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On–axis Instrumental Polarization Calibration for
Linear Feeds

W. D. Cotton, August 7, 2015

Abstract—Various instrumental and atmospheric effects cor-
rupt the response of an interferometer to polarized signals. In the
case of high dynamic range imaging, uncorrected, these effects
can also degrade the total intensity image. These effects must
be estimated and removed in order to produce images of the
polarized emission, or high dynamic range total intensity images.
This memo describes the implementation in Obit of the feed
ellipticity–orientation modeling and correction for arrays with
linearly polarized feeds. Examples are given using data from the
KAT-7 and ALMA arrays.

Index Terms—interferometry, polarization, calibration

I. I NTRODUCTION

RADIO interferometric imaging of polarized celestial
emission provides a powerful probe of various physical

processes as well as the propagation through intervening
media. Instrumental and atmospheric effects corrupt the re-
sponse of an interferometer to polarized signals. In particular,
the array detectors do not respond to precisely the intended
polarization state which leads to a spurious polarized response.

Detectors sensitive to the electric field of the incoming
wave, as used in radio heterodyne systems, respond to a single
polarization state; in order to fully measure the polarization of
the wave, detectors measuring orthogonal polarization states
are needed. In the correlation process, all four products ofthe
two states at each antenna are produced. The most commonly
used systems are right- and left-hand circular polarization
and orthogonal linear polarizations. In practice, the detected
polarizations are never precisely the desired ones. The exact
polarization states detected must be determined in order to
transform the measured visibilities into the corrected form.

This memo describes an implementation in the Obit package
[1] 1 of the nonlinear ellipticity–orientation model for arrays
using alt-az mounted antennas and using detectors (AKA
“feeds”) sensitive to orthogonal linear polarizations. The result
of the application of the calibration derived is the observed
data corrected and transformed into a circular basis. Cali-
bration of arrays with circular feeds is discussed in [2]. The
development here follows that of [3].

II. I NTERFEROMETRICPOLARIMETRY

An arbitrary electromagnetic wave can be described as ellip-
tically polarized, circular and linear polarization are extreme
cases. One way of modeling the polarization state to which a
detector responds is the ellipticity and orientation of theellipse
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to which the detector responds. An alternate, and popular
approach is to model the response as the desired state plus a
fraction of the orthogonal state. The fraction of the orthogonal
state is referred to as the “leakage term”. This model has the
advantage that it can be linearized allowing for faster fitting.
See [4][5][6] for more detailed descriptions of the response to
polarized radiation.

Much traditional radio interferometric software at the
NRAO uses data from arrays using circular feeds. Therefore,
it is convenient to have the transformation of observed to
calibrated data to also transform the visibilities into a circular
basis, i.e. what would have been observed with circular feeds.

A. Effects of prior calibration

Discussions of instrumental polarization such as those given
in [4] generally do not include the effects of prior calibration
on the data. The common practice is to calibrate the two
parallel polarization systems of visibilities independently.

Since interferometers only measure differences of the phase
of a wavefront between pairs of antennas, the absolute phase
is undetermined and phases are referred to that at a reference
antenna whose phase (and delay) has been arbitrarily set to
zero. This allows for an arbitrary phase and delay offset
between the independent polarization systems. See [7] for a
discussion of correcting these offsets.

B. Response by Linear Feeds

For an interferometer with perfectly linear feeds observing
an unresolved, partially polarized source and forming all four
correlation products the expected visibility [XX,XY,YX,YY]
is given by [8]:

SL = [ipol + qpol cos(2ψ) + upol sin(2ψ),

− qpol sin(2ψ) + upol cos(2ψ) + j vpol,

− qpol sin(2ψ) + upol cos(2ψ) − j vpol,

ipol − qpol cos(2ψ) − upol sin(2ψ)]

whereipol, qpol, upol and vpol are the Stokes’ I, Q, U and
V of the source and j is

√
−1 . ψ is the angle between the

“X” feed and the meridian measured from north towards east.
This is a combination of the orientation of the feed wrt the
antenna (φ) and the orientation of the antenna wrt the sky (χ).
The “Y” is then presumed to be orientated by a further 90◦

from the X feed.χ is the parallactic angle given by:

χ = tan−1
( cos λ sin h

sin λ cos δ − cos λ sin δ cos h

)

(1)
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where δ is the source declination,λ is the latitude of the
antenna andh is the hour angle of the source. For interferom-
eters using linear feeds, Stokes Q and U contribute to all four
correlation products.

For an interferometer using perfect circular feeds, the equiv-
alent visibility [RR,RL,LR,LL] is[4]:

SC = [ipol+vpol, qpol+j upol, qpol−j upol, ipol−vpol]
(2)

In this case, the cross–polarized components (RL, LR) give the
linearly polarized response to the source without a dependency
on the parallactic angle. In practice, the feeds are never
precisely that desired and some fraction of the one polarization
leaks into the other giving rise to a spurious “instrumental
polarization”.

