
OBIT DEVELOPMENT MEMO SERIES NO. 6 1

Parallel Facet Imaging in Obit
W. D. Cotton, February 4, 2009

Abstract—This note explores the concept of parallel imaging
in the formation of multiple facets needed for Fly’s Eye imaging.
This is a “read once, grid many” technique as opposed to
the serial “read many, grid once” approach. In a small test
case presented in which the data fit entirely in disk cache, the
parallel imaging ran up to 50% faster than a serial version;
an enhancement significant enough to also make noticeable
improvement (30%) in a more realistic test. This difference is
believed due to the improved efficiency of threading. For a large
test case which did not fit in the disk cache, the serial method
using threads running in 8 cores was about a factor of two from
being CPU bound. The parallel method is solidly CPU limited
and the multiple imaging steps ran in half the time of the serial
method.

Index Terms—imaging, interferometry, parallel processing

I. INTRODUCTION

ONE of the common solutions to the ”co-planarity” prob-
lem in interferometry - that images are flat but the sky

is not - is the ”Fly’s Eye” technique [1] of using multiple
facets, each tangent to the celestial sphere, to tile the region
of the sky to be imaged. One drawback to this technique is
that simple implementations require reading the entire dataset
for each facet image and each associated facet dirty beam.
In practical cases, a few to several thousand facets may be
required.

Current instruments generally produce continuum data sets
that are sufficiently small that they easily fit in memory of
modern computers. For example, large VLA continuum data
sets are seldom larger than a few hundred MByte while the
NRAO Obit development machine in Charlottesville, mortibus,
contains 8 GByte of memory. The disk caching technique of
the Unix operating system will thus keep the entire dataset in
memory even if the software is formally using a strip-mining
technique (as is the case in Obit and AIPS) and the actual
transfer rate from the disk is not an issue.

This will not be the case for instruments currently under
development (e.g. EVLA and ALMA) which can produce
datasets several orders of magnitude larger. In this regime, the
hundreds to thousands of ”reads” of the data are unacceptable.

This note explores an idea discussed by Eric Greisen at the
Oxford Algorithms meeting in December 2008 which he has
implemented in AIPS. This concept is simple. Unless direction
dependent calibration is being applied in the imaging, each
facet image and dirty beam uses exactly the same data; they are
merely rotated to a different tangent point on the sky, gridded
and FFTed. Multiple image/beam grids can be accumulated
from a single read of the dataset.

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

Manuscript received ; revised

With the multi-threading implemented in Obit ([2],
http://www.cv.nrao.edu/∼bcotton/Obit.html), the work of grid-
ing can also be spread over multiple threads; parallel, threaded
gridding can both dramatically reduce the total I/O and result
in increased efficiency of execution.

II. PARALLEL IMAGING

Parallel facet imaging was implemented in Obit in the
ObitImageUtil utility package as routine ObitImageUtil-
MakeImagePar. This routine is passed a UV dataset and an
array of images (and possibly dirty beams) to be formed
from this data. If multiple images and/or beams are to be
formed, this routine creates an ObitUV data object for each
image/beam; these all point to the same dataset. In addition, an
array of ObitUVGrid objects are created, one for each image
or beam. These, among other things, contain the UV grid onto
which the data is to be accumulated.

The arrays of ObitUVs and ObitUVGrids are passed to
the ObitUVGrid class routine ObitUVGridReadUVPar which
implements a parallel read/griding operation to fill the accu-
mulation grids on each of the ObitUVGrid objects

A. Parallel ”I/O”
A single read of the data is used to fill multiple buffers. This

uses ObitUV class functions ObitUVReadMulti and ObitU-
VReadMultiSelect for the actual read and to fill the first set
of thread buffers. These two routines differ in that the latter
allows calibration, editing, and selection.

Subsequent sets of thread buffers are filled using ObitU-
VReReadMulti and ObitUVReReadMultiSelect which uses
data saved from the initial read and possibly applies a facet
dependent calibration. Actual parallel I/O is implemented in
the ObitIO virtual class as ObitIOReadMulti, ObitIOReadMul-
tiSelect, ObitIOReReadMulti and ObitIOReReadMultiSelect
which then call the ObitIO derived class for the specific data
type (currently, FITS or AIPS).

