
ObitTalk User Documentation

Obit: Merx mollis mortibus nuper

Version: 2.0 April 22, 2025

Abstract
This documents describes the ObitTalk interface to AIPS and Obit Software. ObitTalk is

a python package which allows running AIPS and Obit tasks and scripts and direct access to
astronomical data using Obit. Obit implements multiple data types, currently AIPS and FITS
data. Most of the material in this document is also available in the on–line documentation. This
document assumes familiarity with python and with AIPS and radio astronomical techniques. The
difference with AIPS and POPS usage is explained.

1

Contents

1.1 Introduction . 5
1.2 Obtaining Software . 5
1.3 Starting ObitTalk . 6

1.3.1 AIPS Setup . 6
1.3.2 Startup Script . 7

1.4 Object–orientation for POPS users . 8
1.4.1 Data objects . 8
1.4.2 Tasks . 9
1.4.3 functions = verbs . 12

1.5 ObitView Image Display . 12
1.6 ObitMess Task Message Display . 15
1.7 ObitTalk Basics . 16

1.7.1 Tasks . 17
1.7.2 Asynchronous Tasks . 20
1.7.3 Disk Numbers and Task Executation . 21
1.7.4 Scripts . 21
1.7.5 Task logs . 21
1.7.6 ObitTalk/Obit routines . 21
1.7.7 Messages and error handling . 22
1.7.8 Lock and Parameter Files . 22
1.7.9 Modifying Data Headers . 23
1.7.10 Object parameter lists . 25
1.7.11 Accessing UV Data . 26

1.8 Parallel Processing . 28
1.8.1 Multi–threading . 29
1.8.2 GPU . 29
1.8.3 Cluster Nodes . 29

1.9 Examples . 29
1.9.1 Display AIPS Catalog . 29
1.9.2 Create Python Image Object . 29
1.9.3 Display Data Header . 29
1.9.4 Display an Image . 30
1.9.5 Image Pixel Access . 30
1.9.6 Run an AIPS task . 31
1.9.7 Run an Obit task (FndSou) . 32
1.9.8 Table Access (print contents of VL table) . 34
1.9.9 Table Row Data . 34
1.9.10 Writing to a History . 35
1.9.11 Modify Visibility Data . 35

2

1.9.12 Write Quantized FITS image . 37
1.9.13 Subtract a CLEAN model from UV Data . 37
1.9.14 Image Gaussian Fitting . 38

1.10 Radio Interferometry Applications . 40
1.10.1 Calibration and Imaging Pipelines . 41
1.10.2 Importing Data into AIPS Format . 41
1.10.3 Data Editing . 41
1.10.4 Calibration . 42
1.10.5 Imaging . 43
1.10.6 Image Manipulation . 44

1.11 Obit classes and utility packages with python interfaces 44
1.12 OTObit Functions . 46

1.12.1 AIPSHelp . 46
1.12.2 AllDest . 46
1.12.3 AMcat . 47
1.12.4 AUcat . 47
1.12.5 Acat . 47
1.12.6 ClearErr . 48
1.12.7 Fdir . 48
1.12.8 ObitHelp . 48
1.12.9 PrintHistory . 48
1.12.10ShowErr . 49
1.12.11alldest . 49
1.12.12altswitch . 49
1.12.13 clearstat . 49
1.12.14 copyInputs . 49
1.12.15day2dhms . 50
1.12.16dhms2day . 50
1.12.17 explain . 50
1.12.18getFITS . 50
1.12.19getname . 50
1.12.20go . 50
1.12.21 imhead . 51
1.12.22 imlod . 51
1.12.23 imstat . 51
1.12.24 imtab . 52
1.12.25 inputs . 52
1.12.26newDisplay . 52
1.12.27 setname . 52
1.12.28 set2name . 52
1.12.29 set3name . 53
1.12.30 set4name . 53
1.12.31 setoname . 53
1.12.32 setwindow . 53
1.12.33 tabdest . 53
1.12.34 tget . 54
1.12.35 tput . 54
1.12.36 tvlod . 54

3

1.12.37 tvstat . 54
1.12.38uvTabSave . 55
1.12.39uvlod . 55
1.12.40uvtab . 55
1.12.41window . 56
1.12.42 zap . 56

1.13 OTObit Data . 56
1.14 Remote Usage . 56

1.14.1 ObitTalkServer . 57
1.14.2 Remote data directories . 57
1.14.3 ObitScript class . 58

1.15 Local Python Data Interface Classes . 63
1.15.1 Obit python Image class . 64
1.15.2 Obit python UV class . 79
1.15.3 Obit python OTF class - now defunct . 97
1.15.4 Obit python Table Class . 112

1.16 ObitTalk Data Classes . 117
1.16.1 AIPSUVData . 117
1.16.2 AIPSImage . 119
1.16.3 FITSUVData . 121
1.16.4 FITSImage . 122

4

1.1 Introduction

ObitTalk is derived from the ParselTongue project at JIVE and provides a scripting and interactive
command line interfaces to astronomical data and processing software. In particular, AIPS and
FITS data structures as used in the AIPS and Obit software packages are supported as well as
AIPS tasks and Obit tasks and other python enabled software.

Obit is intended as an environment optimized for the development and evaluation of new data
processing algorithms. As such, it is not a full featured data processing system. However, with the
interoperability of Obit and AIPS, the ObitTalk interface to both Obit and AIPS does present the
user with a full featured data processing environment for radio interferometry. This utility package
facilitates the access to data and images from python as well as various interactive features. The
details of the functions in this package are given later. Many of these functions have equivalents in
POPS although adapted to python.

AIPS tasks will use the AIPS XAS TV which must be started separately. Obit tasks and
ObitTalk use the ObitView image display and/or the ObitMess task message server each of which
must also be started independently. If AIPS is not available, ObitTalk still can work using FITS
or AIPS files.

ObitTalk can start tasks or scripts either locally or on a remote machine which has an ObitTalk-
Server process running. Some remote data access is supported through the AIPSUVData, AIPSIm-
age, FITSUVData and FITSImage classes. Currently other python functions only work interactively
locally or remotely using the ObitScript class.

Tasks, scripts and more detailed access to and manipulation of data are available. These are
described briefly below and methods of obtaining more detailed descriptions are described.

This document contains both tutorial and reference material. New users should read the first
few sections; later sections are mostly for reference.

1.2 Obtaining Software

Obit and related software is available from http://www.cv.nrao.edu/∼bcotton/Obit.html. The sim-
plest installation is to Linux binary version which can be obtained from https://www.cv.nrao.edu/ bcot-
ton/ObitBin/index.html. The binary distribution is a tarball that can be unpacked, added to your
$PATH and directly executed. An updated build–from–source installation is currently (Apr 2025)
under development. Obit depends heavily on third party software which is described on the Obit
page. Support of the Obit package is extremely limited. The components of the Obit/ObitTalk
package are:

• Obit
Basic Obit package and the support for radio interferometry

• ObitView
Image display used by Obit.

• ObitMess
Task message display server used by ObitTalk.

• ObitTalk
Scripting and interactive interface to Obit software. There is also an ObitTalk3 which ex-
plicitly uses python 3. The distributed version was build for python3.6. If your version is
more recent you will need to rename share/python/ Obit.cpython-36m-x86 64-linux-gnu.so
to share/python/ Obit.so.

5

1.3 Starting ObitTalk

The operation of ObitTalk is influenced by the values of a number of environment variables to
specify the locations of directories with python modules, data directories and Obit and AIPS
task documentation and executable files. Some of these are set to standard values by the ObitTalk
startup script. Obit related values may be set by the ObitTalk script used by the binary installation.
If the AIPS shell variables AIPS ROOT and AIPS VERSION are previously set by an AIPS startup
script no further action needs to be taken to use AIPS. If you wish to use python modules not in
one of the standard locations, set PYTHONPATH to include the directories. For example, using
tcsh and setting PYTHONPATH to use modules in both directories pointed to by myPython1 and
myPython2:

% setenv PYTHONPATH "$myPython1":"$myPython2"

Custom setups can be implemented using an ObitTalk startup script as discussed below.
If you wish to use the ObitView image display or the ObitMess task message window, you can

start them before ObitTalk. If ObitView is in your path:

% ObitView &

will start the display server. If this fails to start the display, see the discussion of ObitView below.
ObitMess can be started in the same fashion; see sections 1.5 and 1.6 for more details.

Then, if the script ObitTalk (or ObitTalk3) is in your path:

% ObitTalk3 [scriptname]

should start the python3 version ObitTalk.
If the environment variables AIPS ROOT and AIPS VERSION are defined, or an .obitrc.py

startup script file is found defining them, ObitTalk will make AIPS tasks and data available. If the
optional scriptname is given, then the python interpreter will do some simple AIPS initialization
and execute the python script “scriptname”. If no script is specified then ObitTalk will ask for your
AIPS number and do its AIPS initialization (if AIPS is available) and go into an interactive python
session. Outside of the NRAO, AIPS user numbers are relatively arbitrary and can be used to
separate different projects. Note: AIPS number 1 is a bad idea if you plan on using AIPS/POPS.
The python prompts are:

>>>

1.3.1 AIPS Setup

Obit can use AIPS format data whether or not AIPS is available; most operations involving visibility
data are more efficient using AIPS than FITS format. In order to use AIPS format, AIPS directories
are needed. Purely Obit use of AIPS format places no restrictions on these directories but AIPS
use requires a SPACE file. To create a directory for AIPS data in /export/data/DATA 1:

% mkdir /export/data/DATA_1

% touch /export/data/DATA_1/SPACE

The names of the AIPS directories must be provided either using the AIPS or Obit startup scripts.
In order to run AIPS tasks, the location of the AIPS help and executable files needs to be

specified; these are under $AIPS ROOT/$AIPS VERSION. This definition can be done in either
standard AIPS setup scripts or in the Obit startup script (see next section). Furthermore, AIPS
tasks read their parameters from a file named $DA00/TDD000004;. The path $DA00 needs to be
provided either by the AIPS or the Obit Startup scripts.

6

1.3.2 Startup Script

When ObitTalk starts, it looks for a startup script named .obitrc.py in either the users home di-
rectory or the current working directory (the latter has priority). If found, it is executed as python
code. This can be used to define the AIPS and Obit setups and can be used in the absence of AIPS
startup scripts. The following startup script fragment shows how to define AIPS tasks and data,
Obit tasks and FITS data directories. This can be used to define both local and remote data direc-
tories; see section 1.14.2 for a discussion of defining data directories on remote systems. Example
startup scripts can be found in $OBIT/share/scripts/obitrc.py, /usr/share/obit/scripts/obitrc.py,
or dot.obitrc.py in the top level of the binary distribution.

Startup script

print ("Executing startup script ")

import ObitTalkUtil

###################### Define ###################################

Define AIPS_ROOT and AIPS_VERSION for access to AIPS Software

AIPS_ROOT = "/export/data_1/users/aips/"

AIPS_VERSION = "31DEC23/"

Define directory for AIPS TDD000004; file

DA00 = "/export/data/aips/DA00/SMEAGLE/"

Define OBIT_EXEC for access to Obit Software

OBIT_EXEC = None # (def /usr/lib/obit/bin)

OBIT_EXEC = "/export/data_1/users/bcotton/Git/Obit/ObitSystem/Obit/"

Define AIPS directories (URL, disk name)

URL = None for local disks

aipsdirs = [\

(None, "/export/data_1/aips/DATA/SMEAGLE_1"), \

(None, "/export/data_1/aips/DATA/SMEAGLE_2"), \

(None, "/export/data_1/aips/DATA/SMEAGLE_3"), \

(None, "/export/data_2/aips/DATA/SMEAGLE_4")]

Define FITS directories (URL, disk name)

URL = None for local disks

fitsdirs = [\

(None, "/export/data_1/users/bcotton/Software.dir/AIPS/FITS")]

setup environment

ObitTalkUtil.SetEnviron(AIPS_ROOT=AIPS_ROOT, AIPS_VERSION=AIPS_VERSION, \

OBIT_EXEC=OBIT_EXEC, DA00=DA00, ARCH="LNX64", \

aipsdirs=aipsdirs, fitsdirs=fitsdirs)

Make sure AIPS Tasks enabled

if ’LD_LIBRARY_PATH’ in os.environ:

os.environ[’LD_LIBRARY_PATH’]+=’:’+os.environ[’AIPS_ROOT’]+\

os.environ[’AIPS_VERSION’]+os.environ[’ARCH’]+’/LIBR/INTELCMP/’

else:

os.environ[’LD_LIBRARY_PATH’] = os.environ[’AIPS_ROOT’]+\

7

os.environ[’AIPS_VERSION’]+os.environ[’ARCH’]+’/LIBR/INTELCMP/’

List directories

ObitTalkUtil.ListAIPSDirs()

ObitTalkUtil.ListFITSDirs()

Any other customization goes here

1.4 Object–orientation for POPS users

Many of the differences between AIPS/POPS and ObitTalk are because the latter is generally
object–oriented. “Object–oriented” in this context means little more than variables are more
substantial than the floats and strings and simple arrays of POPS variables (although these also
exist). A python (hence ObitTalk) variable is a relatively arbitrary thing and can be a scalar
number, string, an array or list of variables or the interface to a dataset such as an image or uv
data.

In ObitTalk, the interface to a data set is assigned to a variable and this variable is used to
specify operations in a way not very different from INNAME, INCLASS, INDISK, INSEQ ... are
used to specify a dataset in POPS. This allows having an arbitrary number of such data objects
while avoiding the conflicts in usage of INNAME... in POPS.

The usual object–oriented syntax is that “class methods” (functions which can operate on an
object) are invoked like this:

>>> object.function(arguments)

where “object” is the python object, “function” is the function name and arguments are the addi-
tional arguments, the object is implicitly an argument, by convention called “self” in python. In
python documentation of function interfaces, “self” appears as the first argument of the function
although it is invoked as shown above. As a convenience to POPS users many of these functions
are also implemented in the more traditional procedural form, for instance, the following produce
the same result:

>>> myTask.explain()

or

>>> explain(myTask)

1.4.1 Data objects

ObitTalk uses Obit to access the external (i.e. disk) representations of datasets and Obit allows
multiple “native” data representations. At present AIPS and FITS (as practiced by AIPS) external
representations are supported. (Note, the old style random groups FITS for UV data as written by
AIPS task FITTP is NOT supported but the tables format written by FITAB is.) The distinction
between external representations is largely hidden except for the process of creating (“instantiation”
in computerese) the interface object in which its representation must be specified. For example, to
create an interface object to an AIPS image described by the strings Aname (AIPS Name), Aclass
(AIPS class), and integers disk (AIPS disk number) and seq (AIPS sequence number):

>>> myImage=Image.newPAImage(‘‘myImage’’, Aname, Aclass, disk, seq, exists, err)

where exists is True if the image is expected to previously exist and False otherwise. Messages and
error conditions are registered in err (defined at ObitTalk startup) and any error messages can be
viewed by:

8

>>> ShowErr(err)

Thereafter the variable myImage is used to access the AIPS image but beyond this point, it is
largely irrelevant if the underlying file is an AIPS or FITS (or other) format. For instance, the
header can be displayed:

>>> imhead(myImage)

Object: J0555+39

Observed: 2001-01-25 Telescope: VLBA Created: 2006-04-18

Observer: BC111 Instrument: VLBA

Minimum = -7.5144e-06 Maximum = 1.5197e-05 JY/BEAM

--

Type Pixels Coord value at Pixel Coord incr Rotat

RA---SIN 164 5 55 30.80561 78.00 -5e-05 0.00

DEC--SIN 167 39 48 49.1650 87.00 5e-05 0.00

STOKES 3 IPol 1.00 1 0.00

FREQ 1 4.2826e+10 1.00 4e+06 0.00

--

Coordinate equinox 2000.0 Coordinate epoch 2000.00

Observed RA 5 55 30.80561 Observed Dec 39 48 49.1650

no. Comp 200

Clean Beam 0.001 x 0.001 asec, PA 0.0 deg.

Rest freq 0 Vel type: LSR, wrt radio

Alt ref value 0 wrt pixel 1.00

In this sense, objects can have members (other objects) or functions which operate on the
object. For instance, the “header” of myImage which is referred to as an ImageDescriptor in
ObitTalk is referenced as myImage.Desc and the function which destroys the object as well as its
external representation is myImage.Zap() (functions are denoted with parenthess even if there are
no arguments. Note the names of variables are arbitrary and “myImage” could as well be “Judy”
and are used in error and other informative messages.

Local disk numbers in AIPS data files have the same meaning as in POPS. FITS disk numbers
correspond to the directories pointed to by the environment variables $FITS, $FITS01, $FITS02....
FITS disk 0 has a special meaning in which the filename is either relative to the current working
directory or a full path to the file. Disk numbers may also be defined on remote computers.

1.4.2 Tasks

An important type of object in ObitTalk is the Task object. This object defines the interface to
tasks (parameters, documentation, etc.) Currently, interfaces to AIPS tasks and Obit tasks are
supported. Tasks have the same meaning as in POPS and are programs that run independently of
the python process and are generally compiled Fortran or C programs. In order to run a task, a
task object is first created; at this point AIPS or Obit needs to be specified but after the object
is created the type of task is relatively minor. One difference between POPS and python is that
the final single quote around a POPS string causes it to be converted to upper case whereas no
case conversion is done in python. If you want a AIPS file name or class which contains upper case
letters, you must type it that way. Tasks may have output as well as input parameters.

If tasks are run synchronously (using the task obj.go() syntax), a python RunTime exception
will be thrown if the task finishes in other than a normal completion, either detects an uncorrectable
problem or aborts. In any mode of running an Obit task, the output parameter “retCode” will

9

have a value of 0 if the task terminated normally without detecting a problem and -1 otherwise.
Note: this value will be -999 during the task execution.

Tasks functions

There are a number of common task functions which can be invoked from a task object. These
functions also have a short version to simplify typing. For example:

>>> myTask.i

is equivalent to

>>> myTask.inputs()

These common task functions and the short form are explained in the following:

• inputs (short i)
This function is to list the current values of the tasks input parameters with a short descrip-
tion.

• outputs (short o)
This function is to list the current values of the tasks output parameters with a short descrip-
tion.

• help (short h)
This function is to list the help documentation for the task.

• explain (short e)
This function is to list any extended documentation for the task.

• go (short g)
This function starts the task in synchronous mode using the current input parameters.

• abort (short a)
This function aborts the task. A “Control C” while running a task synchronously has the
same effect.

• wait (short w)
This function suspends operations pending the completion of the task.

Arrays in AIPS Tasks

The main difference between Obit and AIPS tasks as well as a major difference between POPS and
python is that array indexing in POPS arrays is one relative whereas in python indexing is zero
relative. In other words, the first element of array parm in POPS is parm(1) and in python it is
parm[0] (also note the parentheses and square brackets). Since the AIPS documentation describes
array values by their one relative indices, using zero relative addressing is a serious potential source
of trouble; aparm(3) in POPS is aparm[2] in python. To avoid this problem, ObitTalk adds a
extra, unused, element at the beginning of each array to keep the indexing consistent with AIPS
documentation. To enforce this scheme, ObitTalk does not allow you to modify the first element of
an array. This causes an additional problem, that you cannot set a AIPS task array parameter as:

>>> AIPStaskObj.ArrayParm = [1,2,3,4] # Fails

Instead, there are two options, using slicing of the parameter array:

>>> AIPStaskObj.ArrayParm[1:] = [1,2,3,4] # OK

10

or using the AIPSList class:

>>> AIPStaskObj.ArrayParm = AIPSList([1,2,3,4]) # OK

Multidimensional arrays can be set

>>> AIPStaskObj.Array2DParm = AIPSList([[1,2,3,4],[5,6,7,8]]) # OK

(Note the double square brackets).

Arrays in Obit Tasks

Arrays in Obit task array parameters have zero–relative indexing so statements like

>>> ObitTaskobj.ArrayParm = [1,2,3,4] # OK

work as expected.

Examples

An example of creating a task object named im to run AIPS task IMEAN is:

>>> im=AIPSTask("IMEAN")

The parameters of the task can then be set:

>>> im.inname=’07030+51396’; im.inclass=’PCUBE’; im.indisk=1; im.inseq=2

>>> im.BLC=AIPSList([10,10]); im.TRC=AIPSList([100,100])

The Inputs can be reviewed:

>>> im.i

IMEAN: Task to print the mean, rms and extrema in an image

Adverbs Values Comments

--

dohist -1.0 True (1.0) do histogram plot.

= 2 => flux on x axis

userid 0.0 User ID. 0=>current user

32000=>all users

inname 07030+51396 Image name (name)

inclass PCUBE Image name (class)

inseq 2.0 Image name (seq. #)

indisk 1.0 Disk drive #

blc 10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0 Bottom left corner of image

0=>entire image

trc 100.0, 100.0, 0.0, 0.0, 0.0, 0.0, 0.0 Top right corner of image

0=>entire image

nboxes 0.0 No. of ranges for histogram.

pixrange 0.0, 0.0 Min and max range for hist.

functype ’LG’ => do log10 plot of #

samples, else linear

pixavg 0.0 Estimate of mean noise value

pixstd 0.0 Estimate of true noise rms

< 0 => don’t do one

= 0 => 2-passes to get

docat 1.0 Put true RMS in header

ltype 3.0 Type of labeling: 1 border,

2 no ticks, 3 - 6 standard,

11

7 - 10 only tick labels

<0 -> no date/time

outfile Name of output log file,

No output to file if blank

dotv -1.0 > 0 Do plot on the TV, else

make a plot file

grchan 0.0 Graphics channel 0 => 1.

and the task run:

>>> im.g

IMEAN2: Task IMEAN (release of 31DEC02) begins

IMEAN2: Initial guess for PIXSTD taken from ACTNOISE inheader

IMEAN2: Image= 07030+51396 .PCUBE . 2 1 xywind= 1 1 241 241

IMEAN2: Mean and rms found by fitting peak in histogram:

IMEAN2: Mean=-3.1914E-06 Rms= 2.7893E-04 **** from histogram

IMEAN2: Mean and rms found by including all data:

IMEAN2: Mean= 1.8295E-05 Rms= 5.2815E-04 JY/BEAM over 174243 pixels

IMEAN2: Flux density = 2.0006E-01 Jy. beam area = 15.93 pixels

IMEAN2: Minimum=-1.5441E-03 at 164 180 1 1

IMEAN2: Skypos: RA 07 02 04.303 DEC 51 51 23.18

IMEAN2: Skypos: IPOL 1400.000 MHZ

IMEAN2: Maximum= 4.0180E-02 at 93 159 1 1

IMEAN2: Skypos: RA 07 03 36.211 DEC 51 47 11.65

IMEAN2: Skypos: IPOL 1400.000 MHZ

IMEAN2: returns adverbs to AIPS

IMEAN2: Appears to have ended successfully

IMEAN2: smeagle 31DEC06 TST: Cpu= 0.0 Real= 0

1.4.3 functions = verbs

In addition to tasks, ObitTalk allows POPS verb–like functionality by means of functions using
data interface objects. This allows access to headers, data values and unlike POPS, access to
much of the high level functionality in the Obit class libraries as well as all of the functionality
of python. Numerous operations which in POPS require tasks can be performed by ObitTalk
functions. Examples are the conversions between AIPS and FITS types (functions imlod, uvlod,
imtab, uvtab). Much of the POPS functionality is implemented in ObitTalk functions.

1.5 ObitView Image Display

While AIPS tasks can use the AIPS TV, the image display used by ObitTalk and Obit tasks is
ObitView which is run as an independent program. ObitView can be used as an image browser
independently of ObitTalk. To display image myImage on a running ObitView simply:

>>> tvlod(myImage)

A screen shot of the ObitView window is shown in Figure 1.1.
ObitView uses the xmlrpc protocols to communicate between tasks and as such allows com-

munication between different computers by means of the internet. Parts of this protocol involve
fixed port numbers which means that only a single ObitView can run on a given computer using a
given port number. An attempt to start a second will fail with a “can’t bind” message. By default

12

Figure 1.1: Screenshot of ObitView window.

port 8765 is used but others may be used as well. For instance to use port 8888, start ObitView as
follows

% ObitView -port 8888 &

Then ObitTalk can be told to use this port by:

>>> newDisplay(8888)

Obit tasks which use the display have a parameter dispURL which should be set to
”http://localhost:8888/RPC2” to use the new display.

If the display is running on a machine on which the data is not visible, use “http://myhost:port/RPC2”
where myhost is the network name and port is the port number (usually 8765), Example, to set
the display on a task object named task:

>>> task.dispURL="http://canis.cv.nrao.edu:8765/RPC2"

When a remote process displays on an ObitView display, it first copies the image as a compressed
FITS image to the display which saves the file in its current working directory as ObitDisplay-
FITS.fits.gz. It is useful to start ObitView from a directory where it is both possible and desirable
to write these temporary files.