The model used here describes each feed in terms of its
ellipticity, θ and the the orientation of this ellipse,φ. The
response of a given interferometer is given by a Muller matrix
(4 × 4 complex matrix). This matrix multiplied by the true
source polarization vector corrects for the effect of parallactic
angle and residual calibration errors gives the model valueof
the visibilities. The strategy followed here is to determine the
Muller matrices needed to transform the observed data to a
circular basis while correcting for instrumental polarization.

The Muller matrix for a given baseline is the outer product
of the Jones matrix for the first antenna times the conjugate
of that for the second. A Jones matrix including residual
calibration can be constructed for each antenna:

J =

∣

∣

∣

∣

gXcos(π
4 + θX)e−j(φX) gXsin(π

4 + θX)ej(φX)

gY sin(π
4 − θY )ej(φY ) gY cos(π

4 − θY )e−j(φY )

∣

∣

∣

∣

wheregX and gY are corrections to the gains of theX and
Y feeds resulting from the parallel hand calibration.

The Muller matrix,Mik, for baseline i-k is then the outer
product ofJi andJ

∗

k.

Mik = Ji ⊗ J
∗

k

Computation of the Muller matrix is described in more detail
in the Appendix.

Applying a rotation for the parallactic angle, the predicted
correlation vector is then

Vmodel ik = Mik SC

∣

∣

∣

∣

∣

∣

∣

∣

∆χ∗

ik 0 0 0
0 Σχ∗

ik 0 0
0 0 Σχik 0
0 0 0 ∆χik

∣

∣

∣

∣

∣

∣

∣

∣

(3)

where

V
T
model ik = [XXik, XYik, Y Xik, Y Yik].

and
∆χik = ej(χi−χk)

Σχik = ej(χi+χk)

C. Source and instrumental polarization

In the general case, the polarization of the calibrator is
unknown and must be solved for jointly with the instru-
mental polarization. For arrays with alt-az antenna mounts,
the variation in the parallactic angle at which a calibrator

is observed introduces a different effect on the source and
instrumental polarization. Since the instrumental polarization
is introduced in the frame of the antenna, it is constant with
parallactic angle. To separate the two contributions to the
polarized response requires that at least one calibrator be
observed over a sufficient range of parallactic angle to separate
the two effects. How much is enough depends on the SNR
but generally a radian or more is desirable. For a calibrator
of known polarization, including none, any distribution of
parallactic angle is usable. A calibrator of known polarization
angle is required to constrain the feed orientation.

D. Absolute v. Relative Calibration

To first order, the equations describing the polarized re-
sponse for a short baseline interferometer are degenerate
in that there are more parameters than independent mea-
surements. This degeneracy is broken by the higher order
terms if they are large enough. In practice, feeds with linear
polarization frequently have low polarization imperfections
and other constraints may be needed. These may be that a
given (reference) antenna is defined to be “perfect” and its
parameters fixed or that an average over the array of some
parameter is “perfect”.

III. SOLUTIONS FORMODEL PARAMETERS

The parameters of the model described in Section II-B can
be fitted to a data set using any of a number of techniques. In
the following two such techniques are explored.

A. Relaxation fitting

Following the method of [2] the first technique considered
is a relaxation technique in which corrections are cyclically
made to each model parameter being fitted by determining
the effect of that parameter on theχ2. The χ2 of the fit is
defined as

χ2 =

n
∑

i=0

(modeli − obsi)
2/σ2

i

where modeli is the model value for observationi (real or
imaginary part of visibility),obsi is the observation fori and
σ2

i is the variance of the amplitude of observationi. The model
values are components of the vectorVmodel given by Eq. 3.
For each parameter,P , in each iteration,n, the revised value
is given by:

Pn+1 = Pn + tan−1
(

∂χ2

∂P
∂2χ2

∂P 2

)

subject to the constrain that the corrected value,Pn+1, leads
to a decrease inχ2. Should this not be the case, the correction
is reduced in magnitude until theχ2 decreases. Note: the
evaluation ofχ2 only need consider data which depend on
the given parameter. The various partial derivatives are given
in the appendix. In the following, this is referred to as the
“fast” technique.
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B. General nonlinear least squares

Most scientific software packages provide a generalized
nonlinear least squares facility such as the Levenberg-
Marquardt least squares technique. These can provide robust
solutions as well as an error analysis but can be expensive
to compute. An initial estimate of the parameters using the
relaxation technique can reduce the total computing cost.
These generalised nonlinear least squares packages generally
need the derivatives of either theχ2 or the model wrt the
various parameters; these derivatives are given in the appendix.

