intervals in soln determines the number of iterations.

################################ Self calibration loop ################################

For each iteration specify the solution interval in soln

Depending on doOffset, do pair of calibrations, the first with

solType="Offset" with interval 3*si followed by a "MultiBeam"

solution with interval si or simply

a "MultiBeam" solution with interval si

29

count=0

OTF.ImageInput["gainUse"] = 1 # Which cal table to apply

OTF.ResidCalInput["gainUse"] = OTF.ImageInput["gainUse"] # Prior calibration,

inInfo.set("deMode", False) # Don’t remove mode first cycle

if doOffset:

for si in soln:

count = count+1

print "\n *** Self calibration loop ",count,"si=",3*si,"Offset"

First calibration of pair

OTF.ResidCalInput["solInt"] = 3*si

OTF.ResidCalInput["solType"] = "Offset"

OTF.Soln2CalInput["oldCal"] = 1

OTF.Soln2CalInput["newCal"] = 2 # (Re)Use 2

OTF.SelfCal(err, OTF.ImageInput, CleanOTF.CleanInput, OTF.ResidCalInput, OTF.Soln2CalInput)

OErr.printErrMsg(err, "Error in self cal")

OTF.ImageInput["gainUse"] = OTF.Soln2CalInput["newCal"] # Which cal table to apply

OTF.ResidCalInput["gainUse"] = OTF.Soln2CalInput["newCal"] # Prior calibration

Second

print "\n *** second calibration of loop ",count,"si=",si,"MultiBeam"

OTF.ResidCalInput["solInt"] = si

OTF.ResidCalInput["solType"] = "MultiBeam"

OTF.Soln2CalInput["oldCal"] = 2

OTF.Soln2CalInput["newCal"] = 3 # (Re)Use 3

OTF.SelfCal(err, OTF.ImageInput, CleanOTF.CleanInput, OTF.ResidCalInput, OTF.Soln2CalInput)

OTF.ImageInput["gainUse"] = OTF.Soln2CalInput["newCal"] # Which cal table to apply

OTF.ResidCalInput["gainUse"] = 1 # Prior calibration for next cycle

Cleanup Soln tables

outOTF.ZapTable("OTFSoln",1,err)

outOTF.ZapTable("OTFSoln",2,err)

inInfo.set("deMode", deMode) # remove mode

else: # Only MultiBeam

for si in soln:

count = count+1

print "\n *** calibration loop ",count,"si=",si,"MultiBeam"

OTF.ResidCalInput["solInt"] = si

OTF.ResidCalInput["solType"] = "MultiBeam"

OTF.Soln2CalInput["oldCal"] = 1

OTF.Soln2CalInput["newCal"] = 2

OTF.SelfCal(err, OTF.ImageInput, CleanOTF.CleanInput, OTF.ResidCalInput, OTF.Soln2CalInput)

OTF.ImageInput["gainUse"] = OTF.Soln2CalInput["newCal"] # Which cal table to apply

OTF.ResidCalInput["gainUse"] = 1 # Prior calibration for next cycle

Cleanup Soln tables

outOTF.ZapTable("OTFSoln",1,err)

inInfo.set("deMode", deMode) # remove mode

print ’Finished with loop, final image’

30

Final image/CLEAN

After the calibration loop is finished, form a final dirty image, allow editing of the CLEAN window
and CLEAN. After the CLEAN, the components in each pixel are summed in the CC table.

Final image

DirtyImg = OTF.makeImage(err, OTF.ImageInput)

OErr.printErrMsg(err, "Error in final dirty image")

Final Clean

resid = CleanObj.Clean # Copy image just produced

Image.PCopy(DirtyImg, resid, err) # to clean (residual)

CleanOTF.CleanInput["noResid"] = False # include residuals

CleanOTF.PClean(err, CleanOTF.CleanInput)

OErr.printErrMsg(err, "Error Cleaning")

Compress CC tables

cctab = CleanImg.NewTable(Table.READWRITE, "AIPS CC", 1, err)

TableUtil.PCCMerge(cctab, cctab, err)