If there is trouble connecting to the display server port (e.g. firewall, address translation) and
you have ssh login access between the relevant hosts then it is possible to use ssh port forwarding
through the secure connection. From the command shell on the client side (as seen by ObitView)
issue:

% ssh -L localport:host:hostport user@host

where localport is the local port number (typically 8765 for ObitView), host is the host on which
the ObitView process is running and host port is the port on host that the target ObitView is

13

watching. Then, give the task or ObitTalk on the client end (again as seen by ObitView) a url for
itself other than localhost; this will cause the file to be transmitted. For instance if the result of
the shell “hostname” command is “smeagle” create an ObitTalk display:

>>> newDisplay(URL="http://smeagle:8765/RPC2")

A tvlod should then cause to image to be displayed on the host specified in the ssh command.
ObitView is used by ObitTalk and Obit tasks to display images and perform some interactive

operations such as specifying CLEAN boxes. ObitView gives much more control over the display
of an image than is possible in the AIPS TV. Once an image is loaded, all of the display controls
are available; there is extensive online help.

When an interactive CLEAN box or other window setting session begins, a RequestBox dialog
appears with the image displayed overlaid by the current CLEAN window; instructions are given
in a text box. The radio buttons at the top of this dialog specify what action is to be taken by
the calling program when the “OK” button on the bottom is hit and the calling program resumes.
These options are:

• Continue
Continue with the edited window.

• Abort
Shutdown immediately.

• Quit Operation
Terminate the current operation and continue/shutdown in an orderly fashion. For a simple
CLEAN, this means stop the clean here and do whatever component restoration/flattening
operations were requested. If this command is given in a CLEAN as part of a self–calibration
cycle, the current CLEAN is terminated and the self–calibration continues. If this command
is given at the end of a self–calibration cycle then the self-calibration proceeds as if it were
converged.

• Turn Off TV
No more displays of the image. Inside a CLEAN this causes no more displays during the
current CLEAN but this does not affect displays in some outer operation (e.g. self calibration).
If the TV display is turned off in one CLEAN of a self–calibration loop then it is turned off
in subsequent CLEANs.

• View Field
If the image is a multi–facet image, then the display (with possible editing of its CLEAN
window) of another facet is requested by this option and the facet number (1-relative) entered
in the text box labeled “Request field”

If editing of the window displayed is desired, then the “Clear” button deletes the current
window (not normally needed or desired) and the “Edit” button puts the display in window editing
mode. The message dialog appears with detailed instruction about editing. There are several types
of boxes used by Obit CLEANing and these are shown in different colors (subject to some user
selection). Not all types are always used. The types of CLEAN boxes are:

• “Inner” boxes
These are the traditional CLEAN window boxes specifying the regions in which components
may be selected.

14

• “Inner” unboxes
Specifies regions in which components are NOT to be selected. Used in the autoCenter mode.
Takes precedent over overlapping Inner boxes.

• “Outer” boxes
Specifies regions inside of which the autoWindow algorithm is allowed to place Inner boxes.
For multi–facet images these generally correspond to the region of the facet to be used when
the image is flattened. These are not editable.

Editing of the displayed CLEAN window is performed by a combination of mouse motions,
clicks and keyboard characters (either case) as described in the informational text box:

• e/E: Create a new rectangular window with the bottom left corner near the current position
of the mouse pointer. Left mouse clicks will cause this corner to move to the current pointer
location.

• f/F: Create a new circular window with the center at the current position of the mouse
pointer. Left mouse clicks will cause the center to move to the current pointer location.

• a/A: Switch between corners for rectangular boxes or center/radius for circular boxes. Left
mouse clicks and movement of the pointer will move the corner or center/radius of the current
CLEAN box.

• c/C: Stop editing the current box. A new box can be specified with a left mouse click with
the pointer near the corner/center/radius of an existing box to be modified.

• b/B: Deletes the current box.

• g/G: Toggles the current box between box and unbox; the color should change.

• d/D: Exits editing mode.

When all editing of the window is complete, the “OK” button with “Continue” selected causes
the calling program to resume with the specified operation and the edited window. The “Cancel”
button is like “OK” except that any editing of the window is discarded.

The program timeout (length of time ObitView will wait before sending a program the default
response, i.e. “Continue”) can be set using the “Options” menu. The default timeout is infinite
but can be specified to a finite period. The actual minimum is 5 seconds to give time to actually
respond interactively and any activity on the editing dialog disables the timeout for that instance.

1.6 ObitMess Task Message Display

The ObitMess server is used in order to display task messages and to provide user input for tasks
running asynchronous. Use of this faculity is described in Section 1.7.2. To be used in an ObitTalk
session, is must be started independently.

Like ObitView, ObitMess uses the xmlrpc protocols to communicate with ObitTalk and as such
allows communication between different computers by means of the internet. Parts of this protocol
involve fixed port numbers which means that only a single ObitMess can run on a given computer
using a given port number. An attempt to start a second will fail with a “can’t bind” message.
By default port 8777 is used but others may be used as well. For instance to use port 8889, start
ObitMess as follows

15

% ObitMess -port 8889 &

Then ObitTalk can be told to use this port when starting a task (myTask) by:

>>> tw=go(mytask, URL="http://localhost:8889/RPC2")

If there is trouble connecting between ObitTalk and the message server port (e.g. firewall,
address translation) and you have ssh login access between the relevant hosts then it is possible to
use ssh port forwarding through the secure connection. From the command shell on the client side
(as seen by ObitMess) issue:

% ssh -L localport:host:hostport user@host

where localport is the local port number (typically 8777 for ObitMess), host is the host on which
the ObitMess process is running and host port is the port on host that the target ObitMess is
watching.

When ObitMess is started a window will appear with the label “Obit task message server” and
a Quit button. Additional windows will be produced as needed. Only hit the “Quit” button when
you are through with the message server.

1.7 ObitTalk Basics

Obit consists of class libraries and a number of prepackaged tasks similar to AIPS tasks. The
classes are implemented in c but there are python bindings to much of the high-level functionality
allowing python scripts a high degree of flexibility in accessing and manipulating data. ObitTalk
can execute Obit Tasks, Scripts and functions as well as AIPS tasks but not POPS verbs.

Obit can support multiple physical data formats as long as they are uniquely mapable to a
common data model. Above a data access level, the underlying physical data representation is
(mostly) hidden. Currently, AIPS and FITS (as practiced by AIPS) are supported. AIPS and Obit
tasks (mostly) are completely interoperable and may be mixed.

Data objects generally have a “descriptor” member, e.g. each Image has an ImageDesc giving
the “header” information. These can be accessed by conversion to and from a python dict (dictio-
nary) in the relevant Descriptor class function. An example of an AIPS image in catalog slot 2 of
AIPS disk 2:

>>> indisk=2

>>> image=getname(2,indisk)

>>> dict = image.Desc.Dict

Or, the function Header will display the contents in a human readable form:

>>> image.Header()

Note: function imhead(image) is a different path to the same end.
Catalogs in AIPS data directories can be viewed using the functions Acat(), AMcat(), AUcat()

for all, image and uv entries; there are numerous optional arguments an explaination of which can
be obtained by

>>> help(Acat)

Acat(disk=None, first=1, last=1000, Aname=None, Aclass=None, Aseq=0, giveList=False)

Catalog listing of AIPS files on disk disk

The class remembers the last disk accessed

Strings use AIPS wild cards:

blank => any

’?’ => one of any character

16

"*" => arbitrary string

If giveList then return list of CNOs

disk = AIPS disk number to list

first = lowest slot number to list

last = highest slot number to list

Aname = desired AIPS name, using AIPS wildcards, None -> don’t check

Aclass = desired AIPS class, using AIPS wildcards, None -> don’t check

Aseq = desired AIPS sequence, 0=> any

giveList = If true, return list of CNOs matching

Directories in FITS “disks” can be displayed by Fdir

>>> help(Fdir)

Fdir(disk=None, dir=None)

Catalog listing of FITS files on disk disk

The class remembers the last disk accessed

disk = AIPS disk number to list

dir = relative or abs. path of directory, def. = cwd

Only used if disk == 0

1.7.1 Tasks

Following are lists of tasks available through ObitTalk.
AIPS Tasks

• All AIPS tasks

Obit Tasks Some potentially useful Obit tasks include the following:

• AutoFlag Radio interferometry data editing software

• BPass Simple UV bandpass calibration

• Calib Calibrate visibility data (amp & phase)

• CLCal Apply gain solutions to a CL table

• Convol Convolve images

• CubeClip Remove insignificant pixels from 3D cube

• CubeVel Flux weighted velocity image from 3D cube

• Feather Task to feather together images

• FndSou Task to generate a source catalog from an image

• GetJy Determine calibrator flux densities

• HGeom Task to make an image consistent with another image

• IDIin Read IDI format UV data (BLBA)

• IDIout Write IDI format UV data

17

• Imager Radio interferometry imaging task

• Lister Listing of data and calibration tables

• MapBeam Map beam polarization

• MCube Task to accumulate image planes into a cube

• MednFlag Automated UV flagging about a median value

• MFImage Wideband imaging

• noFQId Set FqIDs in continuum data to 1

• Quack Flags specified portion of scans of UV data

• SCMap Interferometry self calibration imaging

• SetJy Modify SoUrce (SU) table

• SNCor Modify visibility gain (AIPS SN) table

• SNFilt Fits for instrumental phases in SN table.

• SNSmo Smooth visibility gain (AIPS SN) table

• Split Split multi–source UV data to single source

• Splat Copy multi–source UV data with calibration/selection

• SplitCh Split UV data to multiple channels

• Squish Compress image cube along third axis

• SubImage Task to copy a sub region of an image

• TabCopy Task to one or more tables

• Template Task to print the mean, rms and extrema in an image

• UVBlAvg Baseline dependent time and/or frequency averaging

• UVCopy Copy UV data

• UVPolCor Correct off-axis instrumental polarization in UV data

• UVSim Simulate UV data

• UVSub Task to subtract a clean model from a uv data base

To see task documentation either a python task object may first be created and its documen-
tation viewed, or more directly:

AIPSHelp("AIPS_task_name")

or

ObitHelp("Obit_task_name")

To create a task object:

18

>>> im=AIPSTask("IMEAN")

to create an AIPS task object for task IMEAN, or

>>> fe=ObitTask("Feather")

to create an Obit Task object for Feather. Note the names of the objects are arbitrary.
Task parameters can be set using the form object.parameter=value:

>>> im.inname="MY FILE"

where the parameter names are subject to tab completion. Array values are given in square brackets
”[]”, the usual form for a python list. AIPS array values are indexed 1-relative and Obit arrays
0-relative but this is largely transparent. Note: unlike POPS, ALL strings are case sensitive. There
are convenience functions setname, set2name and setoname to copy the name information to a task
object for the first and second input objects and the output object:

>>> setname (myImage, im)

Task parameters can be reviewed using the inputs() function:

>>> im.inputs() # short form im.i

or

>>> inputs(im)

POPS style help can be viewed:

>>> im.help() # short form im.h

or

>>> help(im)

or EXPLAIN (if available) by:

>>> im.explain() # short form im.e

or

>>> explain(im)

Tasks can be run using the go function:

>>> im.go() # short form im.g

The above form of the go function runs synchronously and does not return until the task finishes.
Log messages will appear in the screen; if logging to a file is desired, set the name of the file (relative
or full path) on the task object’s logFile member:

>>> im.logFile="myLog.log"

For Obit tasks, there is an alternative logging method, writting messages directly to a file and
NOT displaying them on the terminal or Message Server; this is useful for batch, script driven
processing. The logging file is specified as:

>>> im.taskLog="myLog.log"

This avoids problems with using logging by ObitTalk which include missed or mangled messages
and the task hanging due to a full message buffer.

After a task is run which generates output values, these can be viewed using the outputs
function:

>> im.outputs() # short form im.o

and the values can be accessed through the task parameter. The task functions work for both AIPS
and Obit tasks. Obit tasks have an output parameter “retCode” which will have a value of -999
until the task completes without detecting a problem After such a completion, the value will be 0,
or -1 if an error is detected. -999 means the task aborted.

19

Figure 1.2: Message window for Obit task Template after completion.

1.7.2 Asynchronous Tasks

If the ObitMess message server is running and the doWait parameter on the task (or script) object
is set to False, it is possible to execute asynchronously:

>> window = go(TaskObj)

If TaskObj.doWait==True, the task is run synchronously with messages written to the python
command window. When a task is run asynchronously (TaskObj.doWait=False), a new ObitMess
window with a scrolling text box will appear on the screen; the task messages will appear in this
window and the task can be controlled from this window. If the task accepts terminal input, then
this text can be entered into the text box below the message box, one line at a time and hitting
the Enter key. If the window is expecting user input, the status becomes “Awaiting user input”
and the task will suspend until the response is typed into the response line and the Enter key hit.
The task status shown at the bottom of this window gives “Running”, “Finished” and there are
buttons that allow aborting the task, saving the messages in a text file or closing the window.

A screen shot of a message window is shown in Figure 1.2.
The TaskWindow object returned when an asynchrous task is started can be used to suspend

python operations until the task completes:

>> window.wait()

or abort the task:

>> window.abort()

Tasks (or scripts) can also be run asynchronously without a runtime display of the messages.
This is done using the MsgBuf argument to the go function which will then execute the task (or
script) and save the messages. In this case the go function returns a TaskMsgBuffer. The task
messages can be saved to a logfile or obtained from the TaskMsgBuffer object:

>> buffer = go(myTask,MsgBuf=True)

>> buffer.wait()

>> messages = buffer.Messages()

TaskMsgBuffer objects also have an abort function.

20

1.7.3 Disk Numbers and Task Executation

“Data disks” as defined in ObitTalk include the information about the location of the data and
ObitTalk will attempt to execute the task where the data defined for it resides. This means that
disk numbers cannot be defaulted as then ObitTalk cannot decide where to execute the task or tell
if all data reside on the same host. For Obit Tasks operating on FITS files, disk 0 has a special
meaning, that the filename given is relative to the current working directory.

1.7.4 Scripts

Scripts can be executed locally directly as a command line argument to ObitTalk or interactively
using the ObitScript class (see Section 1.14.3). When a script is executed from the command line,
there is no prompt for the AIPS user number which must be supplied by the script. To use all
features of the Obit python interface, a full initialization of Obit is also needed. An example python
fragment in a script given on the command line initializing Obit for user 100 is the following:

Initialize Obit for AIPS user 100

user=100

from OTObit import *

AIPS.AIPS.userno=user

OSystem.PSetAIPSuser (user)

err=OErr.OErr()

Scripts can run from an interactive ObitTalk session (started with no arguments) and can be
run synchronously or asynchronously and either locally or remotely using the ObitScript class.
Remote ObitScripts have full access to the functionality afforted locally visible data, which it is to
the script.

1.7.5 Task logs

Messages from running AIPS or Obit tasks will appear in the python window if the task is being run
synchronously or in the Task Window if run asynchronously. Each Task window has a button that
allows writing the contents into a file; otherwise the logging messages are lost when the window
closes. If logging to a file is desired, set the name of the file (relative or full path) on the task
object’s logFile member:

>>> im.logFile="myLog.log"

This will cause the messages to be logged as the task runs.
For batch, script–driven processing it may be desirable to write messages directly to the log file

from the task and not to the terminal output or Message Server. This also avoids the problems of
ObitTalk occasionally losing or mangling messages or causing the task to hang due to a full I/O
buffer. Obit tasks can invoke direct logging using the taskLog task object member:

>>> im.taskLog="myLog.log"

1.7.6 ObitTalk/Obit routines

ObitTalk has python binding to the Obit c library that allow access to data and many high level
functions. Thus, scripts or interactive use can be controlled by data values in files. (Note: in
general functions which manipulate data require that the data be visible locally whereas tasks and
the ObitTalk Data classes do not).

21

Control parameters to Obit (c) routines are largely passed in an InfoList structure (a type of
associative array similar to a python dict) but many of the python interface routines take care of
this detail and their parameters are passed through a python dictionary. Details are available via
the python help command. Use of ObitTalk routines is described below.

1.7.7 Messages and error handling

In ObitTalk error handling and messages use the OErr class. ObitTalk defines a variable err at
startup for this purpose. Python functions bound to Obit routines which can generate either
messages or error conditions are passed an OErr argument. Messages are generally not shown until
explicitly requested, this allows suppressing messages when necessary.

Note: if an error condition is indicated on err and has not been cleared and/or
messages displayed, then subsequent functions passed err will simply return without-
performing their function.

OErr functions include:

• ShowErr(err) Display any messages and clear any error conditions.

• OErr.PClear(err) Clear Obit error stack err and error condition

• OErr.PIsErr(err) Tells if an error condition exists

• OErr.PLog(err, eCode, message) Add message To Obit Error/message stack err

• OErr.PSet(err) Set Obit error flag

• OErr.printErr(err) Prints Obit error/message stack

• OErr.printErrMsg(err, message=’Error’) Prints Obit error stack and throws runtime
exception on error

• OErr.OErrIsA(err) Tells if object thinks it’s a Python ObitErr

Each OErr message has a severity level:

• OErr.Info Informative message

• OErr.Warn Warning message (not an error)

• OErr.Traceback Traceback information from c routines.

• OErr.MildError Error (but may not be serious)

• OErr.Error Error message

• OErr.StrongError Serious error

• OErr.Fatal Program cannot continue

1.7.8 Lock and Parameter Files

ObitTalk uses files in /tmp to indicate that resources are allocated and for input and output param-
eter files for ObitTasks. If problems occur then these files may not be properly disposed of and may
need to be deleted by hand. These will have names like Obit pops no .pid (e.g. Obit3.5942) indi-
cating an allocated “POPS number” or ObitTask Input.pops no (e.g. SCMapInput.1) indicating
the input parameter file to an Obit Task (SCMap).

22

1.7.9 Modifying Data Headers

The Obit/python interface can be used to modify data headers through the Descriptor classes
(ImageDesc, UVDesc, etc). The actual memory resident structure is a c structure which can be
translated to and from a python dict. The general procedure is

1. Open the object Read/Write

>>> help(x.Open)

Open(self, access, err, blc=None, trc=None) method of Image.Image instance

Open an image persistent (disk) form

self = Python Image object

access = access READONLY (1), WRITEONLY (2), READWRITE(3)

err = Python Obit Error/message stack

blc = if given and a list of integers (min 2) giving

bottom left corner (1-rel) of subimage

trc = if given and a list of integers (min 2) giving

top right corner (1-rel) of subimage

2. Obtain the descriptor in python dict form using the x.Desc.Dict function.

3. Modify the contents of the dict making sure to maintain its structure, format of date strings
and data types.

4. Update the Descriptor using a x.Desc.Dict = dict type statement

5. Update descriptor in external representation using the data object’s UpdateDesc function.

UpdateDesc(self, err, Desc=None) method of Image.Image instance

Update any disk resident structures about descriptor

self = Python Image object

err = Python Obit Error/message stack

Desc = Descriptor, if None then use current descriptor

Contents can be accessed through the Dict member

6. Close object

An example is shown in the following in which the value of “observer” is changed from “Axxxx”
to “my code”:

>>> x=getname(17)

AIPS Image W3 VLA 1 1

>>> imhead(x)

AIPS Image Name: W3 Class: VLA seq: 1 disk: 1

Object: W3

Observed: 1992-07-17 Telescope: VLA Created: 2006-09-25

Observer: Axxxx Instrument: VLA

Minimum = -0.018 Maximum = 2.452 JY/BEAM

--

23

Type Pixels Coord value at Pixel Coord incr Rotat

RA---SIN 320 2 25 36.44334 161.00 -1.72914 0.00

DEC--SIN 320 62 6 11.2407 161.00 1.72914 -0.35

FREQ 1 8.6697e+09 1.00 6.05469e+06 0.00

STOKES 1 IPol 1.00 1 0.00

--

Coordinate equinox 2000.0 Coordinate epoch 2000.00

Observed RA 2 25 36.44334 Observed Dec 62 6 11.2407

no. Comp 1

Clean Beam 6.99984 x 6.99984 asec, PA 0.0 deg.

Rest freq 0 Vel type: Observer, wrt Optical

Alt ref value 1.1704e+05 wrt pixel 16.00

Maximum version number of AIPS CC tables is 1

Maximum version number of AIPS HI tables is 1

>>> x.Open(Image.READWRITE,err)

>>> d=x.Desc.Dict

>>> d["observer"]

’Axxxx ’

>>> d["observer"]="my code"

>>> x.Desc.Dict=d

>>> x.UpdateDesc(err)

>>> x.Close(err)

>>> imhead(x)

AIPS Image Name: W3 Class: VLA seq: 1 disk: 1

Object: W3

Observed: 1992-07-17 Telescope: VLA Created: 2006-09-25

Observer: my code Instrument: VLA

Minimum = -0.018 Maximum = 2.452 JY/BEAM

--

Type Pixels Coord value at Pixel Coord incr Rotat

RA---SIN 320 2 25 36.44334 161.00 -1.72914 0.00

DEC--SIN 320 62 6 11.2407 161.00 1.72914 -0.35

FREQ 1 8.6697e+09 1.00 6.05469e+06 0.00

STOKES 1 IPol 1.00 1 0.00

--

Coordinate equinox 2000.0 Coordinate epoch 2000.00

Observed RA 2 25 36.44334 Observed Dec 62 6 11.2407

no. Comp 1

Clean Beam 6.99984 x 6.99984 asec, PA 0.0 deg.

Rest freq 0 Vel type: Observer, wrt Optical

Alt ref value 1.1704e+05 wrt pixel 16.00

Maximum version number of AIPS CC tables is 1

Maximum version number of AIPS HI tables is 1

24

1.7.10 Object parameter lists

It is frequently necessary to pass parameters to Obit functions to control their behavior. These
are sometimes explicit arguments of python functions but in other cases they are passed through
the InfoList member of the object. This is particularly used for data selection and calibration
parameters. An InfoList is conceptually similar to a python dict structure although less flexible.
An InfoList is a list of labeled data items, each item is a scalar or an array of a given data type.
The data types supported are int, long (explicitly 32 bit in c), float, double (explicitly 64 bit in c),
boolean and strings. More details can be obtained by viewing the help function on the class.

Obit data (and other) objects will have an InfoList member which can generally be accessed
through the List member. Conversion to and from python dict structures is by means of the Dict
member of the InfoList class. Simple access to entries in an InfoList are through the set and get
functions.

set(self, name, value, ttype=None) method of InfoList.InfoList instance

Save a value in an InfoList

Set an entry in an InfoList, possibly redefining its type and dimension

self = input Python InfoList

name = name of desired entry

value = value to save, either a scalar integer, float, boolean or string

or a 1D array of one of these types

Type and dimensionality determined from value unless ttype is set

ttype = data type, "double", "long", None=>type of value

get(self, name) method of InfoList.InfoList instance

Retrieve a value from an InfoList

returns python list containing data:

0 - return code, 0=OK else failed

1 - name

2 - type

int=1, oint=3, long=4, float=9, double=10, string=13, boolean=14

3 - dimension array as list, e.g. [1,1,1,1,1] for scalar

4 - data array

self = input Python InfoList

name = name of desired entry

Usage of these functions as shown in the following in which x is an Obit data object.

>>> x.List.set("fvalue",1.234)

>>> x.List.get("fvalue")

[0, ’fvalue’, 9, [1, 1, 1, 1, 1], [1.2339999675750732]]

>>> x.List.set("farray",[1.234,4.567,7.890])

>>> x.List.get("farray")

[0, ’farray’, 9, [3, 1, 1, 1, 1], [1.2339999675750732, 4.5669999122619629, 7.8899998664855957]]

>>> x.List.set("darray",[1.234,4.567,7.890],"double")

>>> x.List.get("darray")

[0, ’darray’, 10, [3, 1, 1, 1, 1], [1.234, 4.5670000000000002,

7.8899999999999997]]

25

>>> x.List.Dict

{’DISK’: [2, [1, 1, 1, 1, 1], [1]], ’FileType’: [2, [1, 1, 1, 1, 1],

[1]],

’fvalue’: [9, [1, 1, 1, 1, 1], [1.2339999675750732]],

’darray’: [10, [3, 1, 1, 1, 1], [1.234, 4.5670000000000002,

7.8899999999999997]],

’User’: [2, [1, 1, 1, 1, 1], [100]],

’farray’: [9, [3, 1, 1, 1, 1], [1.2339999675750732,

4.5669999122619629, 7.8899998664855957]],

’CNO’: [2, [1, 1, 1, 1, 1], [40]],

’Disk’: [2, [1, 1, 1, 1, 1], [1]], ’nVisPIO’: [2, [1, 1, 1, 1, 1], [1]]}

>>>

1.7.11 Accessing UV Data

There are a number of Obit Class functions that perform highlevel operations of uv data sets (UV
objects) in the CleanVis, UVImager, and UVSelfCal classes. For details, import these classes and
view the help documentation. Visibility data can be read from and written to data objects using
the UV ReadVis and WriteVis functions employing objects of the UVVis class.