IV. CORRECTINGOBSERVEDV ISIBILITIES

Once the model parameters describing the instrumental
polarization are known, they can be used to remove the
instrumental effects from the data. The corrected visibility
vector Vcorr can be obtained from the observed visibility
vectorVobs by

V
′

cor = M
−1

Vobs (4)

where M−1 is the inverse of the Muller matrix. A useful
property of the outer product is that the the outer product of
the inverses of two Jones matrices is the inverse of the outer
product of the Jones matrices themselves. The inverse of a
2 × 2 matrix given by:

J =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

is

J
−1 =

1

ad − bc

∣

∣

∣

∣

d −b
−c a

∣

∣

∣

∣

In the implementation described here, the multiplication
by the inverse Muller matrix will transform the observed
[XX,XY,YX,YY] visibilities into corrected [RR,RL,LR,LL]
visibilities. These then need correction for the parallactic
angle:

Vcor =

∣

∣

∣

∣

∣

∣

∣

∣

∆χik 0 0 0
0 Σχik 0 0
0 0 Σχ∗

ik 0
0 0 0 ∆χ∗

ik

∣

∣

∣

∣

∣

∣

∣

∣

V
′

cor (5)

A. Y/X Gain

The parallel hand calibration is generally done assuming
unpolarized calibrators. As was shown in Section II-B, actual
calibrator polarization will have an additive effect of the
parallel hand visibilities with opposite signs and which vary
with parallactic angle. If an unpolarized source is included
in the data, it can be incorporated in the the parallel han
calibration to fix the relative gains in the calibration process
and then constrain further calibrations to average the paralle
hands and thus cancelling the effects of calibrator polarization.

Lacking an unpolarized calibrator, a segment of data on
a polarized calibrator over which the parallactic angle has
minimal change can be used to constrain the X/Y gains
followed by averaging the parallel hand data before calibration.
This will leave an error in the Y/X gain ratio determined
by the calibrator polarization and the parallectic angle ofthe
calibration. Solving for the Y/X gain ratio can be included in
the calibration fitting.

V. OBIT IMPLEMENTATION : PCAL

Implemention of this calibration technique in Obit is in
the task PCal which uses the software class ObitPolnCalFit.
Multiple calibrators may be included in the solution. Calibra-
tion is per channel or sliding window of channels. Fitted feed
parameters are stored in an AIPS PD table with the “Real” part
being the ellipticity and the “Imaginary” being orientation. The
table is labeled as type “ORI-ELP”.

Fitting always uses the “fast” Relaxation method optionally
followed by a Levenberg-Marquardt least squares using the
GSL package nonlinear fitter. The initial value of the param-
eters are for perfect feeds for the first channel fitted and the
results of the previous channel in subsequent fittings.

The parameters to PCal allow specifying the source polar-
izations for some subset of the calibrators in terms of the
fractional polarization, the EVPA×2 and the rotation measure.
In this case, the X-Y phase offset in the data should also be
solved for and the results stored in the AIPS PD table as well
as an AIPS BP table.

Application of instrumental polarization corrections to the
data computes the inverse Muller matrix from the outer
product of the inverse of the Jones matrices. The antenna Jones
matrices are derived as described in Section II-B.

A. Feed orientations

In order to constrain the orientations of feeds, observations
of a source of known polarization angle is needed. Fortunately,
for feeds sensitive to linear polarization the orientationof the
feed can be readily measured. If the feed orientation are known
to sufficient accuracy (and given in the Antenna table) they
need not be fitted. Obit/PCal allow either fitting for the feed
orientation or leaving it at the nominal value.

B. X-Y phase difference

Typically, the calibration of tha parallel hand gains is done
independently leaving an arbitrary difference in phase and
group delay between the two systems. An initial estimate
of the delay difference can be obtained and removed using
Obit task RLDly [7]. Residual X-Y phase differences can be
estimated in the fitting if one or more of the calibrators is
polarized although its state need not be previously known.
These phase differences are included in the output bandpass
(AIPS BP) table.

C. Y/X Gain

As described in Section IV-A the Y/X gain ratio may not
be properly determined by the parallel hand calibration and
can be included in the calibration fitting. In PCal the relative
cans can be determined in each channel or block of channels
fitted and can be incorporated into the output bandpass table.