OErr.printErrMsg(err, "Error merging CC table")

History

This section copies any processing history from the input data to the output CLEAN and dirty
images and calibrated data and adds the current processing history records.

print "Copy history"

Loop over dirty, clean images, output data

for img in [DirtyImg, CleanImg, outOTF]:

inHistory = History.History("in history", inOTF.List, err)

outHistory = History.History("out history", img.List, err)

History.PCopy(inHistory, outHistory, err)

Add this programs history

outHistory.Open(History.READWRITE, err)

outHistory.TimeStamp(" Start Obit "+ObitSys.pgmName,err)

outHistory.WriteRec(-1,ObitSys.pgmName+" inFile = "+inFile,err)

outHistory.WriteRec(-1,ObitSys.pgmName+" target = "+str(target),err)

outHistory.WriteRec(-1,ObitSys.pgmName+" scans = "+str(scans),err)

outHistory.WriteRec(-1,ObitSys.pgmName+" timerange = "+str(timerange),err)

outHistory.Close(err)

Copy history to header

inHistory = History.History("in history", img.List, err)

outHistory = History.History("out history", img.List, err)

History.PCopy2Header(inHistory, outHistory, err)

OErr.printErrMsg(err, "Error with history")

Display CLEAN image, shutdown

This section displays the final CLEAN image and shuts down Obit.

31

###################### Display final CLEAN image, shutdown #######################

print "Display final CLEAN image"

ODisplay.PImage(disp, CleanImg, err)

OErr.printErrMsg(err, "Error displaying output image")

Shutdown Obit

OErr.printErr(err)

del ObitSys

1.10.5 Modifying the Script

Most of the background signals seen by Mustang are common to all detectors and for a single,
small, isolated source it is relatively straightforward to separate celestial sky and background. The
general approach of this script is to begin the process by initially estimating the backgrounds from
the measurements, implicitly assuming the celestial sky is empty. The initial calibrations need
to use sufficiently long timescales not to remove actual emission. Following this is an iterative
refinement of a (celestial) sky model and a background model. The sky model is determined by
imaging the calibrated data and CLEANing the resultant “dirty” image. This sky model is then
subtracted from the data and a refined estimate of the background derived, leading to an improved
calibration. If an a priori sky model is available, either from separate observations or a previous
processing of the same data, this model can be used in the initial calibration stages.

The details of the script may well need to be modified on a per case basis. The optimum
strategy differs for isolated, small sources, weak extended emission and strong extended emission.
The most critical aspect is the proper handling of extended emission, especially on scales larger than
the footprint of the detector on the sky. Given the variability of the common mode backgrounds
from both the atmosphere and the instrument, there is an inherent ambiguity between large scale
celestial structure and time variable backgrounds. An erroneous large scale feature (either positive
or negative) in the sky model can get mapped into the calibration. Part of the observing strategy
is to sweep the telescope over sources on time scales fast compared to the atmospheric fluctuations
and to cover each pixel many times in hopes that the systematic offsets will be uncorrelated.
Unfortunately, common mode fluctuations from the instrument are on rather short time scales; the
dominant of these is the 1.4 Hz variations seen in Figure 1.4 which is largely removed by the notch
filter in PAROTF.

Strong and especially extended emission in the field is a particular problem as each detector
sees different parts of the source, but for emission larger then the size of the array on the sky, the
fluctuations in detector output are largely common mode. The initial calibration phases will only
include a sky model if an a priori model is given and otherwise will try to remove this structure. A
long time scale in these calibrations helps reduce this effect at the cost of adding negative regions
around bright emission. This effect can be largely removed using techniques discussed below.

Some of the more critical parameters in the script are described in the following:

1. CalJy

This value or list of values sets the flux density scale for the data by specifying the equivalent
flux density of the Mustang internal cal signal. The value depends on the Mustang setup but
the currently favored setup gives 38.5. If a single value is given, it is used for all detectors;
values can also be specified on a per detector basis.