The selection, calibration and editing of visibility data can be controlled by setting parameters
on the InfoList member of the UV data object. Many of these are set using the interface to
highlevel class functionality, but for a given parameter which is not part of the class function
interface definition, the value can be set directly through the InfoList (see section 1.7.10). A
complete list of the UV data selection/calibration/editing parameters follows.

• doCalSelect boolean scalar
Select/calibrate/edit data?

• Stokes string (4,1,1)
Selected output Stokes parameters: “ ”⇒ no translation,”I ”,”V ”,”Q ”, ”U ”, ”IQU ”,
”IQUV”, ”IV ”, ”RR ”, ”LL ”, ”RL ”, ”LR ”, ”HALF” = RR,LL, ”FULL”=RR,LL,RL,LR.
[default ” ”] For data with linear feeds substiture “X” and “Y” for “R” and “L”. In the above
’F’ can substitute for ”formal” ’I’ (both RR+LL or XX+YY).

• BChan int scalar
First spectral channel (1-rel) selected. [def all]

• EChan int scalar
Highest spectral channel (1-rel) selected. [def all]

• BIF int scalar
First IF (1-rel) selected. [def all]

• EIF int scalar
Highest IF (1-rel) selected. [def all]

• doPol int scalar
> 0 ⇒ calibrate polarization.

• PDVer int scalar
PD table version.

26

• doCalib int scalar
> 0 ⇒ calibrate, 2 ⇒ also calibrate Weights

• gainUse int scalar
SN/CL table version number, 0 ⇒ use highest

• flagVer int scalar
Flag table version, 0 ⇒ use highest, < 0 ⇒ none

• BLVer int scalar
BL table version, 0 > use highest, < 0 ⇒ none

• Subarray int scalar
Selected subarray, <= 0 ⇒all [default all]

• dropSubA bool scalar
Drop subarray info?

• FreqID int scalar
Selected Frequency ID, <= 0 ⇒all [default all]

• timeRange float (2,1,1)
Selected timerange in days.

• UVRange float (2,1,1)
Selected UV range in kilowavelengths.

• InputAvgTime float scalar
Input data averaging time (sec). Used for fringe rate decorrelation correction.

• Sources string (?,?,1)
Source names selected unless any starts with a ’-’ in which case all are deselected (with ’-’
stripped).

• souCode string (4,1,1)
Source Cal code desired,

– ’ ’ ⇒ any code selected

– ’* ’ ⇒ any non blank code (calibrators only)

– ’-CAL’ ⇒ blank codes only (no calibrators)

• Qual int scalar
Source qualifier, -1 [default] = any

• Antennas int (?,1,1)
a list of selected antenna numbers, if any is negative then the absolute values are used and
the specified antennas are deselected.

• corrType int scalar
Correlation type, 0=cross corr only, 1=both, 2=auto only.

• passAll bool scalar
If True, pass along all data when selecting/calibration even if it’s all flagged. Data deselected
by time, source, antenna etc. is not passed.

27

• doBand int scalar
Band pass application type < 0 ⇒ none:

1. If = 1 then all the bandpass data for each antenna will be averaged to form a composite
bandpass spectrum, this will then be used to correct the data.

2. If = 2 the bandpass spectra nearest in time (in a weighted sense) to the uv data point
will be used to correct the data.

3. If = 3 the bandpass data will be interpolated in time using the solution weights to form
a composite bandpass spectrum, this interpolated spectrum will then be used to correct
the data.

4. If = 4 the bandpass spectra nearest in time (neglecting weights) to the uv data point
will be used to correct the data.

5. If = 5 the bandpass data will be interpolated in time ignoring weights to form a composite
bandpass spectrum, this interpolated spectrum will then be used to correct the data.

• Smooth float (3,1,1)
specifies the type of spectral smoothing

– Smooth[0] = type of smoothing to apply:

∗ 0 ⇒ no smoothing

∗ 1 ⇒ Hanning

∗ 2 ⇒ Gaussian

∗ 3 ⇒ Boxcar

∗ 4 ⇒ Sinc (i.e. sin(x)/x)

– Smooth[1] = the ”diameter” of the function, i.e. width between first nulls of Hanning
triangle and sinc function, FWHM of Gaussian, width of Boxcar. Defaults (if < 0.1) are
4, 2, 2 and 3 channels for Smooth[0] = 1 - 4.

– Smooth[2] = the diameter over which the convolving function has value - in channels.
Defaults: 1, 3, 1, 4 times Smooth[1] used when

• BPVer int scalar
Band pass (BP) table version, 0 ⇒use highest

• SubScanTime float scalar
{Optional} if given, this is the desired time (days) of a sub scan. This is used by the selector
to suggest a value close to this which will evenly divide the current scan. 0 ⇒ Use scan
average. This is only useful for ReadSelect operations on indexed ObitUVs.

As an example of the data selection usage, to specify that only autocorrelations are desired in
UV data object myUV in subsequent operations:

>>> myUV.List.set(’corrType’,2)

1.8 Parallel Processing

ObitTalk and Obit tasks implement some basic aspects of parallel processing. These include using
multiple cores and/or processors with shared memory in a computer using multi–threading and
distributing tasks across nodes of a cluster or workstations on a LAN. These are described in the
following sections.

28

1.8.1 Multi–threading

Many of the more expensive operation in Obit allow using multiple processors/cores which share
memory. The technique of multi–threading is used for this. Obit tasks which support multi–
threading have a parameter, nThreads, giving the maximum number of threads to allow in a
parallel operation. In general, this should not be more than the actual number of processors/cores
available but may be fewer if multiple tasks are to be run using threading or the particular task
executation cannot make good use of more than a given number of threads. Threading in functions
called from scripts can be invoked as in the following example of allowing two parallel threads.

>>> # Allow multiple threads

>>> OSystem.PAllowThreads(16) # 16 threads max.

1.8.2 GPU

The most compute intensive operations have a GPU implementation in cuda. In tasks, these are
invoked using the doGPU and doGPUGrid parameters. Multiple GPU can be used for visibility
data gridding using parameter array GPU no. Usage of GPUs must be implemented in a built–
from–source version due to licencing and other restrictions

1.8.3 Cluster Nodes

ObitTalk can start parallel, independent processes on multiple nodes of a cluster of workstations on a
network; these can be either tasks or ObitScripts. Executation is initiated on the node/workstation
on which the data disks are defined. See sections 1.7.3 and 1.14 for more details.

1.9 Examples

The following give simple examples of using ObitTalk.

1.9.1 Display AIPS Catalog

The examine your AIPS image catalog on disk 7

>>> AMcat(7)

AIPS Directory listing for disk 7

1 CYG A 74 MHz.MODEL . 1 MA 13-Apr-2004 10:25:32

1.9.2 Create Python Image Object

To create a python object for the AIPS image in slot 1 and name it “x”:

>>> x=getname(1,7)

AIPS Image CYG A 74 MHz MODEL 7 1

1.9.3 Display Data Header

To view the image header of x:

>>> imhead(x)

AIPS Image Name: CYG A 74 MHz Class: MODEL seq: 1 disk: 7

Object: 3C405

Observed: 2001-01-19 Telescope: VLA Created: 2001-03-03

29

Observer: AD441 Instrument: VLA

Minimum = -25 Maximum = 4638.2 JY/BEAM

--

Type Pixels Coord value at Pixel Coord incr Rotat

RA---SIN 512 19 59 28.35406 256.00 -5 0.00

DEC--SIN 512 40 44 2.0862 257.00 5 0.32

FREQ 1 7.38e+07 1.00 1.55029e+06 0.00

STOKES 1 IPol 1.00 1 0.00

--

Coordinate equinox 2000.0 Coordinate epoch 2000.00

Observed RA 19 59 28.35406 Observed Dec 40 44 2.0862

no. Comp 697

Clean Beam 24.9998 x 24.9998 asec, PA 0.0 deg.

Rest freq 0 Vel type: Observer, wrt Optical

Alt ref value 0 wrt pixel 0.00

Maximum version number of AIPS CC tables is 1

Maximum version number of AIPS HI tables is 1

1.9.4 Display an Image

To display image x in ObitView:

>>> tvlod(x)

Note: if ObitTalk thinks something has gone wrong with the image display, the python object may
need to be recreated. To recreate the default image display:

>>> newDisplay()

1.9.5 Image Pixel Access

Access to arrays of image pixel values is through the FArray class. Images can be read into or written
from FArray objects which can be manipulated in many ways. See help(FArray) for details. In the
following the pixel array in an image is read and several operations are performed.

>>> # Create image object from AIPS catalog entry

>>> x = Image.newPAImage("Swan","Cygnus A","J2000",1,1,True,err)

>>> ShowErr(err) # Check for errors

>>> x.Open(Image.READONLY,err) # Open image

>>> x.Read(err) # Read plane

>>> pixels=x.FArray # python FArray object from image

>>> pixels.Mean # Display Mean of pixel values

49.573715209960938

>>> pixels.RMS # Display RMS of pixel values

4.758549690246582

>>> FArray.PSMul(pixels, 5.0) # Scale all pixels by 5

>>> pixels.Mean # Display new mean

247.86857604980469

>>> x.Close(err) # Close image

>>> pixels.get(100,100) # Display (0-rel) pixel [100,100]

8.0

>>> pixels.set(3.1415926,100,100) # set value of pixel [100,100]

30

>>> pixels.get(100,100) # See new value

3.1415925025939941

1.9.6 Run an AIPS task

To run AIPS task IMEAN on x and view the values returned:

>>> imean=AIPSTask("imean") # Define task object

>>> setname(x,imean) # Fill in info on x to task object

>>> imean.i # View inputs

Adverbs Values Comments

--

dohist -1.0 True (1.0) do histogram plot.

= 2 => flux on x axis

userid 0.0 User ID. 0=>current user

32000=>all users

inname CYG A 74 MHz Image name (name)

inclass MODEL Image name (class)

inseq 1.0 Image name (seq. #)

indisk 7.0 Disk drive #

blc 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 Bottom left corner of image

0=>entire image

trc 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 Top right corner of image

0=>entire image

nboxes 0.0 No. of ranges for histogram.

pixrange 0.0, 0.0 Min and max range for hist.

functype ’LG’ => do log10 plot of #

samples, else linear

pixavg 0.0 Estimate of mean noise value

pixstd 0.0 Estimate of true noise rms

< 0 => don’t do one

= 0 => 2-passes to get

docat 1.0 Put true RMS in header

ltype 3.0 Type of labeling: 1 border,

2 no ticks, 3 - 6 standard,

7 - 10 only tick labels

<0 -> no date/time

outfile Name of output log file,

No output to file if blank

dotv -1.0 > 0 Do plot on the TV, else

make a plot file

grchan 0.0 Graphics channel 0 => 1.

>>> imean.g # Execute task

IMEAN1: Task IMEAN (release of 31DEC02) begins

IMEAN1: Image= CYG A 74 MHz.MODEL . 1 7 xywind= 1 1 512 512

IMEAN1: Mean and rms found by fitting peak in histogram:

IMEAN1: Mean= 4.8010E-02 Rms= 4.7438E+00 **** from histogram

31

IMEAN1: Mean and rms found by including all data:

IMEAN1: Mean= 1.8457E+00 Rms= 6.0963E+01 JY/BEAM over 262144 pixels

IMEAN1: Flux density = 1.7080E+04 Jy. beam area = 28.33 pixels

IMEAN1: Minimum=-2.5000E+01 at 59 145 1 1

IMEAN1: Skypos: RA 20 00 55.087 DEC 40 34 45.54

IMEAN1: Maximum= 4.6382E+03 at 252 256 1 1

IMEAN1: Skypos: RA 19 59 30.116 DEC 40 43 57.20

IMEAN1: Skypos: IPOL 73.800 MHZ

IMEAN1: returns adverbs to AIPS

IMEAN1: Appears to have ended successfully

IMEAN1: smeagle 31DEC06 TST: Cpu= 0.0 Real= 0

>>> imean.o # Examine outputs

Adverbs Values Comments

--

pixavg 0.0480099283159 Estimate of mean noise value

pixstd 4.74377298355 Estimate of true noise rms

< 0 => don’t do one

= 0 => 2-passes to get

1.9.7 Run an Obit task (FndSou)

To run Obit task FndSou on an image, x, containing multiple sources to generate a source catalog
(use sf.h for detailed help):

>>> sf=ObitTask("FndSou")

>>> setname(x,sf)

>>> sf.outDisk=1

>>> sf.NGauss=20 # Max. number of sources (islands)

>>> sf.CutOff=2 # Minimum pixel brightness to consider

>>> sf.Retry=1 # Try multiple components if residuals exceed this

>>> sf.doMult=True # Allow using multiple Gaussians per source

>>> sf.doWidth=True # Fix width

>>> sf.Parms=[2., 5., 0., 1]

>>> sf.RMSsize=50 # Size of window to use to determine image RMS

>>> sf.prtLv=1 # Some diagnostic output

>>> sf.doVL=True # Generate VL table

>>> sf.i # Display inputs

FndSou: Task to fit Gaussian models to an image by least-squares

Adverbs Values Comments

--

DataType AIPS FITS" or "AIPS" type of input

inName 1400+208 Image Name (Name) 1

inClass ICLEAN Image Name (Class) 1

inSeq 1 Image Name (Seq. #) 1

inDisk 1 Disk drive # 1

inFITS Filename 1 if FITS image

BLC 0, 0, 0, 0, 0, 0, 0 Bottom left corner of image

0=>entire image

32

TRC 0, 0, 0, 0, 0, 0, 0 Top right corner of image

0=>entire image

doVL True Convert to VL table?

doPBCorr False PB correction to VL table?

asize 25.0 antenna diam. for PB corr.

doResid False Catalog residual map?

outName Output Image Name

outClass Output Image Class

outSeq 0 Output Image Seq. #

outDisk 1 output Disk drive

outFITS Output Filename if FITS image

NGauss 20 Max. Number of islands

NPass 1 Number of passes through resid.

CutOff 2.0 Flux cutoff level

Retry 1.0 Retry level

Sort Sort Order of output ’ ’=RA

OutPrint Printer disk file to save

doMult True >0 => fit multiple peaks

doWidth True >0 => fit widths

Gain 0.05 Amp-dependent part of retry

and warning levels

Parms 2.0, 5.0, 0.0, 1.0, 0.0 Components constraints

[0] flux < Parms[0]

[1] widths>Parms[1] cells

[2] peaks>Parms[2] cells

outside fitting region

[3] if >0 don’t allow Gauss

smaller than CLEAN beam

RMSsize 50 Size of region to determine RMS

prtLv 1 Debug print level

>>> sf.g # run task

** Message: info : FndSou Begins

** Message: info : Date/Time: 2007-10-11 13:47:51

** Message: info : Found 23 islands pass 1

** Message: info : Successfully fitted 20 components

** Message: info : Attempt to break 0 islands into multiple

** Message: info : 0 Attempts to break islands failed

** Message: info : 0 components rejected for low peak

** Message: info : 0 fits hit iteration limit

Found 23 islands in 1 passes

Successfully fitted 20 components

Attempt to break 0 islands into multiple

0 Attempts to break islands failed

0 components rejected for low peak

0 fits hit iteration limit

...

33

** Message: info : FndSou Ends

** Message: info : Date/Time: 2007-10-11 13:47:58

1.9.8 Table Access (print contents of VL table)

To create a python object from the VL table created in the previous example and display its
contents using the Catalog module utility PVLPrint:

>>> import Catalog

>>> vltab=x.NewTable(Table.READONLY, "AIPS VL",1,err)

>>> Catalog.PVLPrint(vltab,x,err)

>>> ShowErr(err) # Display any error messages

Listing of fitted VL table values

Fitted sizes in asec, Peak, Flux, IRMS in mJy, residual values relative to Peak

Error estimates (asec, mJy, deg) given under value

RA Dec Peak Flux IRMS Fit Maj Fit min

1 13 43 56.1032 22 18 21.163 3666.31 4806.81 90.186 104.886 80.000

1.80 1.12 93.92 123.13 3.021 1.822

2 13 48 14.5900 24 15 57.461 5508.17 5917.91 87.870 85.951 80.000

0.82 0.81 89.29 95.93 1.442 1.253

3 13 48 51.8784 26 35 44.011 2742.81 3484.55 77.721 98.355 82.667

1.60 1.69 81.18 103.13 3.143 2.266

4 13 49 39.0137 21 07 29.926 13631.90 13820.04 112.454 81.104 80.000

0.41 0.40 112.83 114.39 0.676 0.658

5 13 50 58.3986 15 51 55.507 2479.43 2733.85 91.272 88.209 80.000

1.94 1.88 93.20 102.76 3.473

...

1.9.9 Table Row Data

In the following example, the header of an AIPS CC (Clean Components) table is converted to a
dict and printed and the first few rows are read into a python dict structure and printed.

>>> imDict=x.Desc.Dict

>>> xinc = abs(imDict[’cdelt’][0]) # X Cell spacing

>>> yinc = abs(imDict[’cdelt’][1]) # Y Cell spacing

>>> cctab=x.NewTable(Table.READONLY,"AIPS CC",1,err)

>>> thead=cctab.Desc.Dict

>>> thead # Display contents of python dict

{’repeat’: [1, 1, 1, 1], ’nrow’: 114, ’dim1’: [1, 1, 1, 1],

’sortOrder2’: 0, ’sortOrder1’: 0, ’dim2’: [1, 1, 1, 1],

’dim0’: [1, 1, 1, 1], ’version’: 1, ’lrow’: 16, ’Table name’: ’AIPS CC’,

’FieldName’: [’FLUX’, ’DELTAX’, ’DELTAY’, ’_status’],

’type’: [9, 9, 9, 2], ’FieldUnit’: [’JY’, ’DEGREES’, ’DEGREES’, ’’]}

>>> cctab.Open(Table.READONLY,err)

>>> ShowErr(err) # Display any error messages

>>> for i in range(1,5): # Loop over first 4 rows printing

... row = cctab.ReadRow(i, err) # Read row i (1-rel)

34

... xcell = row["DELTAX"][0]/xinc # X position in cells

... ycell = row["DELTAY"][0]/yinc # Y position in cells

... flux = row["FLUX"][0] # Flux

... print "%5d %5.2f %5.2f %10.2f" % (i,xcell, ycell,flux)

...

1 -16.00 6.00 1260.95

2 -47.00 16.00 646.20

3 -16.00 5.00 626.66

4 -46.00 16.00 527.65

>>> cctab.Close(err) # Close table

1.9.10 Writing to a History

The following example writes a timestamp and a comment into a image processing history and then
prints the history.

>>> hi = x.History(Image.READWRITE, err) # Extract history object from image

>>> r=hi.Open(History.READWRITE, err) # Open history

>>> hi.TimeStamp(" Start Obit "+ObitSys.pgmName,err) # Timestamp

>>> r=hi.WriteRec(-1,"Some comment",err) # write comment

>>> r=hi.Close(err) # Close

>>> OErr.printErrMsg(err, "Error with history")# Error test

>>> PrintHistory(x) # Show history

History for AIPS:Image:Cygnus A.J2000.1.1

1 --

2 --

3 /Begin "HISTORY" information found in fits tape header by IMLOD

...

1553 / 2007-10-11T21:12:11 Start Obit ObitPython

1554 Some comment

1.9.11 Modify Visibility Data

The UV functions ReadVis and WriteVis read and write single visibility records in the form of
python UVVis objects which contain the following members:

• u u coordinate (lambda)

• v v coordinate (lambda)

• w w coordinate (lambda)

• time Visibility time in days since 0 h on reference day

• ant1 antenna 1 of baseline

• ant2 antenna 2 of baseline

• vis visibilities as list of tuples (vis, wt) as (complex, float)

The visibilities are in the order defined in the data descriptor:

35

• jlocs 0-rel axis order: Stokes’ parameters

• incs Increment in data: Stokes (in floats)

• jlocf 0-rel axis order: Frequency

• incf Increment in data: Frequency (in floats)

• jlocif 0-rel axis order: IF

• incif Increment in data: IF (in floats)

The following example uses the UVVis class to read the records in a UV data file, multiply the
complex visibilities by 2.0 and the weights by 0.5. To specify data selection, calibration and editing
to be applied to data as it is read, see section 1.7.11.

Input AIPS file

x = UV.newPAUV("inUV", "RX_Tau", "IF2", 1, 1, True,err, nvis=1)

x.Open(UV.READONLY, err)

OErr.printErrMsg(err, "Error with input image")

Output AIPS file

y = UV.newPAUV("outUV", "RX_Tau", "Copy", 1, 1, False,err, nvis=1)

UV.PClone(x, y, err)

y.Open(UV.WRITEONLY, err)

OErr.printErrMsg(err, "Error with output image")

Get information about data

nvis = x.Desc.Dict["nvis"] # Number of visibilities

jstok = x.Desc.Dict["jlocs"] # Order in data of Stokes

nstok = x.Desc.Dict["inaxes"][jstok] # Number of Stokes (polarizations)

stokinc = x.Desc.Dict["incs"]/3 # Increment between Stokes in vis

jfreq = x.Desc.Dict["jlocf"] # Order in data of Frequency

nfreq = x.Desc.Dict["inaxes"][jfreq] # Number of Frequencies

freqinc = x.Desc.Dict["incf"]/3 # Increment between channels in vis

jif = x.Desc.Dict["jlocif"] # Order in data of IF

nif = x.Desc.Dict["inaxes"][jif] # Number of IFs

ifinc = x.Desc.Dict["incif"]/3 # Increment between IFs in vis

Loop over input file

for i in range(0, nvis):

read to UVVis

v = x.ReadVis(err)

vlist = v.vis # array of tuples (complex vis, float weight)

Multiply each vis by two, multiply weight by 0.5

Loop over IF

for iif in range (0, nif):

Loop over Frequency channel

for ifreq in range (0, nfreq):

Loop over Stokes

for istok in range (0, nstok):

indx = istok*stokinc + ifreq*freqinc + iif*ifinc

36

Extract visibility tuple

tup = vlist[indx]

vlist[indx] = (2.0*tup[0],tup[1]*0.5) # multiply/replace

Write data to output

y.WriteVis(v, err)

OErr.printErrMsg(err, "Error copying file")

Close files

x.Close(err)

y.Close(err)

OErr.printErrMsg(err, "Error closing file")

1.9.12 Write Quantized FITS image

The following example reads an AIPS image and writes a integerized FITS image with the pixel
values truncated at a set fraction of the RMS ”noise” in the image. This operation creates an image
which is more compressible but with a controlled loss of precision. Note: in practice is is better to
use the ObitTalk function imtab as it is simpler to use and will also copy tables; this example is
given to show how to access images in ObitTalk.

Specify input and output

inDisk = 1

Aname = "INPUT IMAGE"

Aclass = "CLASS"

Aseq = 1

outDisk = 1

outFile = "Quantized.fits"

Create Images

inImage = Image.newPAImage("Input image", Aname, Aclass, inDisk, Aseq, True, err)

Note: inImage can also be created using getname(cno,disk)

outImage = Image.newPFImage("Output image", outFile, outDisk, False, err)

Image.PClone(inImage, outImage, err) # Same structure etc.

OErr.printErrMsg(err, "Error initializing")

Fraction of RMS

fract = 0.25

Copy to quantized integer image with history

inHistory = History.History("history", inImage.List, err)

Image.PCopyQuantizeFITS (inImage, outImage, err, fract=fract, inHistory=inHistory)

OErr.printErrMsg(err, "Writing to FITS")

1.9.13 Subtract a CLEAN model from UV Data

The following python script fragment subtracts the Fourier transform of a CLEANmodel, multiplied
by 0.5 from one uv data set and writes another. Several steps are necessary to create a SkyModel
from an image mosaic containing a single image. Then, control parameters are entered into the
input dict for SkyModel.PSubUV which is used to perform the operation. The input and output

37

data are all FITS files with names inFile, inModel, outFile on FITS “disks” inDisk and outDisk.
Note: this operation is more simply performed by task UVSub.

import SkyModel, ImageMosaic

Set data

inData = UV.newPFUV("Input uv data", inFile, inDisk, True, err)

inImage = Image.newPFImage("Input image",inModel, inDisk, True, err)

outData = UV.newPFUV("Output uv data", outFile, outDisk, False, err)

OErr.printErrMsg(err, "Error initializing")

Make Image Mosaic with a single image

mosaic = ImageMosaic.newObit("Mosaic", 1, err)

OErr.printErrMsg(err, "Error making mosaic")

Add image to mosaic

ImageMosaic.PSetImage(mosaic, 0, inImage)

Make SkyModel from mosaic

model = SkyModel.PCreate("SkyModel", mosaic)

OErr.printErrMsg(err, "Error making SkyModel")

Control parameters to input dict, most defaulted

Input = SkyModel.UVSubInput

Input[’InData’] = inData # Input uv data

Input[’SkyModel’] = model # SkyModel

Input[’OutData’] = outData # output uv data

Input[’doCalSelect’] = False # No calibration or data selection

Input[’Stokes’] = ’ ’ # No conversion of Stokes

Input[’Factor’] = 0.5 # Multiply model FT by 0.5

Input[’Mode’] = 0 # Fastest FT type (DFT or Grid)

Input[’Type’] = 0 # Use CLEAN model from CC table

Input[’CCVer’] = [2] # Use CC table 2 (array of 1 per image)

Subtract Fourier transform of sky model from inData, write outData

SkyModel.PSubUV(err, Input)

OErr.printErrMsg(err, "Error subtracting")

1.9.14 Image Gaussian Fitting

Fitting of Gaussians to an image over a large area can be performed by task FndSou and over more
limited areas using the ImageFit class function Fit. This function takes an image and a FitRegion
which defines the fitting area of the image and the initial set of values defining the Gaussians to be
fit. Image class functions TVFit and GaussFit provide a simplified interface to the fitting routines.