B. Parallel Griding
Parallel gridding is done in ObitUVGridReadUVPar which

determines how many threads are to be used (a user specifiable
parameter) and creates an array of accumulation uv grids,
one for each image/beam and thread. Two buffers are used
for the parallel I/O. The gridding process first reads a buffer
of data and then loops over the images/beams, dividing the
work amoung the threads for each as is described in Obit
Development Memo no. 1. Griding consists of multiplying
the randomly sampled UV visibilities by a continuous anti–
aliasing (“griding convolution”) function which is then re-
sampled onto the UV accumulation grid. Multiple copies of the

OBIT DEVELOPMENT MEMO SERIES NO. 6 2

accumulation grid are needed to avoid the dependency between
threads when they are gridding points in the same region of
the grid. When all of the data have been read and gridded, the
individual thread accumulation uv grids are combined into a
single grid.

This implementation of griding modifies the contents of
the UV data buffer as needed for each facet. This includes
rotation of the data to the facet tangent point and replacing
the data with (1,0) to form a dirty beam. This technique
requires a separate copy for each image/beam. The efficiency
of the threading is a function of the amount of data in
each buffer; the buffer size read is temporarily modified (in
ObitImageUtilMakeImagePar) to ensure at least a minimum
for efficient operation. Note: the computational expense of the
rotation of the position to the facet center is comparable to the
gridding; the computation time for making a beam is roughly
half of that for the corresponding image of the same size.

C. FFT, Griding Correction
Once the entire data set is gridded onto all the facet UV

grids, each grid is FFTed to the image domain; this uses
ObitUVGrid function ObitUVGridFFT2ImPar. In principle,
these FFTs could be done in parallel threads. However, the
FFTW implementation also allows multiple threading and
there appears to be a conflict between the Obit and FFTW
threading. Therefore, the FFTs are done serially but using the
FFTW threading.

After the Fourier transform, the images need to be cor-
rected for the effects of the griding convolution function.
This correction is performed in parallel threads by ObitU-
VGridFFT2ImPar.

The final step is the normalization of the images and
writing to disk. The results of the previous steps have an
arbitrary multiplicative factor common to each image/dirty
beam pair. This results from the data weighting as well as
the details of the griding and FFT. Since the dirty beam
is defined to be 1 at the center, the normalization factor
is the value of the derived dirty beam central pixel. Both
the beam and image are normalized by this factor and the
image is written to disk. These final steps are done serially in
ObitImageUtilMakeImagePar.

III. EXAMPLE 1: SMALL DATA SET

The implementation described above was tested on mort-
ibus, the Obit development computer at NRAO/Charlottesville.
This machine has dual, quad core processors so testing could
use up to 8 threads. All available VLA data sets easily fit
its 8 GByte memory. A data set was selected from the VLA
archive of an NRAO VLA Spitzer First Look Survey field.
Combined data from two days of observing on a single point-
ing containing 200 MByte of data was used. The observations
were in the VLA “B” configuration at 20 cm wavelength. This
data has two ”IFs” of 7 channels each and both RR and LL
correlations. Faceted images covering a radius of 0.75◦ were
imaged plus strong outliers selected from the NVSS catalog;
116 facets were used in all. Final images were 3600×3600
pixels. Imaging used Obit task Imager.

TABLE I
Example 1 Timing tests

Test threads Real CPU Ratio
sec sec

Serial short 1 907.96 907.76 1.00
Serial short 2 541.15 904.27 1.67
Serial short 4 419.16 927.08 2.22
Serial short 8 283.39 946.89 3.34

Parallel short 1 911.34 911.14 1.00
Parallel short 2 574.93 911.16 1.58
Parallel short 4 315.04 925.41 2.94
Parallel short 8 183.19 909.72 4.97

Serial Full 8 3618.0 19253.8 5.30
Parallel Full 8 2843.4 16023.4 5.64

The first test was to make a set of facets and do a light
clean, 100 components, then flatten the restored facets. This
operation is dominated by the initial formation of the images
and beams and the final set of residual images. Identical
tests were performed using the parallel griding and the serial
griding, each using 1, 2, 4 and 8 threads. The timing results
are given in Table I as tests ”Serial short” and ”Parallel short”.
For each test, this table contains the wall clock (”Real”) time,
the CPU time and the ratio of CPU to wall clock. This last
value indicates the efficiency of the threading.

Since the making of large numbers of simultaneous facets is
not the dominant part of a practical processing run, a second
test involved using the same data sets but instead of a token
clean, doing a more substantial processing including, CLEAN-
ing to the noise, doing a phase self calibration followed by
another CLEAN to the noise. The results of these, more
realistic, timing trials are given in Table I as tests ”Serial Full”
and ”Parallel Full”. Wall clock results are shown in Figure 1.