2. BLInt

This is the timescale in seconds of the per detector “Baseline” calibration. Scales shorter than

32

this will not be included in the calibration. If the field observed contains extended emission,
this needs to be as long as practical. However, for the common mode parts of the background
to be accurately modeled and removed, the signals from the different detectors need to be
adjusted to each other and this calibration is one of the principle ways of doing this. If an
initial model of the field is provided, this value can be shortened.

3. AtmInt

The bulk of the “Atmospheric” calibration is a common model correction with minimum
time scale AtmInt. There is also a single, per scan adjustment of the detector offset. If there
is extended emission in the field, especially on scales larger than the area covered by the
detector array, AtmInt should be longer than the time for the antenna to traverse the region
of emission. This can be relaxed somewhat if an initial model of the field is provided.

4. soln

This parameter is the most important controlling this script. It determines the number of
cycles of calibration and the time–scales of the residual filtering. The initial timescales should
be longer than the time it takes the antenna to traverse the region of emission as the residual
calibration is capable of removing (or adding) structure on large scales. Subsequent cycles
decrease the minimum timescale.

5. solInt

This parameter defines the minimum smoothing time for the various calibration phases and is
used to determine the time increment in the initial OTFCal table. As the time stamps in the
initial OTFCal table will be the ones in all derived OTFCal tables, solInt needs to be short
enough that the residuals filtered to this timescale will be adequately sampled. This sampling
of the OTFCal table has an increment 1/4 of solInt which is reasonably conservative. The
principle reason for not making solInt smaller is that the OTFCal tables are rather large
and can dwarf in size the actual data.

6. doOffset

When there is bright emission in the field, the initial per detector calibrations will be in error
due to the uncorrected emission from these sources. The common mode calibration cannot
remove the resultant per detector variable offsets. If doOffset is True, then each residual
calibration cycle has two parts starting with a per detector (“Offset”) calibration with a
time scale three times that specified in soln for the common mode calibration in the second
part. An imaging and residual calibration is carried out for each part of the calibration cycle.
This additional (“Offset”) calibration may degrade the results for fields containing only weak
emission.

7. deMode

Systematic offsets of the zero level in a dirty image can increase or decrease the total flux
density CLEANed. This can adversely affect the quality of the image derived, causing the
total flux density in the image to increase or decrease with cycle. If deMode is True, then the
mode of the pixel distribution (most common value in a pixel value histogram) is taken to
be the “zero” level and is subtracted from the dirty image. This works best if much of the
region imaged is empty of emission; in the limit of very widespread emission, this feature may
remove true emission.

8. niter, minFlux

These values control the depth of the CLEAN. If the CLEAN is too shallow, some of the

33

emission will not be represented in the model and the missing emission may be removed by
subsequent calibration. niter is the maximum number of CLEAN iterations (components)
and minFlux is the minimum abs. value residual to CLEAN.

9. CLEANbox

This sets the region in which CLEAN may place the centers of components; regions more than
a beam width from the edge of the box are implicitly set to zero in the sky model and any
actual emission there may be removed or distorted by subsequent calibration. The default
window is a single small circular box in the center of the field. The boxes of the CLEAN
window can either be specified in the script or edited manually using ObitView before each
CLEAN. The ObitView message window gives the parameters of the CLEAN window at the
end of an editing session and these values can be written into the script.

1.11 Major Obit Single Dish Routines

This section documents the major routines used in this script.

1.11.1 GBTUtil.UpdateOTF

UpdateOTF(OTFTask, Rcvr, outFile, outDisk, DataRoot, err, \

offTime=None, avgTime=None, config=None, scanNo=None, doBS=None, \

dataNorm=None)

Update OTF and return object

return Python OTF object

Update an OTF object with scans not yet in the file.

Read DataRoot/scanLog.fits and determine which scans are available and

are not already in the output OTF.

These scans are appended and the output OTF returned.

Does some data validity checks.

OTFTask = Name of Obit task to read GBT archive and write to OTF format

DCR = "DCROTF"

PAR = "PAROTF" (Mustang)

CCB = "CCBOTF"

Rcvr = directory name with data for receiver.