The following is an example of an interactive model fitting session, a screen shot of the ObitView
window after the fitting region and model are specified is shown in figure 1.3

>>> # Define image

>>> x=Image.newPAImage("image","3C84","PennAr",1,1,True,err)

>>> # Interactively set fitting region followed by fitting

>>> fr = x.TVFit(x,disp,err)

38

Figure 1.3: Screenshot of ObitView window specifying fitting region with model.

The image will be loaded to the display, hit the “edit” button on the RequestBox, then specify the
region to fit on the display with a rectangular box, followed by circular boxes to mark Gaussian
components initial locations and initial sizes; instructions are given in the ObitView Message Box.
When done, hit “d” and then “OK” on the bottom of the RequestBox. Example results:

Model fit for 3C84

RA 3 19 47.73316 (0.518 asec), pixel 131.441 (0.259)

Dec 41 30 36.7370 (0.594 asec), pixel 116.772 (0.297)

Peak Flux density 0.0109 (0.000725) JY/BEAM

Integrated Flux density 0.0164 (0.00109) Jy

Fitted Major axis 15.148 (1.13) asec, 7.574 (0.33) pixels

Fitted Minor axis 11.228 (0.661) asec, 5.614 (0.33) pixels

Fitted Position angle -36.995 (7.84) deg

Deconvolved model

Deconvolved Major axis 10.8 (1.12) asec, 5.385 (0.814) pixels

Deconvolved Minor axis 3.55 (1.63) asec, 1.776 (0.814) pixels

Deconvolved Position angle 143.01 (5.49) deg

Image class function GaussFit can be used for noninteractive fitting. The defaults are generally
adequate for a single source near the reference pixel. Both TVFit and GaussFit return a FitRegion
object.

Additional functionality can be obtained by using ImageFit functions directly, first

>>> import ImageFit, FitRegion, FitModel

The ImageFit.Fit function is described in the following:

Fit(self, err, input={’FluxLow’: 0.0, ’GMajLow’: 0.0, ’GMajUp’: 1e+20,

’GMinLow’: 0.0, ’GMinUp’: 1e+20, ’MaxIter’: 0, ’PosGuard’: 0.0,

’fitImage’: None, ’fitRegion’: None, ’prtLv’: 0, ...})

Fit a model to an image

39

Resultant model left in FitRegion reg

inImageFit = Python ImageFit object

image = ObitImage to be fitted

reg = Fit region defining what is to be fitted and initial guess

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

fitImage Image to be fitted

fitRegion FitRegion to be fitted

MaxIter int Maximum number of iterations [def. 10 per fitted parameter]

prtLv int Message level, 0=>none [def 0]

PosGuard float Distance (cells) from edge to allow center [def no bound]

FluxLow float Lower bounds on Flux density [def no bound]

GMajUp float Major axis upper bound (cells) [def no bound]

GMajLow float Major axis lower bound (cells) [def no bound]

GMinUp float Minor axis upper bound (cells) [def no bound]

GMinLow float Minor axis lower bound (cells) [def no bound]

A FitRegion can be created interactively using the image viewer and FitRegion.PSetup():

PSetup(inImage, disp, err)

Interactive initial definition of fitting region

Interactively allows the user to set the region of the image

to be fitted and the initial model.

The fitting region is first specified with a rectangular window

and then the initial models to be fitted with circular windows.

Returns FitRegion, leaves image pixel array on inImage

image = image to be fitted

disp = image display to use

err = Obit Error/message stack

Fitted models can then be viewed on the screen or written to a file by FitRegion.Print()

Print(self, ImDesc, file=None)

Display human readable contents

self = object with Model to display

ImDesc = Image Descriptor with Beam, etc.

file = if present, the name of a file into which to write

the information rather than displaying it on the screen

or, can be accessed in python using the array of FitModel objects in the FitRegion.

1.10 Radio Interferometry Applications

There are a number of applications of particular interest to interferometric imaging. Detailed
discussions of a number of related topics are given in papers and memos referenced in
https://www.cv.nrao.edu/∼bcotton/Obit.html.

40

1.10.1 Calibration and Imaging Pipelines

There are several calibration and imaging pipeline for specific instruments available.

EVLA

A scripted calibration and imaging package for EVLA continuum observations is described in
https://www.cv.nrao.edu/∼bcotton/ObitDoc/EVLAObitScripts.pdf. The top level of this set of
python scripts is $OBIT/python/EVLAContPipe.py. This processes continuum observations, in-
cluding polarization and starts from data in ALMA SDM format. This can also be used for the
continuum portion of spectral line datasets.

ALMA

A scripted calibration and imaging package for ALMA continuum observations is described in
https://www.cv.nrao.edu/∼bcotton/ObitDoc/ALMAScripts.pdf. The top level of this package is
in $OBIT/python/ALMAPipe.py.

VLBA

A dated processing pipeline for VLBA continuum observations is implemented in
$OBIT/python/VLBAContPipeWrap.py. Documentation is available in the (pretty old) files
https://www.cv.nrao.edu/∼bcotton/ObitDoc/VLBAPipeMan.pdf and
https://www.cv.nrao.edu/∼bcotton/ObitDoc/VLBAPipelineHeuristics.pdf. There is also the source
code for user documentation in a now defunct language in
https://www.cv.nrao.edu/∼bcotton/ObitDoc/VLBAPipelineUserManual.rst.

1.10.2 Importing Data into AIPS Format

There are several programs for converting external uv data formats into AIPS format.

• ASDMList: Lists the contents of an ALMA SDM format data set.

• BDFIn: This task reads EVLA or ALMA data in ALMA SDM format and writes AIPS or
AIPS task FITAB format. The latter is generally a bad idea as it can be VERY sloy.

• IDIIn: IDI format was intended to be a generic data interchange format for visibility data
but only the VLBA and VLITE has adopted it. IDIIn converts to AIPS format.; IDIOut
writes IDI format.

Task Lister with optype=’SCAN’ will give a listing of the contents of a uv data set with an index
(AIPS NX) table.

Note: UVFITS format must be converted by AIPS task UVLOD or FITLD.

1.10.3 Data Editing

There are a number of utilities for flagging data - marking them as bad. Help documentation is
available for the tasks or functions. These function by adding entries in the AIPS FG flagging table
which can be applied when accessing the associated data through the flagVer parameter.

41

• AutoFlag: This utility has a number of facilities for flagging data on criteria such as exces-
sive amplitudes in Stokes I and/or polarized intensities or by excessive RMSes over a given
time interval. It also includes several means of flagging data based on frequency domain
characteristics such as deviations from a running median in frequency.

• MednFlag: Flags data based on deviations from running medians in time.

• UVFlag: Flags selected data including those shadowed by another antenna.

• SrvrEdt: Flags remaining data for records in which the bulk of the data has been flagged
and it is assumed all are bad.

• UV.PFlag: Function PFlag in python class UV allows flagging selected data directly from
python.

PFlag(inUV, err, flagVer=1, timeRange=[0.0, 1e+20], Ants=[0, 0],

Source=’Any’, Chans=[1, 0], IFs=[1, 0], freqID=0, subA=0,

Stokes=’1111’, Reason=’ ’)

Adds flagging table entry.

inUV = Python Obit UV on which to write flags

err = Python Obit Error/message stack

flagVer = flagging table version number

timeRange = pair of floats giving the beginning and end time in days,

inclusive, of the data to be flagged

Source = Source name, "Any" => all sources.

Chans = pair of ints giving first and last spectral channel numbers

(1-rel) to be flagged; 0s => all

IFs = pair of ints giving first and last IF numbers

(1-rel) to be flagged; 0s => all

Ants = first and second antenna numbers for a baseline, 0=>all

Stokes = String giving Stokes to be flagged,

"FFFF" where F is ’1’ to flag corresponding Stokes, ’0’ not.

Stokes order ’R’, ’L’, ’RL’ ’LR’ or ’X’, ’Y’, ’XY’, ’YX’

subA = Subarray

freqID = Frequency ID

Reason = reason string for flagging (max 24 char)

1.10.4 Calibration

Data calibration is a complex subject covering a number of instrumental and atmospheric effects
and numerous tasks deal with different parts. Calibrating and editing steps are often interleaved.
The are two, similar types of gain calibration tables, total “AIPS CL” and differential “AIPS SN”.
Gain, delay and fringe rate calibration consists of a sequence of tasks that each generate an AIPS
SN table which is then applied to the previous total calibration table using task CLCal. Gain tables
(AIPS CL, AIPS SN) have a set of values per spectral window (AKA IF). Bandpass (AIPS BP)
tables have a complex gain per spectral channel. Instrumental polarization (AIPS PD) tables have
values per channel/IF. Calibration is generally applied on the fly in applications accessing the data
using parameters doCalib, gainUse, doBand, BPVer, doPol and PDVer.

42

• Calib: The basic gain calibration routine is task Calib which, given a model for each source,
can determine phase, complex gain or gain and group delay.

• CLCal: This task applies a differential gain (AIPS SN) table to a previous total gain table
(AIPS CL) and writes a new one.

• SetJy: This task sets standard or specified flux densities into the source table (AIPS SU)
for sources to be used in calibration.

• GetJy: Derives flux densities for secondary gain calibrators from primary ones. This uses
solutions in an AIPS SN table.

• CLCor: Applies corrections to AIPS CL Tables.

• SNCor: Applies corrections to AIPS SN Tables.

• SYGain: Determines gain corrections for EVLA data based on the switched power table
(AIPS SW) and writes an incremental gain table (AIPS SN).

• BPass: Given a source model calculates a bandpass (AIPS BP table).

• PCal: Determines instrumental polarization parameters (elipticity and orientation in AIPS
PD table) and optionally the cross–hand phase difference function (AIPS BP table). Can use
up to 10 calibrators with, or without, known polarization.

• MazrCal: Calculates complex gains for VLBI maser observations given a spectral cube. A
variant of self calibration.

• RLDly: Determine the R-L (RCP-LCP) phase and delay function for data with circular
feeds based on observations of a known polarized calibrator. Generates an AIPS SN table
which MUST be applied in CLCal with refAnt=-1 (or its effects will be lost.)

• RLPass: Generate a bandpass table (AIPS BP) giving the R-L phase difference function.

• XYDly: Determine the X-Y phase and delay function for data with linear feeds based on
observations with a known polarized calibrator(s). Generates an AIPS SN table whichMUST
be applied in CLCal with refAnt=-1 (or its effects will be lost.)

1.10.5 Imaging

Several tasks can image one or more target fields applying external calibration and editing on the
fly. Self calibration is supported as part of the process.

• MFImage: Wideband continuum imaging. Uses multiple constant fractional bandwidth
subbands to deal with the varying antenna gain and sky brightness with frequency and tiling
to deal with the noncoplanarity of the observations.

• Imager: Spectral line imager using tiling for curvature effects.

• SCMap: Narrowband VLBI self calibration images.

43

1.10.6 Image Manipulation

Pixel data in images can be manipulated in a number of ways.

• SubImage: Select a subset (including all) of an image and write a new image.

• Convol: Convolve an image with a Gaussian beam (or image) to obtain an image at a coarser
resolution.

• HGeom: Regrid an image on the grid defined by a second image.

• RMSyn: Rotation measure synthesis of spectral Q and U cubes including those generated
by MFImage or Imager.

• F/CArray Utilities: Image planes can be read and written into/from ObitFArray (float)
pixel arrays and converted to/from complex (ObitCarray) arrays (see GetPlane and PutPlane
in the Image class). The FInterpolate class enables interpolation between pixels in an FArray.

Import FArray, CArray and FArrayUtil # to use in python.

There are numerous functions in the python FArray and CArray classes and FArrayUtil
utility module . These functions are efficiently implemented in c using multithreading and
vectorization. See help(FArray), help(CArray) and help(FArrayUtil). Magic value blanking
is supported in most cases except for FFTs. Blanked pixel are those without a valid value.

• FFT: The Obit python FFT class can be used to Fast Fourier Transform Obit FArrays and
CArrays.

1.11 Obit classes and utility packages with python interfaces

There are a number of Obit functions with high level python interfaces. To see more details import
and view the help for each:

>>> import History

>>> help(History)

Obit/AIPS/Radio Interferometry/Image classes and utilities

• AIPSDir AIPS directory class

• CArray Complex array class

• Catalog Source catalog class

• CleanImage Image CLEAN

• CleanVis Visibility based CLEAN

• ConvUtil Image convolution utilities

• FArray float array class

• FArrayUtil FArray utilities

• FeatherUtil Image feathering utilities

44

• FFT Fast Fourier Transform class

• FInterpolate Float array interpolator

• FITSDir FITS directory routines

• FitModel Source fitting model

• FitRegion Source fitting region

• History History class

• ImageDesc Image Descriptor (header)

• ImageMosaic Image Mosaic class

• Image Image class

• ImageFit Image fitting class

• ImageUtil Image utilities

• InfoList Obit associative array for control info

• IonCal Ionospheric calibration

• MergeCal Partial fix for screwed up VLBA cal. data

• MosaicUtil Image mosaicing utilities

• OData Base Data (image, UV, OTF) class

• ODisplay Interface to ObitView display

• OErr Obit message/error class

• OPlot Ploting interface

• OSystem Obit System class

• OWindow (CLEAN) image window class

• ParserUtil Obit task input/output file parser

• SkyGeom Celestial geometry

• SkyModel Sky model class

• SkyModelVMBeam Tabulated beam Sky model class

• SkyModelVMIon Ionospheric Sky Model class

• SpectrumFit Spectrum fitting class

• TableDesc Table descriptor (header) class

• TableList Table list for data object (Image, UVData, OTF)

45

• Table Table class

• TableUtil Table utilities

• TableSTar manipulate AIPS STar tables

• TaskWindow Task message window class

• TimeFilter Time filtering class

• UVDesc UV data descriptor (header)

• UVGSolve UV gain solutions

• UVImager UV data imager class

• UV UV data class

• UVRFIXize RFI Excision class

• UVSelfCal UV Self calibration class

• UVSoln2Cal UV SN to CL table routines.

• UVVis UV visibility access class

• VLACal VLA calibration/pipeline utilities

• ZernikeUtil Zernike polynomial utilities

1.12 OTObit Functions

The following are functions available from OTObit which are all automatically imported when
ObitTalk in started.

1.12.1 AIPSHelp

AIPSHelp(Task)

Give Help for AIPS task Task

Task = AIPSTask name to give (e.g. "IMEAN")

1.12.2 AllDest

AllDest(disk=None, Atype=’ ’, Aname=’ ’, Aclass=’ ’, Aseq=0)

Delete AIPS files matching a pattern

Strings use AIPS wild cards:

blank => any

’?’ => one of any character

"*" => arbitrary string

disk = AIPS disk number, 0=>all

Atype = AIPS entry type, ’MA’ or ’UV’; ’ => all

46

Aname = desired AIPS name, using AIPS wildcards, None -> don’t check

Aclass = desired AIPS class, using AIPS wildcards, None -> don’t check

Aseq = desired AIPS sequence, 0=> any

1.12.3 AMcat

AMcat(disk=1, first=1, last=1000)

Catalog listing of AIPS Image files on disk disk

Strings use AIPS wild cards:

blank => any

’?’ => one of any character

"*" => arbitrary string

If giveList then return list of CNOs

disk = AIPS disk number to list

first = lowest slot number to list

last = highest slot number to list

Aname = desired name, using AIPS wildcards, None -> don’t check

Aclass = desired class, using AIPS wildcards, None -> don’t check

Aseq = desired sequence, 0=> any

giveList = If true, return list of CNOs matching

1.12.4 AUcat

AUcat(disk=1, first=1, last=1000)

Catalog listing of AIPS UV data files on disk disk

Strings use AIPS wild cards:

blank => any

’?’ => one of any character

"*" => arbitrary string

If giveList then return list of CNOs

disk = AIPS disk number to list

first = lowest slot number to list

last = highest slot number to list

Aname = AIPS desired name, using AIPS wildcards, None -> don’t check

Aclass = AIPS desired class, using AIPS wildcards, None -> don’t check

Aseq = AIPS desired sequence, 0=> any

giveList = If true, return list of CNOs matching

1.12.5 Acat

Acat(disk=1, first=1, last=1000)

Catalog listing of AIPS files on disk disk

The class remembers the last disk accessed

Strings use AIPS wild cards:

blank => any

’?’ => one of any character

47

"*" => arbitrary string

If giveList then return list of CNOs

disk = AIPS disk number to list

first = lowest slot number to list

last = highest slot number to list

Aname = desired AIPS name, using AIPS wildcards, None -> don’t check

Aclass = desired AIPS class, using AIPS wildcards, None -> don’t check

Aseq = desired AIPS sequence, 0=> any

giveList = If true, return list of CNOs matching

1.12.6 ClearErr

ClearErr(err=<C OErr instance>)

Print any errors and clear stack

err = Python Obit Error/message stack, default is OTObit version

1.12.7 Fdir

Fdir(disk=None, dir=None)

Catalog listing of FITS files on disk disk

The class remembers the last disk accessed

disk = AIPS disk number to list

dir = relative or abs. path of directory, def. = cwd

Only used if disk == 0

1.12.8 ObitHelp

ObitHelp(Task)

Give Help for OBIT task Task

Task = ObitTask name to give (e.g. "Feather")

1.12.9 PrintHistory

PrintHistory(ObitObj, hiStart=1, hiEnd=1000000, task=None, file=None)

Display history log or write to file

Reads selected history records and displays with "more"

ObitObj = Python Obit object with history

err = Python Obit Error/message stack

hiStart = if given the first (1-rel) history record

hiEnd = if given the highest (1-rel) history record

task = If given, only list entries beginning with the string

given in task

file = if present, the name of a file into which to write

the history rather than displaying it on the screen

48

1.12.10 ShowErr

ShowErr(err=<C OErr instance>)

Print any errors and clear stack

err = Python Obit Error/message stack, default of OTObit version

1.12.11 alldest

alldest(Aname=’.*’, Aclass=’.*’, Atype=’.?’, Adisk=0, Aseq=0, test=False)

Delete AIPS files matching a pattern

Uses regular expression matching for strings

Note: "+" values are escaped

Clears any status before deleting

Aname = AIPS file name , " " => any

Aclass = AIPS class name, " " => any

Atype = ’MA’, ’UV’ or any

Adisk = AIPS disk number, 0=> any

Aseq = AIPS sequence number; 0=> any

test = if true only list and not delete

1.12.12 altswitch

altswitch(inImage)

Switch frequency and velocity

Algorithm lifted from AIPS AU7.FOR

inImage = Python Image object, created with getname, getFITS

1.12.13 clearstat

clearstat(o, code=4)

Clear status of AIPS catalog entry

Clears AIPS status of object o,

Optionally sets status using code parameter

o = Obit AIPS Data object

code = status code:

0 = Add write status

1 = Clear write status

2 = Increment Read Status

3 = Decrement Read Status

4 = Clear All Status

1.12.14 copyInputs

copyInputs(inTask, outTask)

Copy values from one task object to another

49

Copies parameter values from inTask to outTask which are in both the

inTask and outTask _input_list.

Need not be the same task.

inTask = Task object to copy from

outTask = Task object to copy to

1.12.15 day2dhms

day2dhms(tim)

convert a time in days to a string as d/hh:mm:ss.s

Returns time as string: "d/hh:mm:ss.s"

tim time in days

1.12.16 dhms2day

dhms2day(st)

convert a time string in d/hh:mm:ss.s to days

Returns time in days

st time string as "d/hh:mm:ss.s"

1.12.17 explain

explain(TaskObj)

Give explanation for a task if available

TaskObj = Task object whose inputs to list

1.12.18 getFITS

getFITS(file, disk=1, Ftype=’Image’)

Return Obit object for FITS file in file on disk

file = FITS file name

disk = FITS disk number

Ftype = FITS data type: ’Image’, ’UV’

1.12.19 getname

getname(cno, disk=1)

Return Obit object for AIPS file in cno on disk

cno = AIPS catalog slot number

disk = AIPS disk number

1.12.20 go

go(TaskObj, MsgBuf=False, URL="http://localhost:8777/RPC2")

Execute task

50

Returns TaskWindow object if run asynchronously (doWait=True)

or the task message log if run synchronously (doWait=False)

The wait() function on the TaskWindow will hang until the task finishes

TaskObj = Task object to execute

If doWait member is true run synchronously,

else run with messages in a separate Message window

MsgBuf = if true and TaskObj.doWait=False run asynchronously

using a TaskMsgBuffer

URL = URL of ObitMess message server if MsgBuf=False

1.12.21 imhead

imhead(ObitObj)

List header

ObitObj = Obit or ObitTalk data object

1.12.22 imlod

imlod(filename, inDisk, Aname, Aclass, Adisk, Aseq, err)

Load FITS Image data to AIPS

Read a ImageTAB FITS Image data file and write an AIPS data set

filename = name of FITS file

inDisk = FITS directory number

Aname = AIPS name of file

Aclass = AIPS class of file

Aseq = AIPS sequence number of file

Adisk = FITS directory number

err = Python Obit Error/message stack

returns AIPS Image data object

1.12.23 imstat

imstat(inImage, blc=[1, 1, 1, 1, 1], trc=[0, 0, 0, 0, 0])

Get statistics in a specified region of an image plane

Returns dictionary with statistics of selected region with entries:

Mean = Mean value

RMSHist = RMS value from a histogram analysis

RMS = Simple RMS value

Max = maximum value

MaxPos = pixel of maximum value

Min = minimum value

MinPos = pixel of minimum value

inImage = Python Image object, created with getname, getFITS

51

1.12.24 imtab

imtab(inImage, filename, outDisk, err, fract=None, quant=None,

exclude=[’AIPS HI’, ’AIPS PL’, ’AIPS SL’], include=[’AIPS CC’],

headHi=False))

Write Image data as FITS file

Write a Image data set as a integer FITAB format file

History written to header

inImage = Image data to copy

filename = name of FITS file

inDisk = FITS directory number

err = Python Obit Error/message stack

fract = Fraction of RMS to quantize

quant = quantization level in image units, has precedence over fract

None or <= 0 => use fract.

exclude = List of table types NOT to copy

NB: "AIPS HI" isn’t really a table and gets copied anyway

include = List of table types to copy

headHi = if True move history to header, else leave in History table

returns FITS Image data object

1.12.25 inputs

inputs(TaskObj)

List task inputs

TaskObj = Task object whose inputs to list

1.12.26 newDisplay

newDisplay(port=8765, URL=None)

Recreate display to another display server

port = port number on local machine

URL = Full URL (e.g. http://localhost:8765/RPC2)

1.12.27 setname

setname(inn, out)

Copy file definition from inn to out as in...

Supports both FITS and AIPS

Copies Data type and file name, disk, class etc

inn = Obit data object, created with getname, getFITS

out = ObitTask object,

1.12.28 set2name

set2name(in2, out)

52

Copy file definition from in2 to out as in2...

Supports both FITS and AIPS

Copies Data type and file name, disk, class etc

in2 = Obit data object, created with getname, getFITS

out = ObitTask object,

1.12.29 set3name

set3name(in3, out)

Copy file definition from in3 to out as in3...

Supports both FITS and AIPS

Copies Data type and file name, disk, class etc

in3 = Obit data object, created with getname, getFITS

out = ObitTask object,

1.12.30 set4name

set4name(in4, out)

Copy file definition from in4 to out as in4...

Supports both FITS and AIPS

Copies Data type and file name, disk, class etc

in4 = Obit data object, created with getname, getFITS

out = ObitTask object,

1.12.31 setoname

setoname(inn, out)

Copy file definition from inn to out as outdisk...

