
OBIT DEVELOPMENT MEMO SERIES NO. 1 1

Note on the Efficacy of Multi-threading in Obit
W. D. Cotton, October 1, 2008

Abstract—This memo describes the implementation of multi-
threading for increased efficiency of processing astronomical
data. Tests on a high dynamic range, wide field data set problem
using the Obit task Squint are presented. A variable number of
threads are enabled with a good increase in performance up to
at least 8 processors.

Index Terms—Computing efficiency, multitudes, interferome-
try

I. INTRODUCTION

THE upcoming generation of radio interferometers (e.g.
EVLA, ALMA, LOFAR, MeerKAT) will produce vastly

more data than the current generation of interferometers. The
speed of single processor computers appears to be near-
ing fundamental limits and the needed computing power
will require harnessing multiple processors. One of the cur-
rently viable techniques for doing this is using multiple
threads running on multiple processors/cores in a shared
memory environment. This “multi-threading” technique al-
lows using multiple processing units on a given prob-
lem. The following discusses an implementation of multi-
threading of several compute intensive operations in Obit ([1],
http://www.cv.nrao.edu/∼bcotton/Obit.html).

II. MULTI-THREADED SOFTWARE

The use of multiple asynchronous threads in a shared
memory environment places fairly stringent requirements on
the design of a software library. Care must be taken that
memory potentially being accessed by other threads is not
modified. When such modification is necessary, a locking
mechanism such as mutexes is needed. Some libraries such
as FFTW1 for doing FFTs can be built to use multiple threads
on multiprocessor/multi-core systems. Older libraries written
before the widespread use of multiple threads may not be
“thread-safe” and their usage must be limited to a single
thread. Cfitsio2 is an example of a widely used library for
reading FITS files which is not thread-safe.

III. MULTI-THREADING IN OBIT

Obit uses multiple native data types for the disk represen-
tation of data, including FITS. Since cfitsio is used to access
FITS data, I/O to disk is limited to a single master thread.
Most data processing in Obit uses the “strip mining” technique
for access to potentially large data sets. This involves reading
blocks of data into memory and performing the operation on

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

Manuscript received ; revised
1http://www.fftw.org
2http://heasarc.nasa.gov/docs/software.html

the data file one block at a time. An example of this is forming
an image from an interferometry UV dataset or a single disk
OTF dataset. Each block of data is read, each data sample is
multiplied by a griding function and accumulated onto a grid.
Since operations of blocks of data already in memory do not
involve I/O, they are candidates for multi-threaded processing.

In many operations using the strip mining technique, the
operation over individual data samples can be independent of
each other making it possible to divide up a buffer of data
to be fed to multiple processing threads. Since processing a
large dataset will involve many buffers of data, the overhead
of starting and stopping many threads can be a significant
overhead. The glib library adopted by Obit includes the
gthreads library which has a solution to this problem. This
involves “pools” of threads which are started and remain active
until the pool is shut down. During this time, they may be used
to execute a given routine multiple times with different data.

The model used is a master control thread which does
the I/O and divides up the work into the pool of processing
threads. Since a processing thread does not terminate when the
routine it is executing returns, a “join” on the thread will hang
forever and another means of indicating that the operation is
completed is needed. For this, Obit uses a glib asynchronous
message queue.

In spite of the effort to limit use of cfitsio to a single thread,
it still may interfere with use of threads. The mechanism is not
understood but under some circumstances, the combination of
multi-threading and using cfitsio to access the data from FITS
files causes the whole process to run VERY slowly as well
as causing subtle (and probably erroneous) differences in the
results.

In the initial implementation of threading in Obit, two
compute intensive operations following the strip-mining model
are converted to use multiple threads and these are discussed
below. Use of multiple threads for the the inner loop of the
“Clark” CLEAN was explored but no benefit was found for
typical size operations. The two types of operations for which
multi-threaded operation were implemented are described in
the following.