DCR = "DCR"

PAR = "Rcvr_PAR" (Mustang)

CCB = "CCB26_40"

outFile = Name of output OTF FITS file

outDisk = disk number for outFile, 0=> current working directory

DataRoot = Root of GBT archive for current project

If None, don’t attempt

err = Python Obit Error/message stack

Optional, backend specific values

offTime = PAR, CCB Offset in sec to be added to time

avgTime = PAR Data averaging time in seconds

34

config = PAR Path of configuration file

scanNo = PAR, CCB, replace GBT scan number with this value

doBS = CCB Output beamswitched data?

dataNorm = CCB Normalization factors for beamswitched data

1.11.2 GBTUtil.GetTargetPos

GetTargetPos(OTF, Target, err)

Get target position from OTFTarget table

return [raepo, decepo] in deg

Loop through target table on OTF looking for Target and return position

OTF = OTF data file to check

Target = Name of target e.g. "MARS"

1.11.3 OTF.ClearCal

ClearCal(inOTF, err)

Delete calibration tables on an OTF

Removes all OTFSoln and OTFCal tables

inOTF = Extant Python OTF

err = Python Obit Error/message stack

1.11.4 OTFGetSoln.POTFGetDummyCal

POTFGetDummyCal(inOTF, outOTF, inter, ver, ncoef, err)

Create dummy OTFCal table table (applying will not modify data)

returns OTFCal table with solutions

inOTF = input Python Obit OTF

outOTF = Python Obit OTF onto which the cal table is to be appended.

inter = time interval (sec) between entries

ver = OTFCal table version

ncoef = Number of coefficients (across array feeds) in table

err = Python Obit Error/message stack

1.11.5 OTFGetSoln.POTFGetSolnPARGain

POTFGetSolnPARGain(inOTF, outOTF, err)

Determine Penn Array type gain calibration from data

Determine instrumental gain from Mustang-like cal measurements

Mustang-like = slow switching, many samples between state changes

Average On and Off for each detector and difference.

Mult factor = calJy/(cal_on-cal_off) per detector, may be negative.

Data scan averaged and repeated for any subsequent scans without cal On data

Write Soln entries at beginning and end of each scan.

35

Note: Any scans prior to a scan with calibration data will be flagged.

Calibration parameters are on the inOTF info member.

"calJy" OBIT_float (*,1,1) Calibrator value in Jy per detector [def 1.0] .

Duplicates if only one given.

returns OTFSoln table with solutions

inOTF = Python Obit OTF from which the solution is to be determined

prior calibration/selection applied if requested

outOTF = Python Obit OTF onto which the solution table is to be appended.

err = Python Obit Error/message stack

1.11.6 OTF.Soln2Cal

Soln2Cal(err, input={’InData’: None, ’newCal’: 0, ’oldCal’: -1, ’soln’: 0, ’structure’: [’Soln2Cal’, [(’InData’, ’Input OTF’), (

’soln’, ’input soln table version’), (’oldCal’, ’input cal table version, -1=none’), (’newCal’, ’output cal table’)]]})

Apply a Soln (solution) table to a Cal (calibration) table.

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

InData = Python input OTF to calibrate

soln = Soln table version number to apply, 0-> high

oldCal = input Cal table version number, -1 means none, 0->high

newCal = output Cal table version number, 0->new

1.11.7 OTFGetSoln.PFilter

PFilter(inOTF, outOTF, err)

Determine offset calibration for an OTF by time filtering a residual data set.

The time series of each detector is filtered to remove structure on time

scales shorter than solInt.

Scans in excess of 5000 samples will be broken into several.

Calibration parameters are on the inOTF info member.

"solInt" float scalar Solution interval in days [def 10 sec].

This should not exceed 1000 samples. Solutions will be truncated

at this limit.

"minEl" float scalar Minimum elevation allowed (deg)

returns OTFSoln table with solutions

inOTF = Python Obit OTF (residual) from which the solution is to be determined

outOTF = Python Obit OTF onto which the solution table is to be appended.

err = Python Obit Error/message stack

1.11.8 OTFGetSoln.PMBBase

PMBBase(inOTF, outOTF, err)

Fits polynomial additive term on median averages of a residual data set.