Supports both FITS and AIPS

Copies Data type and file name, disk, class etc

inn = Obit data object, created with getname, getFITS

out = ObitTask object,

1.12.32 setwindow

setwindow(w, out)

Set BLC and TRC members on out from OWindow w

Uses first window in first field on w which must be a rectangle

This may be set interactively using tvlod

w = OWindow object

out = ObitTask object, BLC and TRC members [0] and [1] are modified

1.12.33 tabdest

tabdest(ObitObj, tabType, tabVer)

53

Delete a table

Deletes associated tables

ObitObj = Python Obit object with tables

tabType = Table type, NB AIPS tables names start with "AIPS "

e.g. "AIPS CC"

tabVer = table version, 0=> highest, <0 => all

1.12.34 tget

tget(inn, file=None)

Restore task object from disk

Restore values in task object

inn = task name, or a task object of the desired type

in the latter case, the input object will NOT be modified

file = optional file name, the default is <task_name>.pickle

in the current working directory

1.12.35 tput

tput(to, file=None)

save task object

save values in task object

to = task object to save

file = optional file name, the default is <task_name>.pickle

in the current working directory

1.12.36 tvlod

tvlod(image, window=None)

display image

image = Obit Image, created with getname, getFITS

window = Optional window for image to edit

1.12.37 tvstat

tvstat(inImage)

Set region in an image using the display and tell mean, rms

Returns dictionary with statistics of selected region with entries:

Mean = Mean value

RMSHist = RMS value from a histogram analysis

RMS = Simple RMS value

Max = maximum value

MaxPos = pixel of maximum value

Min = minimum value

54

MinPos = pixel of minimum value

inImage = Python Image object, created with getname, getFITS

1.12.38 uvTabSave

uvTabSave(inUV, filename, outDisk, err, \

exclude=[’AIPS HI’, ’AIPS_AN’, ’AIPS FQ’, ’AIPS PL’, ’AIPS SL’],\

include=[])

Write UV data tables (but not data) to a FITS file

Write tables associated with UV data set as a FITAB format file

History written to header

inUV = UV data to copy

filename = name of FITS file

inDisk = FITS directory number

err = Python Obit Error/message stack

exclude = List of table types NOT to copy

NB: "AIPS HI" isn’t really a table and gets copied anyway

include = List of table types to copy (FQ, AN always done)

returns FITS UV data object

1.12.39 uvlod

uvlod(filename, inDisk, Aname, Aclass, Adisk, Aseq, err)

Load FITS UV data to AIPS

Read a UVTAB FITS UV data file and write an AIPS data set

filename = name of FITS file

inDisk = FITS directory number

Aname = AIPS name of file

Aclass = AIPS class of file

Aseq = AIPS sequence number of file

Adisk = FITS directory number

err = Python Obit Error/message stack

returns AIPS UV data object

1.12.40 uvtab

uvtab(inUV, filename, outDisk, err, compress=False,

exclude=[’AIPS HI’, ’AIPS AN’, ’AIPS FQ’, ’AIPS SL’, ’AIPS PL’],

include=[], headHi=False)

Write UV data as FITS file

Write a UV data set as a FITAB format file

History written to header

inUV = UV data to copy

filename = name of FITS file

inDisk = FITS directory number

err = Python Obit Error/message stack

55

exclude = List of table types NOT to copy

NB: "AIPS HI" isn’t really a table and gets copied anyway

include = List of table types to copy (FQ, AN always done)

Exclude has presidence over include

headHi = if True move history to header, else leave in History table

returns FITS UV data object

1.12.41 window

window(image)

Make a window object for an image

Returns OWindow object

image = Obit image object

1.12.42 zap

zap(o)

Zap object o

Delete Image, UV or OTF data files

Removes all external components (files)

o = Obit Data object to delete

1.13 OTObit Data

The OTObit environment contains a number of useful pieces of information concerning your current
session. These should all be imported into the scripting or interactive environment at startup.

AIPSdisks = [’/usr/AIPS/DATA/GOLLUM_1’, ’/usr/AIPS/DATA/GOLLUM_2’, ’/u...

Adisk = 1

FITSdisks = [’/usr/AIPS/FITS’]

Fdisk = 1

ObitSys = <C OSystem instance>

dir = None

disp = <C ODisplay instance> ObitView

dsk = ’DA10’

err = <C OErr instance>

nAIPS = 8

nFITS = 1

popsno = 1

userno = 103

1.14 Remote Usage

In order to run tasks or scripts or access data on a remote machine, an ObitTalkServer must be
running on the remote host and the client ObitTalk must be told the URL of the remote server
and the list of directory names on the remote host.

56

1.14.1 ObitTalkServer

The target host machine must have installed AIPS and Obit systems. Remote access is provided
through a ObitTalkServer process which can be started once the initial AIPS processes are run
to define the standard AIPS directories. Note: this does NOT include the AIPS data directories
$DA01 The default is for ObitTalkServer to watch port 8000 although this can be modified in the
ObitTalkServer script. The xmlrpc URL of this server process is then ’http://mymachine.org:8000/RPC2’
where mymachine.org is a suitable network name for the host. The host must allow client access
to port 8000.

An example of creating a remote AIPSImage is:

>>> ai=AIPSImage("3C43","PCube",disk,1)

This can then be displayed on a running ObitView by either:

>>> tvlod(ai)

to display of the current ObitView display, or

>>> ai.display(url)

where url is the optional url of an ObitView server. Note: if url is not specified and the local
ObitView server is the default, the default server display will be used; this is likely to seldom be
the desired effect so you should use the second form and give the url of your ObitView as seen by
the remote server.

1.14.2 Remote data directories

The set of AIPS data directories on a machine depends on a number of factors, login name, user
number, system configuration files as well as command line arguments. Due to this complexity,
the current configuration of ObitTalk does not allow an automated discovery of these directories
and they must be explicitly supplied. After the ObitTalk startup has initialized the local data
directories, remote AIPS directories can be defined:

>>> url = ’http://mymachine.org:8000/RPC2’

>>> dirname = ’/export/data_1/aips/DATA/MINE_1’

>>> disk = len(AIPS.AIPS.disks)

>>> AIPS.AIPS.disks.append(AIPS.AIPSDisk(url, disk, dirname))

This directory will then be accessable as disk disk. Note: to define an additional local AIPS disk,
set url to None. The function AIPSCat(disk) will give a directory listing of this directory, tasks
and the AIPSUVData and AIPSImage classes can access data in these directories. For a task to
use remote data, all “disks” specified must be on the same host. Disk numbers on the task object
will automatically be translated to the local numbers on the remote host. Note: ObitTalk uses
disks to determine where a task is to be run so NO disk numbers may be defaulted. Example usage
follows:

>>> url=’http://192.168.1.140:8000/RPC2’

>>> dirname=’/export/data_1/aips/DATA/VINO_1’

>>> disk = len(AIPS.AIPS.disks)

>>> AIPS.AIPS.disks.append(AIPS.AIPSDisk(url, disk, dirname))

>>> t=ObitTask("Template")

>>> t.DataType=’AIPS’

>>> t.inDisk=disk

>>> t.inName=’0319+415’

>>> t.inClass=’IClean’

57

>>> t.inSeq=1

>>> t.g

[1, ’** Message: info : TEMPLATE Begins’]

[1, ’** Message: info : TEMPLATE: mean -0.000005 RMS 0.000736’]

[1, ’** Message: info : TEMPLATE Ends’]

or an AIPS task:

>>> AIPS.AIPS.disks.append(AIPS.AIPSDisk(url, disk, dirname))

>>> im=AIPSTask("imean")

>>> im.indisk=disk

>>> im.inname=’0319+415’

>>> im.inclass=’IClean’

>>> im.inseq=1

>>> im.g

IMEAN1: Task IMEAN (release of 31DEC05) begins

IMEAN1: Initial guess for PIXSTD taken from ACTNOISE inheader

IMEAN1: Image= 0319+415 .IClean. 1 1 xywind= 1 1 397 397

IMEAN1: Mean and rms found by fitting peak in histogram:

IMEAN1: Mean=-1.7323E-05 Rms= 7.2413E-04 **** from histogram

IMEAN1: Mean and rms found by including all data:

IMEAN1: Mean=-4.8774E-06 Rms= 7.3894E-04 JY/BEAM over 20441 pixels

IMEAN1: Flux density = -5.3379E-03 Jy. beam area = 18.68 pixels

IMEAN1: Minimum=-2.4419E-03 at 397 350 1 1

IMEAN1: Skypos: RA 03 20 09.53788 DEC 41 26 27.4046

IMEAN1: Maximum= 2.8951E-03 at 300 378 1 1

IMEAN1: Skypos: RA 03 20 12.14383 DEC 41 26 35.8283

IMEAN1: Skypos: IPOL 4860.100 MHZ

IMEAN1: returns adverbs to AIPS

IMEAN1: Appears to have ended successfully

IMEAN1: vino 31DEC05 TST: Cpu= 0.0 Real= 0

Note: since the task definition is likely obtained from the client host, be sure the versions of
Obit and AIPS are compatable.

1.14.3 ObitScript class

Any file containing python instructions can be fed to ObitTalk as a command line argument in a
non interactive session. Scripts can also be use in interactive sessions using the ObitScript class.
The ObitScript class allows defining scripts that can be executed either locally or remotely on a
host with a running ObitTalkServer. Scripts are similar to tasks and share many properties like
synchronous or asynchronous operation. Scripts may use all Obit classes with python bindings for
data local to the host on which it is executing and has all the task and remote data access available
interactively. Note: before a script can be run on a remote machine, the AIPS data directories on
the remote host must be entered into list of disks as described above.

Scripts are text strings containing valid commands. Note: the script must follow python inden-
tention rules, a backslash n (cannot be said in latex) indicates a line break. Scripts can be supplied
as simple strings, a list of strings or the name of a file containing the text of the script. An example
usage follows

>>> import ObitScript

58

>>> script = \

>>> ’im=Image.newPAImage("image","0900+398III","IClean",1,23,True,err)\n’+ \

>>> ’im.Header(err)\n’

>>> s=ObitScript.ObitScript("myScript", script=script)

>>> s.i # Show script text

Listing of script myScript

im=Image.newPAImage("image","0900+398III","IClean",1,23,True,err)

im.Header(err)

>>> s.g

** Message: info : myScript Begins

User 100

AIPS Image Name: 0900+398III Class: IClean seq: 23 disk: 1

Object: 0900+398

Observed: 2005-04-04 Telescope: VLA Created: 2007-02-09

Observer: AP452 Instrument: VLA

Minimum = -0.74624 Maximum = 33.584 JY/BEAM

--

Type Pixels Coord value at Pixel Coord incr Rotat

RA---SIN 256 9 9 33.38948 129.00 -20 0.00

DEC--SIN 256 42 53 47.3748 129.00 20 0.00

FREQ 1 7.3794e+07 1.00 1.46484e+06 0.00

STOKES 1 IPol 1.00 1 0.00

--

Coordinate equinox 2000.0 Coordinate epoch 2000.00

Observed RA 9 0 0.00000 Observed Dec 39 47 60.0000

Phase shifted in X 1.836 in Y 3.096

no. Comp 1

Clean Beam 76.3171 x 71.8424 asec, PA -68.5 deg.

Rest freq 0 Vel type: Observer, wrt Optical

Alt ref value 0 wrt pixel 0.00

Maximum version number of AIPS CC tables is 1

Maximum version number of AIPS HI tables is 1

** Message: info : myScript Ends

The execution of a script is done by wrapping the script in Obit initialization and shutdown
code and writing it to a disk file in /tmp where it is fed as the command line input to ObitTalk. If
the ObitScript object member debug is set to True then a copy of the script file will be saved.

The following describes the ObitScript class and can be obtained online by:

>>> help(ObitScript)

DESCRIPTION

This module provides the ObitScript class.

This class allows running Obit/python scripts either

locally or remotely

ObitScripts are derived from Task and share most of execution properties.

In particular, ObitScripts can be executed either locally or remotely.

In this context a script is a character string containing a sequence of

59

ObitTalk or other python commands and may be included when the script

object is created or attached later.

An example:

script="import OSystem

print ’Welcome user’,OSystem.PGetAIPSuser()

"

CLASSES

ObitScriptMessageLog

Task.Task(MinimalMatch.MinimalMatch)

ObitScript

class ObitScript(Task.Task)

This class implements running Obit/python Scripts

The ObitScript class, handles client-side script related operations.

Actual script operations are handled by server-side proxies.

For local operations, the server-side functionality is

implemented in the same address space but remote operation is

through an xmlrpc interface.

An ObitScript has an associated proxy, either local or remote.

A proxy is a module with interface functions,

local proxies are class modules from subdirectory Proxy with the

same name (i.e. ObitScript) and the server functions are implemented

there. Remote proxies are specified by a URL and a proxy from the

xmlrpclib module is used.

Method resolution order:

ObitScript

Task.Task

MinimalMatch.MinimalMatch

Methods defined here:

__call__(self)

__getattr__(self, name)

__init__(self, name, **kwds)

Create ObitScript task object

Creates Script Object.

name = name of script object

Optional Keywords:

script = Script to execute as string or list of strings

file = Name of text file containing script

URL = URL on which the script is to be executed

60

Default = None = local execution

AIPSDirs = List of AIPS directories on URL

Default = current AIPS directories on url

FITSDirs = List of FITS directories on URL

Default = current FITS directories on url

AIPSUser = AIPS user number for AIPS data files

Default is current

version = AIPS version string, Default = current

Following is a list of class members:

url = URL of execution server, None=Local

proxy = Proxy for URL

script = Script as text string

userno = AIPS user number

AIPSDirs = List of AIPS directories on URL

FITSDirs = List of FITS directories on URL

AIPSUser = AIPS user number for AIPS data files

version = AIPS version string

_message_list = messages from Script execution

__setattr__(self, name, value)

abort(self, proxy, tid, sig=15)

Abort the script specified by PROXY and TID.

Calls abort function for task tid on proxy.

None return value

proxy = Proxy giving access to server

tid = Task id in pid table of process to be terminated

sig = signal to sent to the task

explain(self)

List script

feed(self, proxy, tid, banana)

Feed the script a BANANA.

Pass a message to a running script’s sdtin

proxy = Proxy giving access to server

tid = Script task id in pid table of process

bananna = text message to pass to script input

finished(self, proxy, tid)

Determine if script has finished

Determine whether the script specified by PROXY and TID has

finished.

proxy = Proxy giving access to server

tid = Task id in pid table of process

61

go(self)

Execute the script.

Writes task input parameters in the task parameter file and

starts the task synchronously returning only when the task

terminates. Messages are displayed as generated by the task,

saved in an array returned from the call and, if the task

member logFile is set, written to this file.

help(self)

List script.

inputs(self)

List script

messages(self, proxy=None, tid=None)

Return task messages

Returns list of messages and appends them to the object’s

message list.

proxy = Proxy giving access to server

tid = Task id in pid table of process

outputs(self)

Not defined.

spawn(self)

Spawn the script.

Starts script asynchronously returning immediately

Messages must be retrieved calling messages.

Returns (proxy, tid)

wait(self, proxy, tid)

Wait for the script to finish.

proxy = Proxy giving access to server

tid = Task id in pid table of process

--

Data and other attributes defined here:

AIPSDirs = []

FITSDirs = []

debug = False

62

doWait = False

isbatch = 32000

logFile = ’’

msgkill = 0

proxy = <module ’LocalProxy’ from ’/export/users/bcotton/share/obittal...

script = ’’

url = None

userno = 0

version = ’TST’

--

Methods inherited from MinimalMatch.MinimalMatch:

__repr__(self)

class ObitScriptMessageLog

Methods defined here:

__init__(self)

zap(self)

Zap message log.

--

Data and other attributes defined here:

userno = -1

1.15 Local Python Data Interface Classes

Local and remote script execution data access is allowed through the direct python bindings to the
data classes. These classes are Image, UV (radio interferometric data) which are derived from the
base OData class. Most of the top level class functionality, e.g. making an image from a data set,
are available through these classes. The online documentation for these classes can be obtained by

>>> help(Image)

>>> help(UV)

>>> import OTF; help(OTF)

Class members are accessed as using the “object name.value” form as

>>> header=uv.Desc.Dict

63

to get the “header” from uv data uv as a python dict. Class functions (have “self” as an argument
are called as

>>> uv.Header(err)

Note, “self” not included directly in the argument. Functions which do not have “self” as an
argument (usually have names starting with ’P’) need to include the class:

>>> UV.PHeader(uv, err)

All data ojects have a Descriptor (the “Desc” member) which can be read and written (requires
open and close of data object). Conversion between the c memory resident forms and a python
dict is by means of the “Dict” member of the descriptor classes:

>>> d=uv.Desc.Dict

>>> d

{’origin’: ’Obit ’, ’jlocr’: 4, ’obsdat’: ’1996-11-16’, ’equinox’: 2000.0,

’observer’: ’AC473 ’,

’ptype’: [’UU-L-SIN’, ’VV-L-SIN’, ’WW-L-SIN’, ’BASELINE’, ’TIME1 ’],

’ilocid’: -1, ’obsdec’: 30.2984147222, ’xshift’: 0.0, ’ilocws’: -1,

’jlocd’: 5, ’restFreq’: 0.0, ’ilocsu’: -1, ’nvis’: 1594634, ’ilocb’: 3,

’ilocv’:1, ’ilocw’: 2, ’iloct’: 4, ’ilocu’: 0, ’nrparm’: 5, ’instrume’: ’VLA’,

’epoch’:2000.0, ’isort’: ’TB’, ’VelDef’: 0, ’inaxes’: [3, 2, 30, 1, 1, 1, 0],

’yshift’: 0.0, ’ilocit’: -1, ’object’: ’MCFIELD ’,

’ctype’: [’COMPLEX ’, ’STOKES ’, ’FREQ ’, ’IF ’, ’RA ’, ’DEC ’],

’cdelt’: [1.0, -1.0, 97656.25, 1.0, 1.0, 1.0, 0.0], ’jlocif’: 3,

’JDObs’: 2450403.5, ’date’: ’2007-07-07’, ’ilocfq’: -1, ’jlocf’: 2, ’VelReference’: 3,

’ncorr’: 60, ’jlocc’: 0, ’crpix’: [1.0, 1.0, 16.0, 1.0, 1.0, 1.0, 1.0], ’jlocs’: 1,

’name’: ’AIPS UV data’, ’teles’: ’VLA ’, ’altRef’: 125100.0,

’numVisBuff’: 0, ’naxis’: 6, ’crota’: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],

’bunit’:’UNCALIB ’, ’firstVis’: 0, ’altCrpix’: 16.0, ’obsra’: 195.75129125000001,

’crval’: [1.0, -1.0, 316562500.0, 1.0, 195.75129125000001, 30.2984147222, 0.0]}

1.15.1 Obit python Image class

The interface to Images use FArray objects to store the pixel data. The FArray class allows efficient
pixel manipulation and knows about magic value blanking of pixels. The data arrays in memory can
also be access for use with NumPy. Further functions are available in python modules ImageUtil,
CleanImage, ConvUtil, ImageMosaic, MosaicUtil and Feather modules The following describes the
Image class.

NAME

Image - Python Obit Image class

DESCRIPTION

This class contains an astronomical image and allows access.

An ObitImage is the front end to a persistent disk resident structure.

Magic value blanking is supported, blanked pixels have the value

OBIT_MAGIC (ObitImageDesc.h).

Pixel data are kept in an FArray structure which is how Python acceses the data.

There may be associated tables (e.g. "AIPS CC" tables).

Both FITS and AIPS cataloged images are supported.

64

Image Members with python interfaces:

exist - True if object previously existed prior to object creation

InfoList - used to pass instructions to processing

ImageDesc - Astronomical labeling of the image Member Desc

FArray - Container used for pixel data Member FArray

PixBuf - memory pointer into I/O Buffer, can be used to pass

data to NumPy

Additional Functions are available in ImageUtil.

CLASSES

OData.OData(OData.ODataPtr)

Image

class Image(OData.OData)

Python Obit Image class

Additional Functions are available in ImageUtil.

Method resolution order:

Image

OData.OData

OData.ODataPtr

Methods defined here:

Clone(self, outImage, err)

Make a copy of a object but do not copy the actual data

This is useful to create an Image similar to the input one.

self = Python Image object

outImage = Output Python Image object, must be defined

err = Python Obit Error/message stack

Close(self, err)

Close an image persistent (disk) form

self = Python Image object

err = Python Obit Error/message stack

Copy(self, outImage, err)

Make a deep copy of input object.

Makes structure the same as self, copies data, tables

self = Python Image object to copy

outImage = Output Python Image object, must be defined

err = Python Obit Error/message stack

GetPlane(self, array, plane, err)

65

Read an image persistent (disk) form to an (optional) specified FArray

The data to be read is specified in the InfoList member as modified by plane

self = Python Image object

array = Python FArray to accept data, if None use inImage buffer

plane = array of 5 integers giving (1-rel) pixel numbers

err = Python Obit Error/message stack

Header(self, err)

Write image header on output

self = Python Obit Image object

err = Python Obit Error/message stack

ImageIsA(self)

Tells if input really a Python Obit Image

return true, false (1,0)

self = Python UV object

Info(self, err)

Get underlying data file info

self = Python Obit Image object

err = Python Obit Error/message stack

Open(self, access, err, blc=None, trc=None)

Open an image persistent (disk) form

self = Python Image object

access = access READONLY (1), WRITEONLY (2), READWRITE(3)

err = Python Obit Error/message stack

blc = if given and a list of integers (min 2) giving

bottom left corner (1-rel) of subimage

trc = if given and a list of integers (min 2) giving

top right corner (1-rel) of subimage

PutPlane(self, array, plane, err)

Write an image persistent (disk) form from an (optional) specified FArray

The data to be written is specified in the InfoList member as modified by plane

self = Python Image object

array = Python FArray to provide data, if None use inImage buffer

plane = array of 5 integers giving (1-rel) pixel numbers

err = Python Obit Error/message stack

Read(self, err)

Read an image persistent (disk) form

66

The data to be read is specified in the InfoList mamber

Uses FArray member as buffer.

self = Python Image object

err = Python Obit Error/message stack

ReadFA(self, array, err)

Read an image persistent (disk) form to a specified FArray

The data to be read is specified in the InfoList member

self = Python Image object

array = Python FArray to accept data

err = Python Obit Error/message stack

ReadPlane(self, err, blc=None, trc=None)

Read an image plane into the FArray

Reads the plane specified by blc, trc

into the FArray associated with the image

self = Python Image object

err = Python Obit Error/message stack

blc = if given and a list of integers (min 2) giving

bottom left corner (1-rel) of subimage

trc = if given and a list of integers (min 2) giving

top right corner (1-rel) of subimage

returns Python FArray from Image with data read

Scratch(self, err)

Create a scratch file suitable for accepting the data to be read from self

A scratch Image is more or less the same as a normal Image except that it is

automatically deleted on the final unreference.

self = Python Image object

err = Python Obit Error/message stack

UpdateDesc(self, err, Desc=None)

Update any disk resident structures about descriptor

self = Python Image object

err = Python Obit Error/message stack

Desc = Descriptor, if None then use current descriptor

Contents can be accessed throuth the Dict member

Write(self, err)

Write an image persistent (disk) form

The data to be written is specified in the InfoList member

Uses FArray member as buffer.

67

self = Python Image object

err = Python Obit Error/message stack

WriteFA(self, array, err)

Write an image persistent (disk) form from a specified FArray

The data to be written is specified in the InfoList member

self = Python Image object

array = Python FArray to write

err = Python Obit Error/message stack

WritePlane(self, imageData, err)

Write an image plane.