D. Stokes V

The value of Stokes’ V can be left at 0 or fitted on a
calibrator by calibrator basis.
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TABLE I
Calibrator polarization

Source Day I frac. lin. pol EVPA frac. cir. pol
Jy/bm ◦

3C286 1 14.6 0.094 29.6 6.6e-5
3C138 1 8.6 0.072 -20.0 0.0017
B1934-638 1 14.5 0.0001 133 -0.0006
ph cal 1 0.90 0.037 -78.8 0.0003
3C286 2 14.1 0.096 29.5 8.9e-6
3C138 2 8.5 0.074 -21.5 0.0010
B1934-638 2 14.5 0.0003 -1.5 0.0007
ph cal 2 0.90 0.038 -78.0 0.0003
3C286 3 13.4 0.100 29.5 0.0005
B1934-638 3 14.0 0.001 -13.0 -1.8e-5
quasar 3 2.71 0.033 54.3 0.0008

E. Absolute or Relative Calibration

There are several options for relative v. absolute calibration
and these are controlled by parameter refAnt. If refAnt is
specified as zero, then no additional constraints are imposed
and an “absolute” calibration is attempted. If refAnt is greater
than 0, then it indicates an antenna for which the XPol
ellipticity is fixed to zero (perfect feed). If refAnt is -1 then the
average of all ellipticities is forced to zero. The latter option
seems most effective when Stokes V is desired.

VI. EXAMPLES WITH KAT-7 DATA

The implemention in Obit was tested using data from the
KAT-7 (MeerKAT prototype) array in South Africa. This
array used linear feeds oriented vertically and horizontally
and operates in L Band. Data were calibrated using the
strong, very weakly polarized source B1934-638 and other
calibrators were self calibrated averaging the parallel hand data
to avoid introducing artifacts from the calibrator’s polarization.
All data sets included B1934-638 and 3C286 and the latter
was used in RLDly to correct the cross polarized delay.
Instrumental polarization calibration used fixed polarization
models for B1934-638 (zero linear polarization) and 3C286
(0.095 fractional linear polarization at 1.3 GHz and 0.098
at 1.8 GHz at EVPA=33◦). After calibration, the data were
imaged and as all sources were unresolved, the value in the
Stokes I, Q, U and V images at the location of the calibrator
were used for evaluation. Polarization results are given inTable
I and the associated image’s RMSes in Table II.

Two datasets included both 3C138 and 3C286 as polariza-
tion calibrators and were identically scheduled which allows
comparisons of repeatability. These were observed at 1.3
GHz allowing the posibility of variable ionospheric Faraday
rotation. The results are summarized in Tables I and II as days
1 and 2.

A third dataset included a deep integration of a polarized
quasar. This dataset was calibrated and imaged as were the
previous tests and the images in various Stokes parameters
are shown in Figure 1 and statistical measures in Tables I and
II.

VII. E XAMPLE WITH ALMA DATA

ALMA polarization comissioning data was used to derive
polarized images of the well known calibrator 3C286 at
230 GHz. Data consisted of four 2 GHz bands with all
correlation products recorded. The observations includedcal-
ibrators 3C279, J1337-1257, and J131029+322051 for band-
pass, polarization and phase calibration. ALMA uses linearly
polarized feeds at 45◦ to either side of vertical. The calibration
proceeded as follows:

1) 3C279 and J1337-1257 were used for the parallel hand
group delay calibration.

2) The calibration was based on a “Flux density” of 3C279
of 10 Jy and used 3C279 as bandpass calibrator.

3) After an initial calibration based on 3C279, the calibra-
tors and 3C286 were self calibrated and the models used
in subsequent calibration (although all were unresolved
in this dataset).

4) A single scan on 3C279 was used to fix the Y/X gains
and subsequent calibration averaged the parallel hands
before determining calibration.

5) The calibrators and 3C286 were then used to determine
short period phase fluctuations,

6) followed by scan averaged amplitude and phase correc-
tions.

7) A single scan of 3C279 was used to correct the X-Y
delays.

8) Data had calibration applied using Obit task Splat.
9) Polarization calibration used 3C279, J1337-1257, and

J131029+322051 solving for the source polarization,
Y/X gains and X-Y phases. Since only the target
(3C286) had a known polarization angle the feed ori-
entation were left at the nominal values. Solutions were
performed in blocks of 250 MHz.

10) Y data from antenna 22 were found to be unreliable and
were excluded from further analysis.

After calibration, the data were imaged using Obit task
Imager using short period phase self calibration followed by
scan averaged amplitude and phase self calibration. As all
sources were unresolved, the value in the Stokes I, Q, U

TABLE II
Image RMS

Source Day I rms Q rms U rms V rms
mJy/bm mJy/bm mJy/bm mJy/bm

3C286 1 33 3.8 3.0 2.2
3C138 1 27 8.6 13.4 2.5
B1934-638 1 0.8 0.8 0.9 0.6
ph cal 1 4.7 0.7 0.9 0.3
3C286 2 23 2.3 2.3 0.2
3C138 2 26 8.3 12.0 3.7
B1934-638 2 3.7 1.0 1.2 0.7
ph cal 2 5.0 0.8 1.1 0.4
3C286 3 20 7.0, 6.4 1.7
B1934-638 3 11 2.3 2.0 1.2
quasar 3 4.5 0.8 0.6 0.2
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Fig. 1. Negative grayscale images of a quasar observed with KAT-7 in Stokes I (top left), V (top, right), Q (botton left) andU (bottom right). Intensity scale
is given by the bar at the top labeled in mJy/beam. Maximum I is 2.71 Jy/beam, Q is -27 mJy/beam, U is 81 mJy/beam. CLEAN restoring beamis shown
in the lower left.
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TABLE III
Calibrator polarization