Each solution interval in a scan is median averaged

36

(average of 9 points around the median) and then a polynomial fitted.

Calibration parameters are on the inOTF info member.

"SolInt" float scalar Solution interval in days [def 10 sec].

This should not exceed 5000 samples. Solutions will be truncated

at this limit.

"minEl" float scalar Minimum elevation allowed (deg)

"Order" Polynomial order [def 1]

"clipSig" data outside of range +/- CLIP sigma are blanked [def large]

"plotDet" Detector number to plot per scan [def =-1 = none]

returns OTFSoln table with solutions

inOTF = Python Obit OTF (residual) from which the solution is to be determined

outOTF = Python Obit OTF onto which the solution table is to be appended.

err = Python Obit Error/message stack

1.11.9 OTF.makeImage

makeImage(err, input={’Beam’: None, ’Clip’: 1e+19, ’ConvParm’:

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ’ConvType’: 3,

’Disk’: 1, ’InData’: None, ’OutName’: None, ’OutWeight’: None,

’Wt’: None, ’dec’: 0.0, ...})

Image an OTF.

Data is convolved and re-sampled onto the specified grid.

Image is created and returned on success.

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

InData = input Python OTF to image

OutName = name of output image file

OutWeight = Output griding weight file name

Disk = disk number for output image file

ra = center RA (deg)

dec = center Dec (deg)

nx = number of pixels in "x" = RA

ny = number of pixels in ’Y’ = dec

xCells = Cell spacing in x (asec)

yCells = Cell spacing in y (asec)

minWt = minimum summed weight in gridded image [def 0.1]

Clip = data values with abs. value larger are set zero weight

ConvType= Convolving function Type 0=pillbox,3=Gaussian,4=exp*sinc,5=Sph wave

ConvParm= Convolving function parameters depends on ConvType

Type 2 = Sinc, (poor function - don’t use)

Parm[0] = half-width in cells,

Parm[1] = Expansion factor

Type 3 = Gaussian,

Parm[0] = half-width in cells,[def 3.0]

37

Parm[1] = Gaussian with as fraction or raw beam [def 1.0]

Type 4 = Exp*Sinc

Parm[0] = half-width in cells, [def 2.0]

Parm[1] = 1/sinc factor (cells) [def 1.55]

Parm[2] = 1/exp factor (cells) [def 2.52]

Parm[3] = exp power [def 2.0]

Type 5 = Spherodial wave

Parm[0] = half-width in cells [def 3.0]

Parm[1] = Alpha [def 5.0]

Parm[2] = Expansion factor [not used]

gainUse = version number of prior table (Soln or Cal) to apply, -1 is none

flagVer = version number of flagging table to apply, -1 is none

doBeam = Beam convolved with convolving Fn image desired? [def True]

Beam = Actual instrumental Beam to use, else Gaussian [def None]

Wt = Image to save griding weight array [def None], overrides OutWeight

1.11.10 OTF.ResidCal

ResidCal(err, input={’Clip’: 1e+20, ’InData’: None, ’Model’: None,

’ModelDesc’: None, ’calJy’: [1.0, 1.0], ’flagVer’: -1, ’gainUse’: -1,

’minEl’: 0.0, ’minFlux’: -10000.0, ’minRMS’: 0.0, ...})

Determine residual calibration for an OTF.

Determines a solution table for an OTF by one of a number of techniques using

residuals from a model image.

Returns the version number of the Soln Table on success.

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

InData = Python input OTF to calibrate

Model = Python input model FArray, "None" means do not subtract model image

ModelDesc= Python input model ImageDesc

minFlux = Minimum brightness in model

solInt = solution interval (sec)

solType = solution type:

"Gain" solve for multiplicative term from "cals" in data.

(solInt, minRMS, minEl, calJy)

"Offset" Solve for additive terms from residuals to the model.

(solInt, minEl)

"GainOffset" Solve both gain and offset

(solInt, minRMS, minEl, calJy)

"Filter" Additive terms from filters residuals to the model.