Writes the plane specified by blc, trc on image infoList

Checks if the current FArray on Image is compatable with

imageData.

self = Python Image object

imageData = Python FArray with data to write

err = Python Obit Error/message stack

__del__(self)

__getattr__(self, name)

__init__(self, name)

__repr__(self)

__setattr__(self, name, value)

cast(self, toClass)

Casts object pointer to specified class

self = object whose cast pointer is desired

toClass = Class string to cast to ("ObitImage")

--

Methods inherited from OData.OData:

CopyTables(self, outOData, exclude, include, err)

Copy Tables from one OData to another

self = Python OData object

outOData = Output Python OData object, must be defined

exclude = list of table types to exclude (list of strings)

has priority

include = list of table types to include (list of strings)

68

err = Python Obit Error/message stack

Dirty(self)

Mark OData as needing a header update to disk file

self = Python OData object

FullInstantiate(self, access, err)

Fully instantiate an OData by opening and closing

return 0 on success, else failure

self = Python OData object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

GetHighVer(self, tabType)

Get highest version number of a specified Table

returns highest tabType version number, 0 if none.

self = Python OData object

tabType = Table type, e.g. "OTFSoln"

GetName(self)

Tells OData object name (label)

returns name as character string

self = Python OData object

History(self, access, err)

Return the associated History

self = Python OData object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

IsScratch(self)

Tells if OData is a scratch object

return true, false (1,0)

self = Python OData object

NewTable(self, access, tabType, tabVer, err, numOrb=0,

numPCal=3, numIF=1, numPol=1, numTerm=0, numChan=1,

numTones=1, numBand=1, numTabs=1, npoly=1, numCoef=5, noParms=0)

Return the specified associated table

Table will be created if necessary.

self = Python OData object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

69

tabType = Table type, e.g. "AIPS AN"

tabVer = table version, if > 0 on input that table returned,

if 0 on input, the highest version is used.

err = Python Obit Error/message stack

Optional parameters, values only used if table created

numOrb = Number of orbital parameters (AN)

numPCal = Number of polarization parameters (AN)

numIF = Number of IFs (FQ, SN, CL, BP, BL, TY, CQ)

numPol = Number of Stokes’ (SN, CL, BP, BL, PC, TY, GC, MC, IM)

numTerm = Number of terms in model polynomial (CL)

numChan = Number of spectral channels (BP)

numTomes = Number of Phase cal tones (PC)

numTabs = Number of ??? (GC)

numCoef = Number of polynomial coefficents (NI)

numBand = Number of Bands(?) (IM, GC)

npoly = number of polynomial terms (IM)

noParms = Number of parameters in CC table model

maxis1-5 = Dimension of axes of IDI data matrix

ODataIsA(self)

Tells if input really a Python Obit OData

return true, false (1,0)

self = Python OData object

Rename(self, err, newFITSName=None, newAIPSName=’ ’,

newAIPSClass=’ ’, newAIPSSeq=0)

Rename underlying files

self = Python OData object

err = Python Obit Error/message stack

For FITS files:

newFITSName = new name for FITS file

For AIPS:

newAIPSName = New AIPS Name (max 12 char) Blank => don’t change.

newAIPSClass = New AIPS Class (max 6 char) Blank => don’t change.

newAIPSSeq = New AIPS Sequence number, 0 => unique value

UpdateTables(self, err)

Update any disk resident structures about the current tables

Returns 0 on success

self = Python Image object

err = Python Obit Error/message stack

Zap(self, err)

Delete underlying files and the basic object.

70

self = Python OData object

err = Python Obit Error/message stack

ZapTable(self, tabType, tabVer, err)

Destroy specified table

Returns 0 on success

self = Python OData object

tabType = Table type, e.g. "AIPS CC"

tabVer = table version, integer

err = Python Obit Error/message stack

FUNCTIONS

ObitName(ObitObject)

Return name of an Obit object or input if not an Obit Object

PClone(inImage, outImage, err)

Make a copy of a object but do not copy the actual data

This is useful to create an Image similar to the input one.

inImage = Python Image object

outImage = Output Python Image object, must be defined

err = Python Obit Error/message stack

PClone2(inImage1, inImage2, outImage, err)

Make a copy of a object but do not copy the actual data

inImage1 = Python Image object to clone

inImage2 = Python Image object whose geometry is to be used

outImage = Output Python Image object, must be defined,

will be defined as Memory only

err = Python Obit Error/message stack

PCloneMem(inImage, outImage, err)

Make a Memory only clone of an Image structure

This is useful for temporary structures

inImage = Python Image object

outImage = Output Python Image object, must be defined

err = Python Obit Error/message stack

PClose(inImage, err)

Close an image persistent (disk) form

inImage = Python Image object

err = Python Obit Error/message stack

71

PCompare(in1Image, in2Image, err, plane=[1, 1, 1, 1, 1])

Compare a plane of two images

returns list [max. abs in1Image, max abs difference, RMS difference]

in1Image = Python Image object

in2Image = Python Image object, on output, the FArray contains the difference.

err = Python Obit Error/message stack

plane = plane to compare

PCopy(inImage, outImage, err)

Make a deep copy of input object.

Makes structure the same as inImage, copies data, tables

inImage = Python Image object to copy

outImage = Output Python Image object, must be defined

err = Python Obit Error/message stack

PCopyQuantizeFITS(inImage, outImage, err, fract=0.25, quant=None, inHistory=None)

Make a copy of an image quantizing to a 16 or 32 bit integer

FITS image

inImage = Python Image object

outImage = Output Python Image object, must be defined

but not fully created

err = Python Obit Error/message stack

fract = quantization level as a fraction of the plane min. RMS

quant = quantization level in image units, has precedence over fract

None or <= 0 => use fract.

inHistory = if given a History object to copy to the output FITS header

PCopyTables(inImage, outImage, exclude, include, err)

Copy Tabeles from one image to another

inImage = Python Image object

outImage = Output Python Image object, must be defined

exclude = list of table types to exclude (list of strings)

has priority

include = list of table types to include (list of strings)

err = Python Obit Error/message stack

PDirty(inImage)

Mark Image as needing a header update to disk file

inImage = Python Image object

PFArray2FITS(inArray, outFile, err, outDisk=1, oDesc=None)

Write an FArray to a FITS image

72

Very rudimentary header attached

Returns image object

inArray = Python FArray object

outFile = Name of FITS file

outDisk = FITS disk number

oDesc = None or ImageDescriptor to be written

err = Python Obit Error/message stack

PFArray2Image(inArray, outImage, err)

Attach an FArray to an image and write it

Very rudimentary header attached

inArray = Python Image object

outImage = Python Image to write

err = Python Obit Error/message stack

PFullInstantiate(inImage, access, err)

Fully instantiate an Image by opening and closing

return 0 on success, else failure

inImage = Python Image object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

PGetBeam(inImage)

Return Beam attached to Image

returns Beam with image pixel data

inImage = Python Image object

PGetDesc(inImage)

Return the member ImageDesc

returns ImageDesc as a Python Dictionary

inImage = Python Image object

PGetFArray(inImage)

Return FArray used to buffer Image data

returns FArray with image pixel data

inImage = Python Image object

PGetHighVer(inImage, tabType)

Get highest version number of a specified Table

returns highest tabType version number, 0 if none.

inImage = Python Image object

tabType = Table type, e.g. "OTFSoln"

73

PGetList(inImage)

Return the member InfoList

returns InfoList

inImage = Python Image object

PGetName(inImage)

Tells Image object name (label)

returns name as character string

inImage = Python Image object

PGetPixBuf(inImage)

Return python memory buffer for pixel array in memory

Can be used to pass data to NumPy

inImage = Python Image object

PGetPlane(inImage, array, plane, err)

Read an image persistent (disk) form to an (optional) specified FArray

The data to be read is specified in the InfoList member as modified by plane

inImage = Python Image object

array = Python FArray to accept data, if None use inImage buffer

plane = array of 5 integers giving (1-rel) pixel numbers

err = Python Obit Error/message stack

PGetTable(inImage, access, tabType, tabVer, err, noParms=0)

Return (create) the specified associated table

Specific table types are recognized and the appropriate constructor

called, these may have additional parameters. This allows creating

new tables of the appropriate type.

returns Python Obit Table

inImage = Python Image object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

tabType = Table type, e.g. "AIPS AN", or "OTFSoln"

tabVer = table version, if > 0 on input that table returned,

if 0 on input, the highest version is used.

err = Python Obit Error/message stack

noParms = Number of parameters in CC table model

PGetTableList(inImage)

Return the member tableList

returns tableList

inImage = Python Image object

74

PHeader(inImage, err)

Print image descriptor

inImage = Python Image object

err = Python Obit Error/message stack

PImageGetTable(inImage, access, tabType, tabVer, err)

Obsolete use PGetTable

PIsA(inImage)

Tells if input really a Python Obit Image

return True, False (1,0)

inImage = Python Image object

PIsScratch(inImage)

Tells if Image is a scratch object

return true, false (1,0)

inImage = Python Image object

POpen(inImage, access, err, blc=None, trc=None)

Open an image persistent (disk) form

inImage = Python Image object

access = access READONLY (1), WRITEONLY (2), READWRITE(3)

err = Python Obit Error/message stack

blc = if given and a list of integers (min 2) giving

bottom left corner (1-rel) of subimage

trc = if given and a list of integers (min 2) giving

top right corner (1-rel) of subimage

PPutPlane(inImage, array, plane, err)

Write an image persistent (disk) form from an (optional) specified FArray

The data to be written is specified in the InfoList member as modified by plane

inImage = Python Image object

array = Python FArray to provide data, if None use inImage buffer

plane = array of 5 integers giving (1-rel) pixel numbers

err = Python Obit Error/message stack

PRead(inImage, err)

Read an image persistent (disk) form

The data to be read is specified in the InfoList mamber

Uses FArray member as buffer.

inImage = Python Image object

err = Python Obit Error/message stack

75

PReadFA(inImage, array, err)

Read an image persistent (disk) form to a specified FArray

The data to be read is specified in the InfoList member

inImage = Python Image object

array = Python FArray to accept data

err = Python Obit Error/message stack

PReadPlane(inImage, err, blc=None, trc=None)

Read an image plane into the FArray

Reads the plane specified by blc, trc

into the FArray associated with the image

inImage = Python Image object

err = Python Obit Error/message stack

blc = if given and a list of integers (min 2) giving

bottom left corner (1-rel) of subimage

trc = if given and a list of integers (min 2) giving

top right corner (1-rel) of subimage

returns Python FArray from Image with data read

PScratch(inImage, err)

Create a scratch file suitable for accepting the data to be read from inImage

A scratch Image is more or less the same as a normal Image except that it is

automatically deleted on the final unreference.

inImage = Python Image object

err = Python Obit Error/message stack

PSetBeam(inImage, beam)

Replace the Beam attached to an Image

inImage = Python Image object

beam = Python Beam Image to attach

PSetFArray(inImage, array)

Replace the FArray on an Image

inImage = Python Image object

array = Python FArray to attach

PSwapAxis(inImage, err, ax1=3, ax2=4)

Swap axes on an image

The order of two adjacent axes may be swapped if the dimensionality

of at least one of them is 1

inImage = Image whose axes are to be swapped

76

err = Python Obit Error/message stack

ax1 = first (1-rel) axis number

ax2 = second (1-rel) axis number

PUnref(inImage)

Decrement reference count

Decrement reference count which will destroy object if it goes to zero

Python object stays defined.

inImage = Python Image object

PUpdateDesc(inImage, err, Desc=None)

Update external representation of descriptor

inImage = Python Image object

err = Python Obit Error/message stack

Desc = Image descriptor, if None then use current descriptor

PUpdateTables(inImage, err)

Update any disk resident structures about the current tables

inImage = Python Image object

err = Python Obit Error/message stack

PWrite(inImage, err)

Write an image persistent (disk) form

The data to be written is specified in the InfoList member

Uses FArray member as buffer.

inImage = Python Image object

err = Python Obit Error/message stack

PWriteFA(inImage, array, err)

Write an image persistent (disk) form from a specified FArray

The data to be written is specified in the InfoList member

inImage = Python Image object

array = Python FArray to write

err = Python Obit Error/message stack

PWritePlane(Image, imageData, err)

Write an image plane.

Writes the plane specified by blc, trc on image infoList

Checks if the current FArray on Image is compatable with

imageData.

Image = Python Image object

imageData = Python FArray with data to write

77

err = Python Obit Error/message stack

PZap(inImage, err)

Delete underlying files and the basic object.

inImage = Python Image object

err = Python Obit Error/message stack

PZapTable(inImage, tabType, tabVer, err)

Destroy specified table

inImage = Python Image object

tabType = Table type, e.g. "AIPS CC"

tabVer = table version, integer

err = Python Obit Error/message stack

input(inputDict)

Print the contents of an input Dictionary

inputDict = Python Dictionary containing the parameters for a routine

newObit(name, filename, disk, exists, err)

Create and initialize an Image structure

Create, set initial access information (full image, plane at a time)

and if exists verifies the file.

Returns the Python Image object

name = name desired for object (labeling purposes)

filename = name of FITS file

disk = FITS directory number

exists = if true then the file is opened and closed to verify

err = Python Obit Error/message stack

newPACNO(disk, cno, exists, err, verbose=True)

Create and initialize an AIPS based Image structure

Create, set initial access information (full image, plane at a time)

and if exists verifies the file.

Returns the Python Image object

isOK member set to indicate success

disk = AIPS directory number

cno = AIPS catalog number

exists = if true then the file is opened and closed to verify

err = Python Obit Error/message stack

verbose = If true any give error messages, else suppress

newPAImage(name, Aname, Aclass, disk, seq, exists, err, verbose=True)

Create and initialize an AIPS based Image structure

78

Create, set initial access information (full image, plane at a time)

and if exists verifies the file.

Returns the Python Image object

isOK member set to indicate success

name = name desired for object (labeling purposes)

Aname = AIPS name of file

Aclass = AIPS class of file

seq = AIPS sequence number of file

disk = FITS directory number

exists = if true then the file is opened and closed to verify

err = Python Obit Error/message stack

verbose = If true any give error messages, else suppress

newPFImage(name, filename, disk, exists, err, verbose=True)

Create and initialize an FITS based Image structure

Create, set initial access information (full image, plane at a time)

and if exists verifies the file.

isOK member set to indicate success

Returns the Python Image object

name = name desired for object (labeling purposes)

filename = name of FITS file

disk = FITS directory number

exists = if true then the file is opened and closed to verify

err = Python Obit Error/message stack

verbose = If true any give error messages, else suppress

1.15.2 Obit python UV class

Further utilities are available in the SkyModel, IonCal, CleanVis UVSelfCal, UVGSolve, UVImager,
and UVSoln2Cal python modules. The following describes the UV class.

NAME

UV - Python Obit inteferometer (UV) data class

DESCRIPTION

This class contains interoferometric data and allows access.

An ObitUV is the front end to a persistent disk resident structure.

There maybe (usually are) associated tables which either describe

the data or contain calibration and/or editing information.

Both FITS (as Tables) and AIPS cataloged data are supported.

Most access to UV data is through functions as the volume of the data is

inappropriate to be processed directly in python.

UV Members with python interfaces:

exist - True if object previously existed prior to object creation

List - used to pass instructions to processing

Desc - Astronomical labeling of the data

79

TableList - List of tables attached

VisBuf - memory pointer into I/O Buffer, can be used to pass

data to NumPy

Data selection, calibration and editing parameters on List member:

"doCalSelect" bool (1,1,1) Select/calibrate/edit data?

"Stokes" string (4,1,1) Selected output Stokes parameters:

" "=> no translation,"I ","V ","Q ", "U ",

"IQU ", "IQUV", "IV ", "RR ", "LL ", "RL ", "LR ",

"HALF" = RR,LL, "FULL"=RR,LL,RL,LR. [default " "]

In the above ’F’ can substitute for "formal" ’I’ (both RR+LL).

"BChan" int (1,1,1) First spectral channel selected. [def all]

"EChan" int (1,1,1) Highest spectral channel selected. [def all]

"BIF" int (1,1,1) First "IF" selected. [def all]

"EIF" int (1,1,1) Highest "IF" selected. [def all]

"doPol" int (1,1,1) >0 -> calibrate polarization.

"doCalib" int (1,1,1) >0 -> calibrate, 2=> also calibrate Weights

"gainUse" int (1,1,1) SN/CL table version number, 0-> use highest

"flagVer" int (1,1,1) Flag table version, 0-> use highest, <0-> none

"BLVer" int (1,1,1) BL table version, 0> use highest, <0-> none

"BPVer" int (1,1,1) Band pass (BP) table version, 0-> use highest

"Subarray" int (1,1,1) Selected subarray, <=0->all [default all]

"dropSubA" bool (1,1,1) Drop subarray info?

"FreqID" int (1,1,1) Selected Frequency ID, <=0->all [default all]

"timeRange" float (2,1,1) Selected timerange in days.

"UVRange" float (2,1,1) Selected UV range in kilowavelengths.

"InputAvgTime" float (1,1,1) Input data averaging time (sec).

used for fringe rate decorrelation correction.

"Sources" string (?,?,1) Source names selected unless any starts with

a ’-’ in which case all are deselected (with ’-’ stripped).

"souCode" string (4,1,1) Source Cal code desired, ’ ’ => any code selected

’* ’ => any non blank code (calibrators only)

’-CAL’ => blank codes only (no calibrators)

"Qual" int (1,1,1) Source qualifier, -1 [default] = any

"Antennas" int (?,1,1) a list of selected antenna numbers, if any is negative

then the absolute values are used and the specified antennas are deselected.

"corrtype" int (1,1,1) Correlation type, 0=cross corr only, 1=both, 2=auto only.

"passAll" bool (1,1,1) If True, pass along all data when selecting/calibration

even if it’s all flagged,

data deselected by time, source, antenna etc. is not passed.

"doBand" int (1,1,1) Band pass application type <0-> none

(1) if = 1 then all the bandpass data for each antenna

will be averaged to form a composite bandpass

spectrum, this will then be used to correct the data.

(2) if = 2 the bandpass spectra nearest in time (in a weighted

sense) to the uv data point will be used to correct the data.

(3) if = 3 the bandpass data will be interpolated in time using

the solution weights to form a composite bandpass spectrum,

80

this interpolated spectrum will then be used to correct the

data.

(4) if = 4 the bandpass spectra nearest in time (neglecting

weights) to the uv data point will be used to correct the

data.

(5) if = 5 the bandpass data will be interpolated in time ignoring

weights to form a composite bandpass spectrum, this

interpolated spectrum will then be used to correct the data.

"Smooth" float (3,1,1) specifies the type of spectral smoothing

Smooth(1) = type of smoothing to apply:

0 => no smoothing

1 => Hanning

2 => Gaussian

3 => Boxcar

4 => Sinc (i.e. sin(x)/x)

Smooth(2) = the "diameter" of the function, i.e.

width between first nulls of Hanning triangle

and sinc function, FWHM of Gaussian, width of

Boxcar. Defaults (if < 0.1) are 4, 2, 2 and 3

channels for Smooth(1) = 1 - 4.

Smooth(3) = the diameter over which the convolving

function has value - in channels.

Defaults: 1, 3, 1, 4 times Smooth(2) used when

"SubScanTime" float scalar [Optional] if given, this is the

desired time (days) of a sub scan. This is used by the

selector to suggest a value close to this which will

evenly divide the current scan.

0 => Use scan average.

This is only useful for ReadSelect operations on indexed ObitUVs.

CLASSES

OData.OData(OData.ODataPtr)

UV

class UV(OData.OData)

Python Obit inteferometer (UV) data class

UV Members with python interfaces:

List - used to pass instructions to processing

TableList - List of tables attached

Desc - Astronomical labeling of the data

VisBuf - memory pointer into I/O Buffer, can be used to pass

data to NumPy

Method resolution order:

UV

OData.OData

OData.ODataPtr

81

Methods defined here:

Clone(self, outUV, err)

Make a copy of a object but do not copy the actual data

This is useful to create an UV similar to the input one.

self = Python UV object

outUV = Output Python UV object, must be defined

err = Python Obit Error/message stack

Close(self, err)

Close a UV persistent (disk) form

returns 0 on success, else failure

self = Python UV object

err = Python Obit Error/message stack

Copy(self, outUV, err)

Make a deep copy of input object.

Makes structure the same as self, copies data, tables

self = Python UV object to copy

outUV = Output Python UV object, must be defined

err = Python Obit Error/message stack

Header(self, err)

Write image header on output

self = Python Obit UV object

err = Python Obit Error/message stack

Info(self, err)

Get underlying data file info

self = Python Obit UV object

err = Python Obit Error/message stack

Open(self, access, err)

Open a UV data persistent (disk) form

Returns 0 on success, else failure

self = Python UV object

access = access READONLY (1), WRITEONLY (2), READWRITE(3)

err = Python Obit Error/message stack

Read(self, err)

Read a UV persistent (disk) form

82

Reads into buffer attached to UV data, use VisBuf for access

Returns 0 on success, else failure

self = Python UV object

err = Python Obit Error/message stack

Scratch(self, err)

Create a scratch file suitable for accepting the data to be read from self

A scratch UV is more or less the same as a normal UV except that it is

automatically deleted on the final unreference.

self = Python UV object

err = Python Obit Error/message stack

UVIsA(self)

Tells if input really a Python Obit UV

return true, false (1,0)

self = Python UV object

UpdateDesc(self, err, Desc=None)

Update any disk resident structures about descriptor

self = Python UV object

err = Python Obit Error/message stack

Desc = Descriptor, if None then use current descriptor

Contents can be accessed throuth the Dict member

Write(self, err)

Write a UV persistent (disk) form

Writes buffer attached to UV data, use VisBuf for access

returns 0 on success, else failure

self = Python UV object

err = Python Obit Error/message stack

__del__(self)

__getattr__(self, name)

__init__(self, name)

__repr__(self)

__setattr__(self, name, value)

cast(self, toClass)

Casts object pointer to specified class

83

self = object whose cast pointer is desired

toClass = Class string to cast to ("ObitUV")

--

Methods inherited from OData.OData:

CopyTables(self, outOData, exclude, include, err)

Copy Tables from one OData to another

self = Python OData object

outOData = Output Python OData object, must be defined

exclude = list of table types to exclude (list of strings)

has priority

include = list of table types to include (list of strings)

err = Python Obit Error/message stack

Dirty(self)

Mark OData as needing a header update to disk file

self = Python OData object

FullInstantiate(self, access, err)

Fully instantiate an OData by opening and closing

return 0 on success, else failure

self = Python OData object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

GetHighVer(self, tabType)

Get highest version number of a specified Table

returns highest tabType version number, 0 if none.

self = Python OData object

tabType = Table type, e.g. "AIPS SN"

GetName(self)

Tells OData object name (label)

returns name as character string

self = Python OData object

History(self, access, err)

Return the associated History

self = Python OData object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

84

IsScratch(self)

Tells if OData is a scratch object

return true, false (1,0)

self = Python OData object

NewTable(self, access, tabType, tabVer, err, numOrb=0,

numPCal=3, numIF=1, numPol=1, numTerm=0, numChan=1,

numTones=1, numBand=1, numTabs=1, npoly=1, numCoef=5, noParms=0)

Return the specified associated table

Table will be created if necessary.

self = Python OData object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

tabType = Table type, e.g. "AIPS AN"

tabVer = table version, if > 0 on input that table returned,

if 0 on input, the highest version is used.

err = Python Obit Error/message stack

Optional parameters, values only used if table created

numOrb = Number of orbital parameters (AN)

numPCal = Number of polarization parameters (AN)

numIF = Number of IFs (FQ, SN, CL, BP, BL, TY, CQ)

numPol = Number of Stokes’ (SN, CL, BP, BL, PC, TY, GC, MC, IM)

numTerm = Number of terms in model polynomial (CL)

numChan = Number of spectral channels (BP)

numTomes = Number of Phase cal tones (PC)

numTabs = Number of ??? (GC)

numCoef = Number of polynomial coefficents (NI)

numBand = Number of Bands(?) (IM, GC)

npoly = number of polynomial terms (IM)

noParms = Number of parameters in CC table model

maxis1-5 = Dimension of axes of IDI data matrix

ODataIsA(self)

Tells if input really a Python Obit OData

return true, false (1,0)

self = Python OData object

Rename(self, err, newFITSName=None, newAIPSName=’ ’,

newAIPSClass=’ ’, newAIPSSeq=0)

Rename underlying files

self = Python OData object

err = Python Obit Error/message stack

For FITS files:

newFITSName = new name for FITS file

85

For AIPS:

newAIPSName = New AIPS Name (max 12 char) Blank => don’t change.

newAIPSClass = New AIPS Class (max 6 char) Blank => don’t change.

newAIPSSeq = New AIPS Sequence number, 0 => unique value

UpdateTables(self, err)

Update any disk resident structures about the current tables

Returns 0 on success

self = Python OData object

err = Python Obit Error/message stack

Zap(self, err)

Delete underlying files and the basic object.

self = Python OData object

err = Python Obit Error/message stack

ZapTable(self, tabType, tabVer, err)

Destroy specified table

Returns 0 on success

self = Python OData object

tabType = Table type, e.g. "AIPS CC"

tabVer = table version, integer

err = Python Obit Error/message stack

FUNCTIONS

PClone(inUV, outUV, err)

Make a copy of a object but do not copy the actual data

This is useful to create an UV similar to the input one.

inUV = Python UV object

outUV = Output Python UV object, must be defined

err = Python Obit Error/message stack

PClose(inUV, err)

Close an image persistent (disk) form

inUV = Python UV object

err = Python Obit Error/message stack

PCopy(inUV, outUV, err)

Make a deep copy of input object.