Source I frac. lin. pol EVPA
Jy/bm ◦

3C279 10.0 0.118 33.7
3C286 0.274 0.163 38.1
J1337-125 3.00 0.033 62.8
J131029+322051 0.636 0.048 85.8

and V images at the location of the calibrator were used for
evaluation. Polarization results are given in Table I and the
associated image’s RMSes in Table II.

The images of 3C286 in various Stokes parameters are
shown in Figure 2 and statistical measures in Tables III and
IV. Images in Stokes I, Q and U show no significant artifacts
while the respponse in Stokes V is clearly spurious, the
source position is centered between the positive and negative
responses and all calibrators show the same pattern at±0.4%
of the Stokes I peak.

VIII. D ISCUSSION

A method of calibrating the polarized response from radio
interferometer arrays using linearly polarized feeds is de-
scribed and an implementation tested using data from the KAT-
7 telescope. The results in the previous section show good
repeatability of results for a number of sources and a low level
of residual artifacts in the derived polarization images. The
low level of polarized residuals in images of the very weakly
polarized source B1934-638, less than 0.1%, are indicativeof
the quality of correction. Polarized emission is even visible
from a weaker source in the field shown in Figure 1.

A calibrator of known EVPA is needed to accurately deter-
mine the orientations of the feeds in order to ensure accurate
measures of the angle of linear polarization (EVPA). This was
done in the cases of the KAT-7 data tests described above.
However, after calibration there were residual errors in EVPA.
Polarization models are given in [9] for 3C138 (7.5% EVPA=-
11◦) and 3C286 (9.5% , EVPA=33◦) at 1.45 GHz. 3C286 was
used to set the EVPA scale but the results shown in Table I
all gave an EVLA of∼30◦, 3◦ lower than the value used in
the calibration of∼33◦. The EVPA values for 3C138 given

TABLE IV
Image RMS

Source I rms Q rms U rms V rms
mJy/bm mJy/bm mJy/bm mJy/bm

3C279 267 12 29 2.0
3C286 8.4 0.1 1.4 0.1
J1337-125 76 0.3 0.2 0.5
J131029+322051 20 0.1 0.1 0.1

in Table I are about 10◦ lower than the value given by [9].
The fractional linear polarizations given in Table I are in good
agreement with [9]. The reasons for the discrepancy in EVPA,
and in particular, the differences for 3C138 and 3C286 are
unclear.

The ALMA example analysis gave a fractional polarization
of 16.3% and an EVPA of 38.1◦. This is in reasonable agree-
ment with other measurements [10] and shows the efficacy
of using the nominal ALMA feed orientations. The reasons
for the clearly spurious Stokes V image of 3C286 is not
understood.
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Fig. 2. Negative grayscale images of 3c286 observed by ALMA inStokes I (top left), V (top, right), Q (botton left) and U (bottom right). Intensity scale is
given by the bar at the top labeled in mJy/beam. CLEAN restoringbeam is shown in the lower left.
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APPENDIX

Muller matrix
A polarization Jones matrix which includes the effects of

parallel–hand calibration can be constructed for each antenna:

J =

∣

∣

∣

∣

gXcos(π
4 + θX)e−j(φX) gXsin(π

4 + θX)ej(φX)

gY sin(π
4 − θY )ej(φY ) gY cos(π

4 − θY )e−j(φY )

∣

∣

∣

∣

whereθ is the ellipticity,φ the orientation,j is
√
−1, gX and

gY are corrections to the gains of theX andY feeds resulting
from the parallel hand calibration, The Muller matrix,Mik, for
baseline i-k is then the outer product ofJi andJ

∗

k.