The parallel imaging uses multiple simultaneous UV grids,
one set for each image and beam. This additional memory
usage is insignificant, the task never using more than 1.7% of
the available memory.

IV. EXAMPLE 2: LARGER DATA SET

Since the previous example data set fit comfortably in mem-
ory, actual I/O wasn’t an issue. A second test case is a larger
data set, 2.5 Mvis of 1024 channel continuum data generated
to test the casa development cluster at NRAO/Socorro. This
cluster is composed of 16 dual, quad core nodes. This dataset
was ∼40 GByte in “compressed” format and ∼120 GByte with
all values as floats. The single polarization (Stokes I) used for
imaging comprised ∼30 GByte. This data set is substantially
larger that the 8 GByte memory in the individual nodes of the
cluster so test the I/O of the system. Several test runs were
made with various amounts of data; 1) small enough that all
data imaged fit in memory, 2) half the total data and 3) the
full data set. Each test run consisted of imaging a 9 arcmin
radius field which required 7 facets, CLEANing 1 component,
forming the residual images, and finally flattening them to a
single 4000×4000 image. All tests used all 8 processors on a

OBIT DEVELOPMENT MEMO SERIES NO. 6 3

Number of threads

W
al

l C
lo

ck
 ti

m
e

(s
ec

)

0 2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

Fig. 1. Wall clock time for test case processing using different numbers
of threads. Pluses and the solid line indicate parallel imaging, “X”s and the
dashed line indicate serial imaging and the dotted line, the optimum for full
utillization of all threads.

TABLE II
Example 2 Timing tests

Test Total Initial Image Size Scaled
min min min

Serial short 24.5 3.4 1.0 3.4
Parallel short 13.7 3.3 1.0 3.3

Serial half 145.6 51.6 7.1 24.1
Parallel half 118.2 25.9 7.1 23.6
Serial full 306.6 108.8 15.0 51.0

Parallel full 249.2 54.7 15.0 49.1

single cluster node of the casa development cluster and were
repeated for serial and parallel imaging. The results are given
in Table II.

The entries in Table II were for three sizes, 1) “short” = 168
kVis, 2) “half” = 1.2 Mvis, and 3) “full” = 2.5 Mvis. Both
the total run wall clock time (“Total”) and the wall clock time
to grid and FFT the initial set of images (7) and beams (7).
The “Size” column gives the ratio of the data volumes to the
“short” version. The final column, “Scaled” is the value of the
“Initial Image” entry of the short test scaled by the “Size”.

V. DISCUSSION

The Example 1 timing test presented above compared two
executions dominated by the making of large numbers of
facets. The serial and parallel versions have comparable run
times for small numbers of threads, but with four or more
threads the parallel imaging version was significantly faster;
using all 8 available cores, the parallel test was over 50%
faster. Much of the speed enhancement from larger numbers
of threads came from the more efficient use of threading by
the parallel version Even in the second, more realistic test,
the parallel facet version was nearly 30% faster when using 8
threads.

For all of the tests in Example 1, the full problem easily fit
in the Unix disk cache, meaning I/O speed was not an issue.
However, for large data sets, the performance enhancement is
expected to be more dramatic. The second example is of such
a problem, but the results in Table II show only a factor of two
difference in imaging run times for the two techniques for a
range of problem sizes. A close examination of the tabulated
values shows that the problem is nearly CPU limited even in
the serial test, especially in the stage of forming the initial set
of images and beams. The run times for the “Initial Image”
stage for the parallel imaging show a roughly linear scaling
with data volume; that is, there is no significant additional
time used over what is needed to do the computation. The
amount of I/O for the parallel test is 1/14 of the I/O for the
serial test so expected to be CPU limited. The run time for the
serial imaging for the two larger test sizes is roughly double
the scaled CPU times of the small data test, indicating that the
larger tests are moderately I/O bound.

With the hardware and gridding algorithms used, the parallel
image formation is likely to remain CPU bound and the
serial method only moderately I/O bound. Both the I/O and
computation time scale linearly with data volume. Without
heavy use of multithreading, both methods are strongly CPU
limited.

ACKNOWLEDGMENT

The author would like to thank Eric Greisen for the basic
idea explored here and Sanjay Bhatnagar for the large test data
set.

REFERENCES

[1] R. A. Perley, “Imaging with Non-Coplanar Arrays,” in Synthesis Imaging
in Radio Astronomy II, ser. Astronomical Society of the Pacific Confer-
ence Series, G. B. Taylor, C. L. Carilli, and R. A. Perley, Eds., vol. 180,
1999, pp. 383–+.

[2] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