Makes structure the same as inUV, copies data, tables

inUV = Python UV object to copy

86

outUV = Output Python UV object, must be defined

err = Python Obit Error/message stack

PCopyTables(inUV, outUV, exclude, include, err)

Copy Tabeles from one image to another

inUV = Python UV object

outUV = Output Python UV object, must be defined

exclude = list of table types to exclude (list of strings)

has priority

include = list of table types to include (list of strings)

err = Python Obit Error/message stack

PDirty(inUV)

Mark UV as needing a header update to disk file

inUV = Python UV object

PEditClip(inUV, scratch, outUV, err)

Clip raw visibilities

control parameters on inUV info member

"maxAmp" OBIT_float (1,1,1) Maximum allowed amplitude

"oper" OBIT_string (4,1,1) operation type:

"flag" flag data with amplitudes in excess of maxAmp

"clip" clip amplitudes at maxAmp and preserve phase

default is "flag"

returns UV data object

inUV = Python UV object to clip/flag

scratch= True if this is to be a scratch file (same type as inUV)

outUV = Predefined UV data if scratch is False, may be inUV

ignored if scratch True.

err = Python Obit Error/message stack

PEditClipStokes(inUV, scratch, outUV, err)

Flag visibilities by Stokes

Clip a uv data set. Data with amplitudes of the selected stokes

in excess of maxAmp are flagged. Optionally all correlations associated

may be flagged. Stokes conversion as needed for test.

Control parameters are on the inUV info member:

"clipStok" OBIT_string (1,1,1) Stokes value to clip (I, Q, U, V, R, L)

default = "I"

"flagAll" Obit_bool (1,1,1) if true, flag all associated correlations

default = True

"maxAmp" OBIT_float (1,1,1) Maximum allowed amplitude

returns UV data object

inUV = Python UV object to clip/flag

87

scratch= True if this is to be a scratch file (same type as inUV)

outUV = Predefined UV data if scratch is False, may be inUV

ignored if scratch True.

err = Python Obit Error/message stack

PEditFD(inUV, outUV, err)

Frequency-domain editing of UV data - produces FG table

Editing is done independently for each visibility channel.

First clipping is done on correlator and Vpol amplitudes.

Following this, an average and RMS is determined for each channel

in each timeAvg period and a spectral baseline is established

for the average values, either using a median window filter (FDwidMW>0)

or a linear baseline fit (FDwidMW<=0) to specified channels.

Channels with excessive RMSes or residual amplitudes are flagged.

Flagging is done by entering the offending data in FG table flagTab

on outUV.

Control parameters on inUV info member

"flagTab" OBIT_int (1,1,1) FG table version number [def. 1]

"timeAvg" OBIT_float (1,1,1) Time interval over which to average

data to be flagged (days) [def = 1 min.]

"FDmaxAmp" OBIT_float (1,1,1) Maximum average amplitude allowed in the

spectrum before fitting. Any channel exceeding this is

flagged in advance of the baseline fitting or median

filtering,. default = infinite

"FDmaxV" OBIT_float (1,1,1) Maximum average amplitude allowed in V

polarization; any channel exceeding this is flagged in

advance of the baseline fitting or median filtering,

Calculates V from difference in amplitudes.

default = infinite

"FDwidMW" OBIT_int (1,1,1) If > 0 the width of the median window in channels.

An odd number (5) is recommended, default or 0 => linear baseline

"FDmaxRMS" OBIT_float (2,1,1) Flag all channels having RMS

values > maxRMS[0] of the channel median sigma.[default = 6.]

plus maxRMS[1] (default 0.1) of the channel average in quadrature

"FDmaxRes" OBIT_float (1,1,1) Max. residual flux in sigma allowed for

channels outside the baseline fitting regions.

default = 6.

"FDmaxResBL" OBIT_float (1,1,1) Max. residual flux in sigma allowed for

channels within the baseline fitting regions.

Default = FDmaxRes

"FDbaseSel" OBIT_int (4,*,1) Channel selection to define spectral baseline

Used only for linear baseline fitting.

Select groups of channels/IF(s) to fit as sets

of (Start,end,inc,IF), i.e., chanSel = 6,37,1,0,

92,123,1,0 for two regions applying to all IFs.

Channel and IF numbers 1 -rel

The first group for which the end channel == 0 terminates the list

88

Channel increments defaults to 1

If the IF==0 then the group applies to all IF.

Default is channels 2 => nchan-1 all IFs

inUV = Python UV object to flag

Any prior selection and editing is applied.

outUV = UV data onto which the FG table is to be attached.

May be the same as inUV.

err = Python Obit Error/message stack

PEditStokes(inUV, outUV, err)

Stokes editing of UV data, FG table out

All data on a given baseline/correlator are flagged if the

amplitude of the datatype "FlagStok" exceeds maxAmp.

If a fraction of bad baselines on any antenna/channel/IF exceeds

maxBad, then all data to that correlator is flagged.

Flagging entries are written into FG table flagTab.

Results are unpredictable for uncalibrated data.

Control parameters on info member of inUV:

"flagStok" OBIT_string (1,1,1) Stokes value to clip (I, Q, U, V, R, L)

default = "V"

"flagTab" OBIT_int (1,1,1) FG table version number [def. 1]

NB: this should not also being used to flag the input data!

"timeAvg" OBIT_float (1,1,1) Time interval over which to determine

data to be flagged (days) [def = 1 min.]

"maxAmp" OBIT_float (1,1,1) Maximum VPol allowed

"maxBad" OBIT_float (1,1,1) Fraction of allowed flagged baselines

to an antenna above which all baselines are flagged.

[default 0.25]

inUV = Python UV object to clip/flag

outUV = UV data onto which the FG table is to be attached.

May be the same as inUV.

err = Python Obit Error/message stack

PEditTD(inUV, outUV, err)

Time-domain editing of UV data - produces FG table

Fill flagging table with clipping by RMS values of the real and imaginary

parts. All correlations are clipped on each baseline if the RMS is

larger than the maximum. The clipping is done independently in

each time interval defined by timeAvg.

The clipping level is given by MIN (A, MAX (B,C)) where:

A = sqrt (maxRMS[0]**2 + (avg_amp * maxRMS[1])**2)

and avg_amp is the average amplitude on each baseline.

B = median RMS + 3 * sigma of the RMS distribution.

C = level corresponding to 3% of the data.

All data on a given baseline/correlator are flagged if the RMS

89

exceeds the limit. If a fraction of bad baselines on any correlator

exceeds maxBad, then all data to that correlator is flagged. In

addition, if the offending correlator is a parallel hand correlator

then any corresponding cross hand correlations are also flagged.

Flagging entries are written into FG table flagTab.

Control parameters on inUV info member

"flagTab" OBIT_int (1,1,1) FG table version number [def. 1]

"timeAvg" OBIT_float (1,1,1) Time interval over which to determine

data to be flagged (days) [def = 1 min.]

NB: this should be at least 2 integrations.

"maxRMS" OBIT_float (2,1,1) Maximum RMS allowed, constant plus

amplitude coefficient.

"maxBad" OBIT_float (1,1,1) Fraction of allowed flagged baselines

[default 0.25]

inUV = Python UV object to clip/flag

outUV = UV data onto which the FG table is to be attached.

May be the same as inUV.

err = Python Obit Error/message stack

PFullInstantiate(inUV, access, err)

Fully instantiate an UV by opening and closing

return 0 on success, else failure

inUV = Python UV object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

PGetDesc(inUV)

Return the member UVDesc

returns UVDesc as a Python Dictionary

inUV = Python UV object

PGetFreq(inUV, err)

Get Frequency information

inUV = Python UV object

err = Python Obit Error/message stack

PGetHighVer(inUV, tabType)

Get highest version number of a specified Table

returns highest tabType version number, 0 if none.

inUV = Python UV object

tabType = Table type, e.g. "AIPS SN"

PGetList(inUV)

90

Return the member InfoList

returns InfoList

inUV = Python UV object

PGetName(inUV)

Tells UV object name (label)

returns name as character string

inUV = Python UV object

PGetSubA(inUV, err)

Get Subarray information

returns 0 on success, else 1

inUV = Python UV object

err = Python Obit Error/message stack

PGetTable(inUV, access, tabType, tabVer, err, numOrb=0, numPCal=3,

numIF=1, numPol=1, numTerm=0, numChan=1, numTones=1,

numBand=1, numTabs=1, npoly=1, numCoef=5, maxis1=2, maxis2=1,

maxis3=1, maxis4=1, maxis5=1)

Return (create)the specified associated table

Specific table types are recognized and the appropriate constructor

called, these may have additional parameters. This allows creating

new tables of the appropriate type.

returns Python Obit Table

inUV = Python UV object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

tabType = Table type, e.g. "AIPS AN"

tabVer = table version, if > 0 on input that table returned,

if 0 on input, the highest version is used.

err = Python Obit Error/message stack

Optional parameters, values only used if table created

numOrb = Number of orbital parameters (AN)

numPCal = Number of polarization parameters (AN)

numIF = Number of IFs (FQ, SN, CL, BP, BL, TY, CQ)

numPol = Number of Stokes’ (SN, CL, BP, BL, PC, TY, GC, MC, IM)

numTerm = Number of terms in model polynomial (CL)

numChan = Number of spectral channels (BP)

numTomes = Number of Phase cal tones (PC)

numTabs = Number of ??? (GC)

numCoef = Number of polynomial coefficents (NI)

numBand = Number Bands(?) (IM, GC)

npoly = number of polynomial terms (IM)

maxis1-5 = Dimension of axes of IDI data matrix

91

PGetTableList(inUV)

Return the member tableList

returns tableList

inUV = Python UV object

PGetVisBuf(inUV)

PHeader(inUV, err)

Print data descriptor

inUV = Python Obit UV object

err = Python Obit Error/message stack

PIsA(inUV)

Tells if input really a Python Obit UV

return true, false (1,0)

inUV = Python UV object

PIsScratch(inUV)

Tells if UV is a scratch object

return true, false (1,0)

inUV = Python UV object

PNewUVTable(inUV, access, tabType, tabVer, err)

Obsolete use PGetTable

POpen(inUV, access, err)

Open an image persistent (disk) form

inUV = Python UV object

access = access 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

PRename(inUV, err, newFITSName=None, newAIPSName=’ ’,

newAIPSClass=’ ’, newAIPSSeq=0)

Rename underlying files

inUV = Python UV object

err = Python Obit Error/message stack

For FITS files:

newFITSName = new name for FITS file

For AIPS:

newAIPSName = New AIPS Name (max 12 char) Blank => don’t change.

newAIPSClass = New AIPS Class (max 6 char) Blank => don’t change.

92

newAIPSSeq = New AIPS Sequence number, 0 => unique value

PScratch(inUV, err)

Create a scratch file suitable for accepting the data to be read from inUV

A scratch UV is more or less the same as a normal UV except that it is

automatically deleted on the final unreference.

inUV = Python UV object

err = Python Obit Error/message stack

PUVInfo(inUV, err)

Get file info for extant uv data object

Fills in information on object, useful for scratch files

inUV = Python UV object

err = Python Obit Error/message stack

PUpdateDesc(inUV, err, Desc=None)

Update external representation of descriptor

inUV = Python UV object

err = Python Obit Error/message stack

Desc = UV descriptor, if None then use current descriptor

Contents can be accessed throuth the Dict member

PUpdateTables(inUV, err)

Update any disk resident structures about the current tables

inUV = Python UV object

err = Python Obit Error/message stack

PUtilAvgF(inUV, outUV, err, scratch=False, NumChAvg=0, doAvgAll=False, ChanSel=None)

Average A UV data set in Frequency

returns Averaged UV data object

inUV = Python UV object to copy

Any selection editing and calibration applied before average.

outUV = Predefined UV data if scratch is False, ignored if

scratch is True.

err = Python Obit Error/message stack

scratch = True if this is to be a scratch file (same type as inUV)

NumChAvg = Number of channels to average, [def.0 = all]

doAvgAll = If TRUE then average all channels and IF.

ChanSel = Groups of channels to consider (relative to channels &

IFs selected by BChan, EChan, BIF, EIF)

(start, end, increment, IF) as array of tuples

where start and end at the beginning and ending

channel numbers (1-rel) of the group to be included,

93

increment is the increment between selected channels

and IF is the IF number (1-rel)

default increment is 1, IF=0 means all IF.

Default is all channels in each IF.

Example [(3,14,1,0),(25,30,1,0)] averages channels

3 through 14 and 25 through 30 in each IF.

PUtilAvgT(inUV, outUV, err, scratch=False, timeAvg=1.0)

Average A UV data set in Time

returns Averaged UV data object

inUV = Python UV object to copy

Any selection editing and calibration applied before average.

outUV = Predefined UV data if scratch is False, ignored if

scratch is True.

err = Python Obit Error/message stack

scratch = True if this is to be a scratch file (same type as inUV)

timeAvg = Averaging time in min

PUtilCopyZero(inUV, scratch, outUV, err)

Copy a UV data set replacing data by zero, weight 1

returns UV data object

inUV = Python UV object to copy

scratch= True if this is to be a scratch file (same type as inUV)

outUV = Predefined UV data if scratch is False

ignored if scratch True.

err = Python Obit Error/message stack

PUtilCount(inUV, err, timeInt=1440.0)

Count data values by interval in a UV dataset

Each new source starts a new interval

returns a dist with entries:

numTime = Number of time intervals

numCorr = Number of Correlations per vis

Count = Number of good correlation/visibilities

Bad = Number of flagged correlation/visibilities

Source = Source ID per interval (or 0 if no source ID)

LST = Average LST (days) per interval

inUV = Python UV object to copy

Any selection editing and calibration applied before average.

err = Python Obit Error/message stack

timeInt = interval in min (max 500 intervals)

PUtilIndex(inUV, err, maxScan=None, maxGap=None)

Indexes a uv data

94

inUV = Python UV object to index

err = Python Obit Error/message stack

maxScan = max. scan length in min. [def. long]

maxGap = max. scan gap in min. [def. long]

PUtilUVWExtrema(inUV, err)

Get UV coverage information

returns array [0]=maximum baseline length (in U,V), [1] = maximum W

inUV = Python UV object

err = Python Obit Error/message stack

PUtilVisCompare(in1UV, in2UV, err)

Compares the visibilites in in1UV with those in in2UV

returns RMS real, imaginary parts/amplitude

in1UV = Numerator Python UV object

in2UV = Denominator Python UV object

err = Python Obit Error/message stack

PUtilVisDivide(in1UV, in2UV, outUV, err)

Divides the visibilites in in1UV by those in in2UV

outUV = in1UV / in2UV

in1UV = Numerator Python UV object, no calibration/selection

in2UV = Denominator Python UV object

outUV = Output python UV object

err = Python Obit Error/message stack

PUtilVisSub(in1UV, in2UV, outUV, err)

Subtracts the visibilites in in2UV from those in in1UV

outUV = in1UV - in2UV

in1UV = First python UV object, no calibration/selection

in2UV = Second python UV object, calibration allowed

outUV = Output Python UV object, may be same as in1UV

err = Python Obit Error/message stack

PZap(inUV, err)

Delete underlying files and the basic object.

inUV = Python UV object

err = Python Obit Error/message stack

PZapTable(inUV, tabType, tabVer, err)

Destroy specified table

95

Returns 0 on success

inUV = Python UV object

tabType = Table type, e.g. "AIPS AN"

tabVer = table version, integer

err = Python Obit Error/message stack

newPACNO(disk, cno, exists, err, verbose=True, nvis=1000)

Create and initialize an AIPS based UV structure

Create, set initial access information

and if exists verifies the file.

Sets buffer to hold 1000 vis.

Returns the Python UV object

isOK member set to indicate success

disk = AIPS directory number

cno = AIPS catalog number

exists = if true then the file is opened and closed to verify

err = Python Obit Error/message stack

verbose = If true any give error messages, else suppress

nvis = Number of visibilities read/written per call

newPAUV(name, Aname, Aclass, disk, seq, exists, err, verbose=True, nvis=1000)

Create and initialize an AIPS based UV structure

Create, set initial access information (full image, plane at a time)

and if exists verifies the file.

Sets buffer to hold 1000 vis.

Returns the Python UV object

isOK member set to indicate success

name = name desired for object (labeling purposes)

Aname = AIPS name of file

Aclass = AIPS class of file

seq = AIPS sequence number of file

disk = FITS directory number

exists = if true then the file is opened and closed to verify

err = Python Obit Error/message stack

verbose = If true any give error messages, else suppress

nvis = Number of visibilities read/written per call

newPFUV(name, filename, disk, exists, err, verbose=True, nvis=1000)

Create and initialize an FITS based UV structure

Create, set initial access information (full image, plane at a time)

and if exists verifies the file.

Sets buffer to hold 1000 vis.

Returns the Python UV object

isOK member set to indicate success

name = name desired for object (labeling purposes)

96

filename = name of FITS file

disk = FITS directory number

exists = if true then the file is opened and closed to verify

err = Python Obit Error/message stack

verbose = If true any give error messages, else suppress

nvis = Number of visibilities read/written per call

1.15.3 Obit python OTF class - now defunct

To access the OTF class, your PYTHONPATH variable should include the ObitSD/python direc-
tory before the Obit/python directory. Then in ObitTalk:

>>>> import OTF

to make the OTF classes available. Further functions are available in the OTFUtil, CCBUtil, Clean-
OTF, CleanOTFRec,GBTDCROTF, OTFGetAtmCor, OTFGetSoln, and OTFSoln2Cal python
modules. The following describes the OTF class.

NAME

OTF - Python Obit "On-the-fly" (OTF) single dish data class

DESCRIPTION

This class contains single dish data and allows access.

An ObitOTF is the front end to a persistent disk resident structure.

There maybe (usually are) associated tables which either describe

the data or contain calibration and/or editing information.

OTF Members with python interfaces:

List - used to pass instructions to processing

Desc - Astronomical labeling of the image

TableList - List of tables attached

RecBuf - memory pointer into I/O Buffer

Additional Functions are available in OTFUtil, OTFSoln2Cal, OTFGetSoln,

OTFGetAtmCor, CleanOTF

There are a number of utility routines in this module which take

control parameters in the form of python dictionaries

(e.g. AtmCal, Clean, Concat, Image, ResidCal, Soln2Cal, Split)

which each have defined dictionaries with default values and names of the

routine and "Input" appended.

Care should he taken not to change the data types of the entries in these

dictionaries.

These dictionaries can be listed in semi human readable form using the OTF.input

function.

Data selection, calibration and editing parameters on List member

"doCalSelect" bool (1,1,1) Select/calibrate/edit data?

"doCalib" int (1,1,1) >0 -> calibrate,

97

"gainUse" int (1,1,1) SN/CL table version number, 0-> use highest

"flagVer" int (1,1,1) Flag table version, 0-> use highest, <0-> none

"BChan" int (1,1,1) First spectral channel selected. [def all]

"EChan" int (1,1,1) Highest spectral channel selected. [def all]

"Targets" string (?,?,1) Target names selected. [def all]

"timeRange" float (2,1,1) Selected timerange in days. [def all]

"Scans" int (2,1,1) Lowest and highest selected scan numbers. [def all]

"Feeds" int (?,1,1) a list of selected feed numbers, [def all.]

"keepCal" bool (1,1,1) If true keep cal-on data, otherwise drop [def True.]

CLASSES

OData.OData(OData.ODataPtr)

OTF

class OTF(OData.OData)

Python Obit "On-the-fly" (OTF) single dish data class

This class contains single dish data and allows access.

An ObitOTF is the front end to a persistent disk resident structure.

There maybe (usually are) associated tables which either describe

the data or contain calibration and/or editing information.

OTF Members with python interfaces:

List - used to pass instructions to processing

Desc - Astronomical labeling of the image

TableList - List of tables attached

RecBuf - memory pointer into I/O Buffer

Method resolution order:

OTF

OData.OData

OData.ODataPtr

Methods defined here:

Clone(self, outOTF, err)

Make a copy of a object but do not copy the actual data

This is useful to create an OTF similar to the input one.

self = Python OTF object

outOTF = Output Python OTF object, must be defined

err = Python Obit Error/message stack

Close(self, err)

Close a OTF persistent (disk) form

returns 0 on success, else failure

self = Python OTF object

98

err = Python Obit Error/message stack

Copy(self, outOTF, err)

Make a deep copy of input object.

Makes structure the same as self, copies data, tables

self = Python OTF object to copy

outOTF = Output Python OTF object, must be defined

err = Python Obit Error/message stack

Header(self, err)

Write image header on output

self = Python Obit OTF object

err = Python Obit Error/message stack

Info(self, err)

Get underlying data file info

self = Python Obit OTF object

err = Python Obit Error/message stack

NewTable(self, access, tabType, tabVer, err, numDet=1,

numPoly=0, numParm=0)

Return the specified associated table

self = Python OTF object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

tabType = Table type, e.g. "OTFSoln"

tabVer = table version, if > 0 on input that table returned,

if 0 on input, the highest version is used.

err = Python Obit Error/message stack

Optional parameters, values only used if table created

numDet = Number of Detectors (OTFCal, OTFSoln, OTFScanData)

numPoly = Number of polynomial terms (OTFCal, OTFSoln)

numParm = Number of model parameters (OTFModel)

OTFIsA(self)

Tells if input really a Python Obit OTF

return true, false (1,0)

self = Python OTF object

Open(self, access, err)

Open a OTF data persistent (disk) form

Returns 0 on success, else failure

self = Python OTF object

99

access = access READONLY (1), WRITEONLY (2), READWRITE(3)

err = Python Obit Error/message stack

Read(self, err)

Read a OTF persistent (disk) form

Reads into buffer attached to OTF data, use VisBuf for access

Returns 0 on success, else failure

self = Python OTF object

err = Python Obit Error/message stack

ReadRec(self, err)

Read a OTF persistent (disk) form

Returns OTFRec structure from next record

self = Python OTF object

err = Python Obit Error/message stack

Scratch(self, err)

Create a scratch file suitable for accepting the data to be read from self

A scratch OTF is more or less the same as a normal OTF except that it is

automatically deleted on the final unreference.

self = Python OTF object

err = Python Obit Error/message stack

UpdateDesc(self, err, Desc=None)

Update any disk resident structures about descriptor

self = Python OTF object

err = Python Obit Error/message stack

Desc = Descriptor, if None then use current descriptor

Contents can be accessed throuth the Dict member

Write(self, err)

Write a OTF persistent (disk) form

Writes buffer attached to OTF data, use VisBuf for access

returns 0 on success, else failure

self = Python OTF object

err = Python Obit Error/message stack

WriteRec(self, outRec, err)

Write a OTF persistent (disk) form

Writes buffer attached to OTF data, use VisBuf for access

returns 0 on success, else failure

self = Python OTF object

100

outRec = OTFRec structure to write

err = Python Obit Error/message stack

__del__(self)

__getattr__(self, name)

__init__(self, name)

__repr__(self)

__setattr__(self, name, value)

cast(self, toClass)

Casts object pointer to specified class

self = object whose cast pointer is desired

toClass = Class string to cast to ("ObitOTF")

--

Methods inherited from OData.OData:

CopyTables(self, outOData, exclude, include, err)

Copy Tables from one OData to another

self = Python OData object

outOData = Output Python OData object, must be defined

exclude = list of table types to exclude (list of strings)

has priority

include = list of table types to include (list of strings)

err = Python Obit Error/message stack

Mark OData as needing a header update to disk file

self = Python OData object

FullInstantiate(self, access, err)

Fully instantiate an OData by opening and closing

return 0 on success, else failure

self = Python OData object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

GetHighVer(self, tabType)

Get highest version number of a specified Table

returns highest tabType version number, 0 if none.

self = Python OData object

101

tabType = Table type, e.g. "OTFSoln"

GetName(self)

Tells OData object name (label)

returns name as character string

self = Python OData object

History(self, access, err)

Return the associated History

self = Python OData object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

IsScratch(self)

Tells if OData is a scratch object

return true, false (1,0)

self = Python OData object

ODataIsA(self)

Tells if input really a Python Obit OData

return true, false (1,0)

self = Python OData object

Rename(self, err, newFITSName=None, newAIPSName=’ ’,

newAIPSClass=’ ’, newAIPSSeq=0)

Rename underlying files

self = Python OData object

err = Python Obit Error/message stack

For FITS files:

newFITSName = new name for FITS file

For AIPS:

newAIPSName = New AIPS Name (max 12 char) Blank => don’t change.

newAIPSClass = New AIPS Class (max 6 char) Blank => don’t change.

newAIPSSeq = New AIPS Sequence number, 0 => unique value

UpdateTables(self, err)

Update any disk resident structures about the current tables

Returns 0 on success

self = Python Image object

err = Python Obit Error/message stack

102

Zap(self, err)

Delete underlying files and the basic object.

self = Python OData object

err = Python Obit Error/message stack

ZapTable(self, tabType, tabVer, err)

Destroy specified table

Returns 0 on success

self = Python OData object

tabType = Table type, e.g. "AIPS CC"

tabVer = table version, integer

err = Python Obit Error/message stack

FUNCTIONS

AtmCal(err, input= AtmCalInput)

Basic atmospheric calibration.