Mik = Ji ⊗ J
∗

k

In order to efficiently compute the Muller matrices, for each
antennai, define:

CX,i = cos(
π

4
+ θX,i) e−jφX,i

CY,i = cos(
π

4
− θY,i) ej(φY,i)

SX,i = sin(
π

4
+ θX,i) ejφX,i

SY,i = sin(
π

4
− θY,i) e−j(φY,i)

and for each baselinei − k define:

∆χik = ej(χi−χk)

Σχik = ej(χi+χk)

The Jones matrix then becomes:

J =

∣

∣

∣

∣

CX,i SX,i

SY,i CY,i

∣

∣

∣

∣

The elements of the Muller matrix to convert the circular
basis model visibility to the corrupted linear basis visibilities
is:

Mik =

∣

∣

∣

∣

∣

∣

∣

∣

CX,iC
∗

X,k CX,iS
∗

X,k SX,iC
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∗
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∗
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∗

Y,k

SY,iC
∗
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∗

X,k CY,iC
∗

X,k CY,iS
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X,k
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∗

Y,k SY,iC
∗

Y,k CY,iS
∗

Y,k CY,iC
∗

Y,k

∣

∣

∣

∣

∣

∣

∣

∣

where∗ denotes the complex conjugate.
The model visibility is given by:

SC =

∣

∣

∣

∣

∣

∣

∣

∣

ipol + vpol
qpol + j upol
qpol − j upol
ipol − vpol

∣

∣

∣

∣

∣

∣

∣

∣

whereipol, qpol, upol and vpol are the Stokes’ I, Q, U and
V of the source.

Applying corrections for the parallactic angle:

S = SC

∣

∣

∣

∣

∣

∣

∣

∣

∆χ∗

ik 0 0 0
0 Σχ∗

ik 0 0
0 0 Σχik 0
0 0 0 ∆χik

∣

∣

∣

∣

∣

∣

∣

∣

The corrections to the parallel hand calibration can be
described as

Cik =

∣

∣

∣

∣

∣

∣

∣

∣

gx,igx,k

gx,igy,kejδ

gy,igx,ke−jδ

gx,igx,k

∣

∣

∣

∣

∣

∣

∣

∣

The model of the observed visibility is then

Vmodel ik = Mik S Cik (6)

The components of the model visibility vector in the linear
basis,Vmodel ik, are:

VXXik
= (S0M0,0 + S1M0,1 + S2M0,2 + S3M0,3)gX,igX,k

VXYik
= (S0M1,0 + S1M1,1 + S2M1,2 + S3M1,3)gX,igY,keiδ

VY Xik
= (S0M2,0 + S1M2,1 + S2M2,2 + S3M2,3)gY,igX,ke−iδ

VY Yik
= (S0M3,0 + S1M3,1 + S2M3,2 + S3M3,3)gY,igY,k

(7)
Partial derivatives

The nonlinear fitting routines need the first and second
partial derivatives of Eq. 7 wrt each of the parameters being
fitted. The parameters which may be adjusted and for which
partial derivatives may be needed are:

• ipol Source Stokes I.
• qpol Source Stokes Q.
• upol Source Stokes U.
• vpol Source Stokes V.
• φXi

Orientation ofX feed antennai.
• φYi

Orientation ofY feed antennai.
• θXi

Ellipticity of X feed antennai.
• θYi

Ellipticity of Y feed antennai.
• gXi

Gain correction toX feed antennai.
• gYi

Gain correction toY feed antennai.
• δ Phase difference between X and Y parallel systems.

Source derivatives, all second derivatives are 0.