(solInt, minEl)

"MultiBeam" Multibeam solution

(solInt, minEl)

38

minEl = minimum elevation (deg)

minRMS = Minimum RMS residual to solution

calJy = Noise cal value in Jy per detector

gainUse = version number of prior table (Soln or Cal) to apply, -1 is none

flagVer = version number of flagging table to apply, -1 is none

1.11.11 OTF.SelfCal

SelfCal(err, ImageInp={’Beam’: None, ’Clip’: 1e+19, ’ConvParm’:

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ’ConvType’: 3,

’Disk’: 1, ’InData’: None, ’OutName’: None, ’OutWeight’: None,

’Wt’: None, ’dec’: 0.0, ...}, CleanInp=None,

ResidCalInp={’Clip’: 1e+20, ’InData’: None, ’Model’: None,’ModelDesc’: None,

’calJy’: [1.0, 1.0], ’flagVer’: -1, ’gainUse’: -1, ’minEl’: 0.0,

’minFlux’: -10000.0, ’minRMS’: 0.0, ...},

Soln2CalInp={’InData’: None, ’newCal’: 0, ’oldCal’: -1, ’soln’: 0,

’structure’: [’Soln2Cal’, [(’InData’, ’Input OTF’), (

’soln’, ’input soln table version’), (’oldCal’,

’input cal table version, -1=none’), (’newCal’, ’output cal table’)]]})

Self calibrate an OTF

Image an OTF, optionally Clean, determine residual calibration,

apply to Soln to Cal table. If the Clean is done, then the CLEAN result is

used as the model in the ResidCal, otherwise the dirty image from Image is.

err = Python Obit Error/message stack

ImageInp = input parameter dictionary for Image

CleanInp = input parameter dictionary for Clean, "None"-> no Clean requested

May be modified to point to the result of the Image step

ResidCalInp = input parameter dictionary for ResidCal

Will be modified to give correct derived model image

Soln2CalInp = input parameter dictionary for Soln2Cal

1.11.12 CleanOTF.PClean

PClean(err, input={’BeamSize’: 0.0, ’CCVer’: 0, ’CleanOTF’: None,

’Factor’: 0.0, ’Gain’: 0.10000000000000001, ’Niter’: 100,

’Patch’: 100, ’Plane’: [1, 1, 1, 1, 1], ’autoWindow’: False,

’minFlux’: 0.0, ...})

Performs image based CLEAN

The peak in the image is iteratively found and then the beam

times a fraction of the peak is subtracted and the process is iterated.

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

CleanOTF = Input CleanOTF,

39

Niter = Maximum number of CLEAN iterations

Patch = Beam patch in pixels [def 100]

maxPixel = Maximum number of residuals [def 20000]

BeamSize = Restoring beam (deg)

Gain = CLEAN loop gain

minFlux = Minimun flux density (Jy)

noResid = If True do not include residuals in restored image

Factor = CLEAN depth factor

Plane = Plane being processed, 1-rel indices of axes 3-?

autoWindow = True if autoWindow feature wanted.

CCVer = CC table version number

1.11.13 PARCal.CleanSkyModel

CleanSkyModel(err, input={’BeamSize’: 0.0, ’CleanName’: None, \

’ConvParm’: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], \

’ConvType’: 5, ’DirtyName’: None, ’Gain’: 0.1, \

’InData’: None, ’Niter’: 100, ’PSF’: None, ’Patch’: 100, ...})

Create a CLEAN image sky model of an OTF data set

Does imaging and cleaning of specified data.

Returns an image model of the CLEAN components convolved with PSF

err = Python Obit Error/message stack

input = input parameter dictionary, for interactive use, the function input

will display the contents in human readable format.