Applies Atmospheric calibration and optionally gross pointing offsets

Returns the version number of the Soln Table on success.

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

InData = input Python OTF to calibrate

solint = solution interval (sec)

tau0 = zenith opacity (nepers)

minEl = minimum elevation (deg)

tTemp = effective atmospheric temperature (per detector)

tRx = Receiver temperature per detector (K)

calJy = Noise cal value in Jy per detector

raOff = RA pointing offset (deg)

decOff = Dec pointing offset (deg)

ClearCal(inOTF, err)

Delete calibration tables on an OTF

Removes all OTFSoln and OTFCal tables

inOTF = Extant Python OTF

err = Python Obit Error/message stack

Concat(err, input={’InData’: None, ’OutData’: None})

Concatenates OTFs.

Applies Copies InData to the end of OutData.

The files must be compatable (not checked)

err = Python Obit Error/message stack

103

input = input parameter dictionary

Input dictionary entries:

InData = Python input OTF to calibrate

OutData = Python output OTF, must be previously defined

MBBaseCal(err, input=MBBaseCalInput)

Continuum baseline fitting for multibeam instrument.

Fit one term, time variable common, atmospheric polynomial and a single offset

per detector.

Since the different detectors each have an individual multiplicative term, the

Atmospheric + offset are places in the the detector’s additive term and the

polynomial is set to zero.

Scans in excess of 5000 samples will be broken into several.

Returns the version number of the Soln Table on success.

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

InData = input Python OTF to calibrate

solint = solution interval (sec), entries 4 times per SolInt

order = polynomial order

clipsig = Data outside of +/- clipsig ignored [def large]

plotdet = Detector number (1-rel) to plot per scan [def =-1 = none]

minEl = minimum elevation (deg)

gainuse = version number of prior table (Soln or Cal) to apply, -1 is none

flagver = version number of flagging table to apply, -1 is none

ObitName(ObitObject)

Return name of an Obit object or input if not an Obit Object

PClone(inOTF, outOTF, err)

Make a copy of a object but do not copy the actual data

This is useful to create an OTF similar to the input one.

inOTF = Python OTF object

outOTF = Output Python OTF object, must be defined

err = Python Obit Error/message stack

PClose(inOTF, err)

Close an image persistent (disk) form

inOTF = Python OTF object

err = Python Obit Error/message stack

PConcat(inOTF, outOTF, err)

Copy data from inOTF to the end of outOTF

104

inOTF = Python OTF object

outOTF = Output Python OTF object, must be defined

err = Python Obit Error/message stack

PCopy(inOTF, outOTF, err)

Make a deep copy of input object.

Makes structure the same as inOTF, copies data, tables

inOTF = Python OTF object to copy

outOTF = Output Python OTF object, must be defined

err = Python Obit Error/message stack

PCopyTables(inOTF, outOTF, exclude, include, err)

Copy Tabels from one image to another

inOTF = Python OTF object

outOTF = Output Python OTF object, must be defined

exclude = list of table types to exclude (list of strings)

has priority

include = list of table types to include (list of strings)

err = Python Obit Error/message stack

PDirty(inOTF)

Mark OTF as needing a header update to disk file

inOTF = Python OTF object

PFullInstantiate(inOTF, access, err)

Fully instantiate an OTF by opening and closing

return 0 on success, else failure

inOTF = Python OTF object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

PGetDesc(inOTF)

Return the member OTFDesc

returns OTFDesc as a Python Dictionary

inOTF = Python OTF object

PGetHighVer(inOTF, tabType)

Get highest version number of a specified Table

returns highest tabType version number, 0 if none.

inOTF = Python OTF object

tabType = Table type, e.g. "OTFSoln"

105

PGetList(inOTF)

Return the member InfoList

returns InfoList

inOTF = Python OTF object

PGetName(inOTF)

Tells OTF object name (label)

returns name as character string

inOTF = Python OTF object

PGetRecBuf(inOTF)

PGetTableList(inOTF)

Return the member tableList

returns tableList

inOTF = Python OTF object

PHeader(inOTF, err)

Print data descriptor

inOTF = Python Obit OTF object

err = Python Obit Error/message stack

PIsA(inOTF)

Tells if input really a Python Obit OTF

return true, false (1,0)

inOTF = Python OTF object

PIsScratch(inOTF)

Tells if OTF is a scratch object

return true, false (1,0)

inOTF = Python OTF object

PNewOTFTable(inOTF, access, tabType, tabVer, err, numDet=1, numPoly=0, numParm=0)

Return the specified associated table

inOTF = Python OTF object

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

tabType = Table type, e.g. "OTFSoln"

tabVer = table version, if > 0 on input that table returned,

if 0 on input, the highest version is used.

err = Python Obit Error/message stack

106

Optional parameters, values only used if table created

numDet = Number of Detectors (OTFCal, OTFSoln, OTFScanData)

numPoly = Number of polynomial terms (OTFCal, OTFSoln)

numParm = Number of model parameters (OTFModel)

POTFInfo(inOTF, err)

Get file info for extant uv data object

Fills in information on object, useful for scratch files

inOTF = Python OTF object

err = Python Obit Error/message stack

POpen(inOTF, access, err)

Open an image persistent (disk) form

Returns 0 on success, else failure

inOTF = Python OTF object

access = access 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

PRename(inOTF, err, newFITSName=None)

Rename underlying files

inOTF = Python OTF object

err = Python Obit Error/message stack

For FITS files:

newFITSName = new name for FITS file

PScratch(inOTF, err)

Create a scratch file suitable for accepting the data to be read from inOTF

A scratch OTF is more or less the same as a normal OTF except that it is

automatically deleted on the final unreference.

inOTF = Python OTF object

err = Python Obit Error/message stack

PSetTarget(inOTF, Target, Flux, RA, Dec, err)

Set target flux density and position

inOTF = Python OTF object

Target = Target name

Flux = Target Flux density

RA = RA in deg at mean equinox and epoch

Dec = Dec in deg at mean equinox and epoch

err = Python Obit Error/message stack

PUpdateDesc(inOTF, err, Desc=None)

Update external representation of descriptor

107

inOTF = Python OTF object

err = Python Obit Error/message stack

Desc = OTF descriptor, if None then use current descriptor

PUpdateTables(inOTF, err)

Update any disk resident structures about the current tables

inOTF = Python OTF object

err = Python Obit Error/message stack

PZap(inOTF, err)

Delete underlying files and the basic object.

inOTF = Python OTF object

err = Python Obit Error/message stack

PZapTable(inOTF, tabType, tabVer, err)

Destroy specified table

inOTF = Python OTF object

tabType = Table type, e.g. "OTFSoln"

tabVer = table version, integer

err = Python Obit Error/message stack

PolyBLCal(err, input=PolyBLCalInput)

Polynomial baseline fit to residual data

Each solution interval in a scan is median averaged

(average of 9 points around the median) and then a polynomial fitted.

Returns the version number of the Soln Table on success.

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

InData = input Python OTF to calibrate

solint = solution interval (sec)

order = polynomial order

minEl = minimum elevation (deg)

gainuse = version number of prior table (Soln or Cal) to apply, -1 is none

flagver = version number of flagging table to apply, -1 is none

ResidCal(err, input=ResidCalInput)

Determine residual calibration for an OTF.

Determines a solution table for an OTF by one of a number of techniques using

residuals from a model image.

Returns the version number of the Soln Table on success.

108

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

InData = Python input OTF to calibrate

Model = Python input model FArray, "None" means do not subtract model image

ModelDesc= Python input model ImageDesc

minFlux = Minimum brightness in model

solint = solution interval (sec)

solType = solution type:

"Gain" solve for multiplicative term from "cals" in data.

(solint, minRMS, minEl, calJy)

"Offset" Solve for additive terms from residuals to the model.

(solint, minEl)

"GainOffset" Solve both gain and offset

(solint, minRMS, minEl, calJy)

"Filter" Additive terms from filters residuals to the model.

(solint, minEl)

"multiBeam" Multibeam solution

(solint, minEl)

minEl = minimum elevation (deg)

minRMS = Minimum RMS residual to solution

calJy = Noise cal value in Jy per detector

gainuse = version number of prior table (Soln or Cal) to apply, -1 is none

flagver = version number of flagging table to apply, -1 is none

SelfCal(err, ImageInp=ImageInput, Soln2CalInp=Soln2CalInput)

Self calibrate an OTF

Image an OTF, optionally Clean, determine residual calibration,

apply to Soln to Cal table. If the Clean is done, then the CLEAN result is

used as the model in the ResidCal, otherwise the dirty image from Image is.

err = Python Obit Error/message stack

ImageInp = input parameter dictionary for Image

CleanInp = input parameter dictionary for Clean, "None"-> no Clean requested

May be modified to point to the result of the Image step

ResidCalInp = input parameter dictionary for ResidCal

Will be modified to give correct derived model image

Soln2CalInp = input parameter dictionary for Soln2Cal

Soln2Cal(err, input=Soln2CalInput)

Apply a Soln (solution) table to a Cal (calibration) table.

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

InData = Python input OTF to calibrate

109

soln = Soln table version number to apply, 0-> high

oldCal = input Cal table version number, -1 means none, 0->high

newCal = output Cal table version number, 0->new

Split(err, input=SplitInput)

Select and calibrate an OTF writing a new one.

Applies calibration and editing/selection to inData and writes outData.

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

InData = input Python OTF to calibrate

OutData = output Python OTF, must be previously defined

average = if true average in frequency

gainuse = version number of prior table (Soln or Cal) to apply, -1 is none

flagver = version number of flagging table to apply, -1 is none

input(inputDict)

Print the contents of an input Dictionary

inputDict = Python Dictionary containing the parameters for a routine

There should be a member of the dictionary (’structure’) with a value

being a list containing:

1) The name for which the input is intended (string)

2) a list of tuples consisting of (parameter name, doc string)

with an entry for each parameter in the dictionary.

The display of the the inputs dictionary will be in the order of

the tuples and display the doc string after the value.

An example:

Soln2CalInput={’structure’:[’Soln2Cal’,[(’InData’,’Input OTF’),

(’soln’,’input soln table version’),

(’oldCal’,’input cal table version, -1=none’),

(’newCal’,’output cal table’)]],

’InData’:None, ’soln’:0, ’oldCal’:-1, ’newCal’:0}

makeImage(err, input=ImageInput)

Image an OTF.

Data is convolved and resampled onto the specified grid.

Image is created and returned on success.

err = Python Obit Error/message stack

input = input parameter dictionary

Input dictionary entries:

InData = input Python OTF to image

OutName = name of output image file

Disk = disk number for output image file

110

ra = center RA (deg)

dec = center Dec (deg)

nx = number of pixels in "x" = RA

ny = number of pixels in ’Y’ = dec

xCells = Cell spacing in x (asec)

yCells = Cell spacing in y (asec)

minWt = minimum summed weight in gridded image [def 0.1]

ConvType= Convolving function Type 0=pillbox,3=Gaussian,4=exp*sinc,5=Sph wave

ConvParm= Convolving function parameters depends on ConvType

Type 2 = Sinc, (poor function - don’t use)

Parm[0] = halfwidth in cells,

Parm[1] = Expansion factor

Type 3 = Gaussian,

Parm[0] = halfwidth in cells,[def 3.0]

Parm[1] = Gaussian with as fraction or raw beam [def 1.0]

Type 4 = Exp*Sinc

Parm[0] = halfwidth in cells, [def 2.0]

Parm[1] = 1/sinc factor (cells) [def 1.55]

Parm[2] = 1/exp factor (cells) [def 2.52]

Parm[3] = exp power [def 2.0]

Type 5 = Spherodial wave

Parm[0] = halfwidth in cells [def 3.0]

Parm[1] = Alpha [def 5.0]

Parm[2] = Expansion factor [not used]

gainuse = version number of prior table (Soln or Cal) to apply, -1 is none

flagver = version number of flagging table to apply, -1 is none

doBeam = Beam convolved with convolving Fn image desired? [def True]

Beam = Actual instrumental Beam to use, else Gaussian [def None]

Beam

newPOTF(name, filename, disk, exists, err, nrec=1000)

Create and initialize an OTF structure

Create, set initial access information (nrec records)

and if exists verifies the file.

Returns the Python OTF object

name = name desired for object (labeling purposes)

filename = name of FITS file

disk = FITS directory number

exists = if true then the file is opened and closed to verify

err = Python Obit Error/message stack

nrec = Number of records read/written per call

DATA

AtmCalInput = {’InData’: None, ’aTemp’: [0.0, 0.0], ’calJy’: [1.0, 1.0...

ConcatInput = {’InData’: None, ’OutData’: None}

ImageInput = {’Beam’: None, ’ConvParm’: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...

111

MBBaseCalInput = {’InData’: None, ’clipsig’: 1e+20, ’flagver’: -1, ’ga...

PolyBLCalInput = {’InData’: None, ’flagver’: -1, ’gainuse’: -1, ’minEl...

ResidCalInput = {’Clip’: 1e+20, ’InData’: None, ’Model’: None, ’ModelD...

Soln2CalInput = {’InData’: None, ’newCal’: 0, ’oldCal’: -1, ’soln’: 0,...

SplitInput = {’InData’: None, ’OutData’: None, ’average’: 0, ’flagver’...

1.15.4 Obit python Table Class

Obit Table class objects can be created as shown in the following:

inUV=UV.newPAUV("UV", "20050415", "LINE", 1, 1, True,err)

tabType="AIPS SU"

tabVer=1

access=UV.READONLY

su = inUV.NewTable(access,tabType,tabVer,err)

If a new table is being created, some optional parameters may be needed depending on the table
type (see help(UV) description of NewTable).

The table header (descriptor) can be obtained as a python Dict:

h = su.Desc.Dict

Data from a row in the table can be obtained as a python Dict:

su.Open(access,err)

row1 = su.ReadRow(access,err)

OErr.printErrMsg(err, "Error reading")

su.Close(err)

print "row1",row1

Note: these dict structures are independent of the underlying data structures.
The following describes the Obit Table class.

NAME

Table - Python Obit Table class

DESCRIPTION

This class contains tabular data and allows access.

An ObitTable is the front end to a persistent disk resident structure.

Both FITS (as Tables) and AIPS cataloged data are supported.

Table Members with python interfaces:

InfoList - used to pass instructions to processing

Table header keywords for specific table types are available in the keys

member of a Table after the table has been opened. These will be updated

to disk when the table is closed.

CLASSES

TablePtr

Table

class Table(TablePtr)

112

Methods defined here:

Close(self, err)

Close an table persistent (disk) form

Specific table type keywords are written from the "keys" dict member

self = Python Table object

err = Python Obit Error/message stack

Open(self, access, err)

Open an table persistent (disk) form

Specific table type keywords are written to the "keys" dict member

self = Python Table object

access = access READONLY (1), WRITEONLY (2), READWRITE(3)

err = Python Obit Error/message stack

ReadRow(self, rowno, err)

Read a specified row in a table and returns as a python Dict

self = Python Image object

rowno = row number (1-rel) to read

err = Python Obit Error/message stack

WriteRow(self, rowno, rowDict, err)

Write an image persistent (disk) form from a specified Dict

Writes a single row

self = Python Image object

rowno = row number (1-rel) to write

rowDict = Python Dict of same form as returned by PReadRow

err = Python Obit Error/message stack

Zap(self, err)

Delete underlying files and the basic object.

self = Python Table object

err = Python Obit Error/message stack

__del__(self)

__init__(self, name)

--

Methods inherited from TablePtr:

__getattr__(self, name)

113

__repr__(self)

__setattr__(self, name, value)

class TablePtr

Methods defined here:

__getattr__(self, name)

__init__(self, this)

__repr__(self)

__setattr__(self, name, value)

FUNCTIONS

PClone(inTab, outTab)

Copy the structure of a Table

inTab = input Python Table

outTab = extant output Python Obit Table or None

PClose(inTab, err)

Close a table persistent (disk) form

Specific table type keywords are written from the "keys" dict member

inTab = Python Table object

err = Python Obit Error/message stack

PConcat(inTab, outTab, err)

Copy row data from inTab to the end of outTab

inTab = input Python Obit Table

outTab = extant output Python Obit Table

err = Python Obit Error/message stack

PCopy(inTab, outTab, err)

Copy a Table including persistent forms

inTab = input Python Obit Table

outTab = extant output Python Obit Table

err = Python Obit Error/message stack

PDirty(inTable)

Mark Table as needing a header update to disk file

inTable = Python Table object

114

PFullInstantiate(inTab, access, err)

Open and close to fully instantiate

return 0 on success, else failure

inTab = input Python Table

access = access code 1=READONLY, 2=WRITEONLY, 3=READWRITE

err = Python Obit Error/message stack

PGetDesc(inTab)

Return the TableDesc from a Table

returns TableDesc

inTab = input Python Table

PGetIODesc(inTab)

Return the TableDesc from a Table’s IO member

returns TableDesc from IO member (disk resident version)

if the IO member is not defined a None is returned.

For most reliable results, this routine should be called when

the table is opened with Write allowed.

inTab = input Python Table

PGetIOList(inTab)

Return the InfoList from a Table’s IO member

returns InfoList from IO member (disk resident version)

if the IO member is not defined a None is returned.

For most reliable results, this routine should be called when

the table is opened with Write allowed.

inTab = input Python Table

PGetList(inTab)

Return the InfoList from a Table

returns InfoList

inTab = input Python Table

PGetName(inTab)

Returns object name (label)

return name string

inTab = input Python Table

PGetVer(inTab)

Get table version number

returns table version number

115

inTab = input Python Table

PIsA(inTab)

Tells if object thinks it’s a Python Obit Table

return true, false (1,0)

inTab = input Python Table

POpen(inTab, access, err)

Open a table persistent (disk) form

Specific table type keywords are written to the "keys" dict member

inTab = Python Table object

access = access READONLY (1), WRITEONLY (2), READWRITE(3)

err = Python Obit Error/message stack

PReadRow(inTab, rowno, err)

Read a specified row in a table and returns as a python Dict

Dict has keys:

"Table name" to give the name of the table

Field named (column labels)

data are returned as a list of the field data type.

inTab = Python Table object

rowno = row number (1-rel) to read

err = Python Obit Error/message stack

PSort(inTab, colName, desc, err)

Sort a table by contents of a column

inTab = input Python Obit Table to sort

colName = Column name (e.g. "Time")

desc = if true sort in descending order, else ascending

err = Python Obit Error/message stack

PUnref(inTab)

Decrement reference count

Decrement reference count which will destroy object if it goes to zero

Python object stays defined.

inTab = Python Table object

PWriteRow(inTab, rowno, rowDict, err)

Write an image persistent (disk) form from a specified Dict

Writes a single row

inTab = Python Table object

rowno = row number (1-rel) to write

116

rowDict = Python Dict of same form as returned by PReadRow

err = Python Obit Error/message stack

PZap(inTab, err)

Destroy the persistent form of a Table

inTab = input Python Obit Table

err = Python Obit Error/message stack

DATA

READONLY = 1

READWRITE = 3

WRITEONLY = 2

1.16 ObitTalk Data Classes

The ObitTalk classes AIPSUVData, AIPSImage, FITSUVData and FITSImage allow local or re-
mote access to AIPS and FITS Images and UV data. Functions in these data classes work for data
on remote nodes. Details of these class interfaces can be viewed using:

>>> help(AIPSUVData)

>>> help(AIPSImage)

>>> help(FITSUVData)

>>> help(FITSImage)

1.16.1 AIPSUVData

class AIPSUVData(_AIPSData)

This class describes an AIPS UV data set.

Methods inherited from _AIPSData:

exists(self)

Check whether this image or data set exists.

Returns True if the image or data set exists, False otherwise.

getrow_table(self, type, version, rowno)

Get a row from an extension table.

Returns row ROWNO from version VERSION of extension table TYPE

as a dictionary.

header(self)

Get the header for this image or data set.

Returns the header as a dictionary.

117

header_table(self, type, version)

Get the header of an extension table.

Returns the header of version VERSION of the extension table

TYPE.

table(self, type, version)

table_highver(self, type)

Get the highest version of an extension table.

Returns the highest available version number of the extension

table TYPE.

tables(self)

Get the list of extension tables.

verify(self)

Verify whether this image or data set can be accessed.

zap(self)

Destroy this image or data set.

zap_table(self, type, version)

Destroy an extension table.

Deletes version VERSION of the extension table TYPE. If

VERSION is 0, delete the highest version of table TYPE. If

VERSION is -1, delete all versions of table TYPE.

Properties inherited from _AIPSData:

disk

Disk where this data set is stored.

lambdaself

klass

Class of this data set.

lambdaself

name

Name of this data set.

lambdaself

118

seq

Sequence number of this data set.

lambdaself

userno

User number used to access this data set.

lambdaself

1.16.2 AIPSImage

class AIPSImage(_AIPSData)

This class describes an AIPS image.

Methods defined here:

display(self, dispURL=’http://localhost:8765/RPC2’)

Display an image.

Displays image on ObitView server on dispURL

dispURL = URL of ObitView server on which to display

Returns True if successful

Methods inherited from _AIPSData:

exists(self)

Check whether this image or data set exists.

Returns True if the image or data set exists, False otherwise.

getrow_table(self, type, version, rowno)

Get a row from an extension table.

Returns row ROWNO from version VERSION of extension table TYPE

as a dictionary.

header(self)

Get the header for this image or data set.

Returns the header as a dictionary.

header_table(self, type, version)

Get the header of an extension table.

Returns the header of version VERSION of the extension table

TYPE.

119

table(self, type, version)

table_highver(self, type)

Get the highest version of an extension table.

Returns the highest available version number of the extension

table TYPE.

tables(self)

Get the list of extension tables.

verify(self)

Verify whether this image or data set can be accessed.

zap(self)

Destroy this image or data set.

zap_table(self, type, version)

Destroy an extension table.

Deletes version VERSION of the extension table TYPE. If

VERSION is 0, delete the highest version of table TYPE. If

VERSION is -1, delete all versions of table TYPE.

Properties inherited from _AIPSData:

disk

Disk where this data set is stored.

lambdaself

klass

Class of this data set.

lambdaself

name

Name of this data set.

lambdaself

seq

Sequence number of this data set.

lambdaself

userno

120

User number used to access this data set.

lambdaself

1.16.3 FITSUVData

class FITSUVData(_FITSData)

This class describes an FITS UV data set.

Methods inherited from _FITSData:

exists(self)

Check whether this image or data set exists.

Returns True if the image or data set exists, False otherwise.

getrow_table(self, type, version, rowno)

Get a row from an extension table.

Returns row ROWNO from version VERSION of extension table TYPE

as a dictionary.

header(self)

Get the header for this image or data set.

Returns the header as a dictionary.

header_table(self, type, version)

Get the header of an extension table.

Returns the header of version VERSION of the extension table

TYPE.

table(self, type, version)

table_highver(self, type)

Get the highest version of an extension table.

Returns the highest available version number of the extension

table TYPE.

tables(self)

Get the list of extension tables.

verify(self)

Verify whether this image or data set can be accessed.

zap(self)

121

Destroy this image or data set.

zap_table(self, type, version)

Destroy an extension table.

Deletes version VERSION of the extension table TYPE. If

VERSION is 0, delete the highest version of table TYPE. If

VERSION is -1, delete all versions of table TYPE.

Properties inherited from _FITSData:

disk

Disk where this data set is stored.

lambdaself

filename

Filename of this data set.

lambdaself

1.16.4 FITSImage

class FITSImage(_FITSData)

This class describes an FITS image.

Methods inherited from _FITSData:

exists(self)

Check whether this image or data set exists.

Returns True if the image or data set exists, False otherwise.

getrow_table(self, type, version, rowno)

Get a row from an extension table.

Returns row ROWNO from version VERSION of extension table TYPE

as a dictionary.

header(self)

Get the header for this image or data set.

Returns the header as a dictionary.

header_table(self, type, version)

Get the header of an extension table.

122

Returns the header of version VERSION of the extension table

TYPE.

table(self, type, version)

table_highver(self, type)

Get the highest version of an extension table.

Returns the highest available version number of the extension

table TYPE.

tables(self)

Get the list of extension tables.

verify(self)

Verify whether this image or data set can be accessed.

zap(self)

Destroy this image or data set.

zap_table(self, type, version)

Destroy an extension table.

Deletes version VERSION of the extension table TYPE. If

VERSION is 0, delete the highest version of table TYPE. If

VERSION is -1, delete all versions of table TYPE.

Properties inherited from _FITSData:

disk

Disk where this data set is stored.

lambdaself

filename

Filename of this data set.

lambdaself

123