∂VXX

∂ipol
= ( CX,iC

∗

X,k∆∗χik + SX,iS
∗

X,k∆χ
ik)gX,igX,k

= ( M0,0∆
∗χik + M0,3∆

χ
ik)gX,igX,k

∂VXX

∂qpol
= ( CX,iS

∗

X,kΣ∗χik + SX,iC
∗

X,kΣχ
ik)gX,igX,k

= ( M0,1Σ
∗χik + M0,2Σ

χ
ik)gX,igX,k

∂VXX

∂upol
= (j CX,iS

∗

X,kΣ∗χik − j SX,iC
∗

X,kΣχ
ik)gX,igX,k

= (j M0,1Σ
∗χik − j M0,2Σ

χ
ik)gX,igX,k

∂VXX

∂vpol
= ( CX,iC

∗

X,k∆∗χik − SX,iS
∗

X,k∆χ
ik)gX,igX,k

= ( M0,0∆
∗χik − M0,3∆

χ
ik)gX,igX,k

∂VY Y

∂ipol
= ( SY,iS

∗

Y,k∆∗χik + CY,iC
∗

Y,k∆χ
ik)gY,igY,k

= ( M3,0∆
∗χik + M3,3∆

χ
ik)gY,igY,k

∂VY Y

∂qpol
= ( SY,iC

∗

Y,kΣ∗χik + CY,iS
∗

Y,kΣχ
ik)gY,igY,k

= ( M3,1Σ
∗χik + M3,2Σ

χ
ik)gY,igY,k

∂VY Y

∂upol
= (j SY,iC

∗

Y,kΣ∗χik − j CY,iS
∗

Y,kΣχ
ik)gY,igY,k

= (j M3,1Σ
∗χik − j M3,2Σ

χ
ik)gY,igY,k

∂VY Y

∂vpol
= ( SY,iS

∗

Y,k∆∗χik − CY,iC
∗

Y,k∆χ
ik)gY,igY,k

= ( M3,0∆
∗χik + − M3,3∆

χ
ik)gY,igY,k
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∂VXY

∂ipol
= ( CX,iS

∗

Y,k∆∗χik + SX,iC
∗

Y,k∆χ
ik)gX,igY,kejδ

= ( M1,0∆
∗χik + M1,3∆

χ
ik)gX,igY,kejδ

∂VXY

∂qpol
= ( CX,iC

∗

Y,kΣ∗χik + SX,iS
∗

Y,kΣχ
ik)gX,igY,kejδ

= ( M1,1Σ
∗χik + M1,2Σ

χ
ik)gX,igY,kejδ

∂VXY

∂upol
= (j CX,iC

∗

Y,kΣ∗χik − j SX,iS
∗

Y,kΣχ
ik)gX,igY,kejδ

= (j M1,1Σ
∗χik − j M1,2Σ

χ
ik)gX,igY,kejδ

∂VXY

∂vpol
= ( CX,iS

∗

Y,k∆∗χik − SX,iC
∗

Y,k∆χ
ik)gX,igY,kejδ

= ( M1,0∆
∗χik − M1,3∆

χ
ik)gX,igY,kejδ

∂VY X

∂ipol
= ( SY,iC

∗

X,k∆∗χik + CY,iS
∗

X,k∆χ
ik)gY,igX,ke−jδ

= ( M2,0∆
∗χik + M2,3∆

χ
ik)gY,igX,ke−jδ

∂VY X

∂qpol
= ( SY,iS

∗

X,kΣ∗χik + CY,iC
∗

X,kΣχ
ik)gY,igX,ke−jδ

= ( M2,1Σ
∗χik + M2,2Σ

χ
ik)gY,igX,ke−jδ

∂VY X

∂upol
= (j SY,iS

∗

X,kΣ∗χik − j CY,iC
∗

X,kΣχ
ik)gY,igX,ke−jδ

= (j M2,1Σ
∗χik − j M2,2Σ

χ
ik)gY,igX,ke−jδ

∂VY X

∂vpol
= ( SY,iC

∗

X,k∆∗χik − CY,iS
∗

X,k∆χ
ik)gY,igX,ke−jδ

= ( M2,0∆
∗χik − M2,3∆

χ
ik)gY,igX,ke−jδ

Non zero derivatives inφX :

∂VXX

∂φXi

= ( − jS0M0,0 − jS1M0,1

+ jS2M0,2 + jS3M0,3)

gXi
gXk

∂2VXX

∂φ2
Xi

= − VXX

∂VXX

∂φXk

= ( + jS0M0,0 − jS1M0,1

+ jS2M0,2 − jS3M0,3)

gXi
gXk

∂2VXX

∂φ2
Xi

= − VXX

∂VXY

∂φXi

= ( − jS0M1,0 − jS1M1,1

+ jS2M1,2 + jS3M1,3)

gXi
gYk

ejδ

∂2VXY

∂φ2
Xi

= − VXY

∂VY X

∂φXk

= ( + jS0M2,0 − jS1M2,1

+ jS2M2,2 − jS3M2,3)

gYi
gXk

e−jδ

∂2VY X

∂φ2
Xk

= − VY X

Non zero derivatives wrtφY :

∂VXY

∂φYk

= ( + jS0M1,0 − jS1M1,1

+ jS2M1,2 − jS3M1,3)

gXi
gYk

ejδ

∂2VXY

∂φ2
Yk

= − VXY

∂VY X

∂φYi

= ( − jS0M2,0 − jS1M2,1

+ jS2M2,2 + jS3M2,3)

gYi
gXk

e−jδ

∂2VY X

∂φ2
Yi

= − VY X

∂VY Y

∂φYi

= ( − jS0M3,0 − jS1M3,1

+ jS2M3,2 + jS3M3,3)

gYi
gYk

∂2VY Y

∂φ2
Yi

= − VY Y

∂VY Y

∂φYk

= ( + jS0M3,0 − jS1M3,1

+ jS2M3,2 − jS3M3,3)

gYi
gYk

∂2VY Y

∂φ2
Yk

= − VY Y

Non zero derivatives wrtθX :