Input dictionary entries:

InData = Python input OTF to calibrate

DirtyName = Dirty image name, None = scratch

CleanName = Clean image name, None = scratch

outDisk = Disk number for output files

PSF = Image with telescope psf

scans = scan range to image

target = list of targets to include, center will be position of first

nx = number of pixels in ’X’ = RA

ny = number of pixels in ’Y’ = dec

xCells = Cell spacing in x (asec)

yCells = Cell spacing in y (asec)

ConvType= Convolving function Type 0=pillbox,3=Gaussian,4=exp*sinc,5=Sph wave

ConvParm= Convolving function parameters depends on ConvType

Type 2 = Sinc, (poor function - don’t use)

Parm[0] = halfwidth in cells,

Parm[1] = Expansion factor

Type 3 = Gaussian,

Parm[0] = halfwidth in cells,[def 3.0]

Parm[1] = Gaussian with as fraction or raw beam [def 1.0]

Type 4 = Exp*Sinc

Parm[0] = halfwidth in cells, [def 2.0]

40

Parm[1] = 1/sinc factor (cells) [def 1.55]

Parm[2] = 1/exp factor (cells) [def 2.52]

Parm[3] = exp power [def 2.0]

Type 5 = Spherodial wave

Parm[0] = halfwidth in cells [def 3.0]

Parm[1] = Alpha [def 5.0]

Parm[2] = Expansion factor [not used]

gainUse = version number of prior table (Soln or Cal) to apply, -1 is none

flagVer = version number of flagging table to apply, -1 is none

Niter = Maximum number of CLEAN iterations

Patch = Beam patch in pixels [def 100]

BeamSize = Restoring beam (deg)

Gain = CLEAN loop gain

Window = list of Clean windows

autoWindow = True if autoWindow feature wanted.

1.11.14 PARCal.FitCal

FitCal(err, input={’BeamSize’: 0.0, \

’ConvParm’: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], \

’ConvType’: 5, ’Gain’: 0.10000000000000001, ’InData’: None, \

’Niter’: 100, ’PSF’: None, ’Patch’: 100, ’autoWindow’:False, \

’disp’: None, ...})

Image and fit a sequence of calibrator scans

Does imaging and iterative calibration of a sequence of scans on a calibrator

(Target).

Calibration is by imaging and performing a CLEAN to derive a sky model

and then subtracting the sky model from the data. An estimate of the

residual background is derived from filtering the residuals.

The number of calibration cycles is determined by the number of entries in

soln and each cycle may consist of a "Common" calibration, or a "Detector"

calibration or both.

Data are imaged as grouped in scanList, scans in each list in scanList

are imaged together

Returns an array of dict’s, one per list in scanList with

"Time" Center time in Days

"Target" Source Name

"Peak" Peak flux density

"Gauss" Gaussian parameters (major, minor axis size (asec), PA (deg))

"elOff" Offset in elevation in asec

"azOff" Offset in azimuth (actually Xel)

err = Python Obit Error/message stack

input = input parameter dictionary, for interactive use, the function input

will display the contents in human readable format.

Input dictionary entries:

InData = Python input OTF to calibrate

41

scrDisk = Disk number for scratch files

PSF = Image with telescope psf

scanList= list of lists of target/scans to be imaged together

list of forn [target, scan_1...]

disp = Image display to show final "dirty" maps

save = if True, save derived images, else delete

These will be in scrDisk with names of the form

target.+scan+.CalImage.fits

nx = number of pixels in "x" = RA

ny = number of pixels in ’Y’ = dec

xCells = Cell spacing in x (asec)

yCells = Cell spacing in y (asec)

ConvType= Convolving function Type 0=pillbox,3=Gaussian,4=exp*sinc,5=Sph wave

ConvParm= Convolving function parameters depends on ConvType

Type 2 = Sinc, (poor function - don’t use)

Parm[0] = halfwidth in cells,

Parm[1] = Expansion factor

Type 3 = Gaussian,

Parm[0] = halfwidth in cells,[def 3.0]

Parm[1] = Gaussian with as fraction or raw beam [def 1.0]

Type 4 = Exp*Sinc

Parm[0] = halfwidth in cells, [def 2.0]

Parm[1] = 1/sinc factor (cells) [def 1.55]

Parm[2] = 1/exp factor (cells) [def 2.52]

Parm[3] = exp power [def 2.0]

Type 5 = Spherodial wave

Parm[0] = halfwidth in cells [def 3.0]

Parm[1] = Alpha [def 5.0]

Parm[2] = Expansion factor [not used]

gainUse = version number of prior table (Soln or Cal) to apply, -1 is none

flagVer = version number of flagging table to apply, -1 is none

Niter = Maximum number of CLEAN iterations

Patch = Beam patch in pixels [def 100]

BeamSize = Restoring beam (deg)

Gain = CLEAN loop gain

autoWindow = True if autoWindow feature wanted.

solInt = solution interval (sec)

solType = solution type:

"Common" solve for common mode.additive effects on timescales longer

than solInt

"Detector" Solve for detector additive terms on timescales longer

than 3 * solInt

"Both" Both Common and Detector solutions each calibration cycle

soln = list of solution intervals, one cycle per interval

NO value should be less than solInt

42

1.11.15 PARCal.InitCal

InitCal(inData, targets, err, flagver=1, CalJy=[38.5], BLInt=30.0, \

AtmInt=20.0, tau0=0.10000000000000001, PointTab=None, \

prior=None, PSF=None)

Initial calibration of Mustang (PAR) data

Any prior calibration tables are removed and then does the following:

1) Generate an initial Cal table with a time increment of 1/4 of the

lesser of BLInt and AtmInt

2) Gain and Weight calibration, conversion to Jy uses CalJy

CalJy can contain either a single value for all detectors or

one value per detector. This is the value of the cal in Jy.

3) a "Baseline" per detector offsets on timescales longer than BLInt

are determined and applied

4) "Atmosphere" calibration determining one offset per detector per scan

and a common mode offset on time scales longer than AtmInt.

Opacity corrections are based on tau0 (zenith opacity in nepers)

5) If PointTab is specified, pointing corrections are applied.

When the procedure is finished, data cal be calibrated using the highest

Cal table.

If prior is given it is a Clean image if the target to be subtracted

prior to the Baseline and Atmosphere calibration.

Note: this only makes sense when all targets are covered by prior.

If this option is used the instrumental PSF must also be provided in PSF.

inData = OTF data set to be calibrated

targets = list of target names, empty list = all

err = Python Obit Error/message stack

flagver =

CalJy = Array of the cal in Jy. CalJy can contain either a single value

for all detectors or one value per detector.

BLInt = Baseline filter shortest timescale in sec

AtmInt = Atmospheric filter shortest timescale in sec

tau0 = zenith opacity in nepers

this can be either a scalar constant opacity, or a table in the form

of a list of lists of time (days) and opacity, e.g.:

PointTab= a table of pointing offsets in time order

[time(day) d Xel (asec), d el (asec)]

Such a table can be generated from a dataset by FitCal

prior = If given, a CLEAN image covering all targets given,

This model will be subtracted from the data prior to

"Baseline" and "Atmosphere" calibration

If this option is used the instrumental PSF must also be provided

in PSF.

PSF = If prior is given, this is the instrumental PSF to use in the

subtraction.

43

1.11.16 PARCal.PlotData

This describes the plplot implementation.

PlotData(inData, targets, scans, feeds, err, output=’None’, \

bgcolor=0, nx=1, ny=1)

Plot selected OTF data

Plot data in inData selected by targets and scans

inData = OTF data set to be plotted, any calibration and editing will be applied

targets = list of target names, empty list = all

scans = Range of scan number, 0’s => all

feeds = list of feeds to plot

err = Python Obit Error/message stack

output = name and type of output device:

"None" interactive prompt

"xwin" X-Window (Xlib)

"gcw" Gnome Canvas Widget (interacts with ObitTalk)

"ps" PostScript File (monochrome)

"psc" PostScript File (color)

"xfig" Fig file

"png" PNG file

"jpeg" JPEG file

"gif" GIF file

"null" Null device

bgcolor = background color index (1-15), symbolic names:

BLACK, RED(default), YELLOW, GREEN,

AQUAMARINE, PINK, WHEAT, GRAY, BROWN,

BLUE, BLUEVIOLET, CYAN, TURQUOISE,

MAGENTA, SALMON, WHITE

nx = Number of horizontal subpages

ny = Number of vertical subpages

44