∂VXX

∂θXi

= j(−S0CX∗

kSX∗

i − S1SX∗

kSX∗

i +

S2CX∗

kCX∗

i + S3SX∗

kCX∗

i )

gXi
gXk

∂2VXX

∂θ2
Xi

= − VXX

∂VXX

∂θXk

= j(−S0CXi∆χ∗

ikSXk + S1CXiΣχ∗

ikCXk−

S2SXiΣχikSXk + S3SXi∆χikCXk)

gXi
gXk

∂2VXX

∂θ2
Xk

= − VXX

∂VXY

∂θXi

= j(−S0SY ∗

k SX∗

i − S1CY ∗

k SX∗

i +

S2SY ∗

k CX∗

i + S3CY ∗

k CX∗

i )

gXi
gXk

ejδ

∂2VXY

∂θ2
Xi

= − VXY
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∂VY X

∂θXk

= j(−S0SY ∗

i SXk + S1SY ∗

i CXk−

S2CY ∗

i SXk + S3CY ∗

i CXk)

gXi
gXk

e−jδ

∂2VY X

∂θ2
Xk

= − VY X

Non zero derivatives wrtθY :

∂VY Y

∂θYi

= j(−S0SY ∗

k CY ∗

i − S1CY ∗

k CY ∗

i +

S2SY ∗

k SY ∗

i + S3CY ∗

k SY ∗

i )

gYi
gYk

∂2VY Y

∂θ2
Yi

= − VY Y

∂VY Y

∂θYk

= j − (S0SYiCYk + S1SYiSYk−

S2CYiCYk + S3CYiSYk)

gYi
gYk

∂2VY Y

∂θ2
Yk

= − VY Y

∂VXY

∂θYk

= j(−S0CXiCYk + S1CXiSYk−

S2SXiCYk + S3SXiSYk)

gXi
gYk

ejδ

∂2VXY

∂θ2
Yk

= − VXY

∂VY X

∂θYi

= j(−S0CX∗

kCY ∗

i − S1SX∗

kCY ∗

i +

S2CX∗

kSY ∗

i + S3SX∗

kSY ∗

i )

gYi
gXk

e−jδ

∂2VY X

∂θ2
Yi

= − VY Y

Derivatives wrtgX , second derivatives are 0.0:

∂VXX

∂gx,i

= (S0M0,0 + S1M0,1 + S2M0,2 + S3M0,3)gx,k

∂VXX

∂gx,k

= (S0M1,0 + S1M1,1 + S2M1,2 + S3M1,3)gx,i

∂VXY

∂gx,i

= (S0M2,0 + S1M2,1 + S2M2,2 + S3M2,3)gY,keiδ

∂VY X

∂gx,k

= (S0M3,0 + S1M3,1 + S2M3,2 + S3M3,3)gY,ie
−iδ

Derivatives wrtgY , second derivatives are 0.0:

∂VXY

∂gY,k

= (S0M0,0 + S1M0,1 + S2M0,2 + S3M0,3)gx,ie
iδ

∂VY X

∂gY,i

= (S0M1,0 + S1M1,1 + S2M1,2 + S3M1,3)gx,ke−iδ

∂VY Y

∂gY,i

= (S0M2,0 + S1M2,1 + S2M2,2 + S3M2,3)gY,k

∂VY Y

∂gY,k

= (S0M3,0 + S1M3,1 + S2M3,2 + S3M3,3)gY,i

Non zero derivatives inδ:

∂VXY

∂δ
= + j VVY X

,
∂2VXY

∂δ2
= + j

∂VXY

∂δ
∂VY X

∂δ
= − j VXY ,

∂2VY X

∂δ2
= − j

∂VY X

∂δ

Derivatives of χ2 wrt parameters
The χ2 of the fit is defined as

χ2 =

n
∑

i=0

(modeli − obsi)
2/σ2

i

where modeli is the model value for observationi (real or
imaginary part of visibility),obsi is the observation fori and
σ2

i is the variance of the amplitude of observationi. Denote
modeli − obsi asresidi.

The derivative ofχ2 wrt each parameterp is:

∂χ2

∂p
=

n
∑

i=0

2
(

residi

∂modeli
∂p

)

/σ2
i

This expression is complex, to get the real value, instead use

∂χ2

∂p
=

n
∑

i=0

2
(

Real(residi)Real(
∂modeli

∂p
)+

Imag(residi)Imag(
∂modeli

∂p
)
)

/σ2
i

whereReal and Imag denote the real and imaginary parts of
the argument.

The second derivative ofχ2 wrt each parameterp is:

∂2χ2

∂p2
=

n
∑

i=0

2
(∂modeli

∂p

∂modeli
∂p

+ residi

∂2modeli
∂p2

)

/σ2
i

This expression is also complex, to get the real value, instead
use

∂2χ2

∂p2
=

n
∑

i=0

2
(

Real(
∂modeli

∂p
)Real(

∂modeli
∂p

)+

Imag(
∂modeli

∂p
Imag(

∂modeli
∂p

)+

Real(residi)Real(
∂2modeli

∂p2
)+

Imag(residi)Imag(
∂2modeli

∂p2
))

)

/σ2
i
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