A. Griding data for imaging
The griding of randomly sampled interferometric UV data

or single disk OTF has the additional complication that the
data are accumulated onto a grid. This explicitly adds a
potential dependency between threads. In this case, each thread
is given a grid(s) onto which to accumulate the data and when
all data have been processed, the various thread grids are
summed. This breaks the dependency between threads and is
illustrated by the software fragments shown in the appendix.
The griding of both interferometer and single dish data were
implemented.



OBIT DEVELOPMENT MEMO SERIES NO. 1 2

TABLE I
TIMING TESTS WITH 1,000 VIS PER THREAD

# threads Run time (min) Rel. Speed
1 42.45 1.00
2 22.62 1.87
4 13.18 3.22
6 9.33 4.55
8 8.40 5.05

B. Modeling the instrumental response to a sky model.
The operations in question here are calculating the instru-

mental response to a given model and either subtracting it
from the data or dividing it into the data. These operations
are used in a number of circumstances such as deconvolution
and self–calibration. The potential dependencies in this case
involve time variable models which may require thread spe-
cific models. One example of this is the VLA beam squint
correction routines in which the gain in RR and LL for each
CLEAN component is modified by the parallactic angle (hence
time) variable antenna gain. For multi-threaded operations
independent lists of CLEAN component gains are needed for
individual threads. Threaded operations were implemented for
normal interferometric sky model calculations (both “DFT”
and “GRID” methods), time and space variable antenna gain
and/or calibration, and sky model calculations of single dish
data.

IV. TIMING TEST

To test the effectiveness of these techniques, a high dynamic
range VLA test data set was used. This data is at 20 cm
wavelength and has 3C84 (24 Jy) at the half power point
of the antenna pattern. The VLA beam squint correction in
Obit task Squint [2] was used in timing tests with variable
numbers of threads. In these test, the griding of the data onto
the 22 imaging facets used and the DFT model calculation
for deconvolution and self–calibration were allowed the use
of multiple threads. In addition to beam squint corrections,
this test also involved auto–windowing, auto–centering of
strong sources, phase and amplitude and phase self-calibration.
Details of the data and processing are givenin [3]

The tests were performed on Brian Mason’s computer, idl64,
in Charlottesville. This machine has two quad core processors
for a total of 8 processing elements and runs a 64–bit Red
Hat Linux OS. The initial set of tests used buffer sizes of
1000 times the number of threads used. Input UV data, output
images and scratch files used AIPS format to avoid the cfitio
problem. The results of the timing tests are shown in Table I
and Figure 1. This table gives the number of threads used, the
total wall clock execution time and the ratio of the time used
to that for a single thread.

The relative overhead cost of calling functions in threads
depends on the amount of work done in each call. In order to
test this, the size of the buffers used were increased to 10,000

    

Number of threads

Re
la

tiv
e 

sp
ee

d

0 2 4 6 8 10

0
2

4
6

8
10

Fig. 1. Processing speed relative to a single processor. “+” symbols are for
tests with 1,000 visibilities per thread; “x” symbols are for tests with 10,000
visibilities per thread. The line indicates complete utilization of the processors.

TABLE II
TIMING TESTS WITH 10,000 VIS PER THREAD

# threads Run time (min) Rel. Speed
1 42.78 1.00
2 22.73 1.88
4 12.51 3.42
6 8.60 4.97
8 7.58 5.64

times the number of threads and the tests rerun. The results
are shown in Table II and Figure 1.

V. DISCUSSION

The results given above demonstrate a significant improve-
ment in the speed of processing of a fairly compute intensive
problem up to at least 8 threads. With 8 threads the run time
was reduced by a factor of 5.6 over the single thread run
time. Increasing the buffer size made minor improvements to
the performance for the larger number of threads but have no
impact when small numbers of threads were used. The use of
gthread thread pools seems to add little processing overhead
and be good value for the slight additional complexity. This
test demonstrates the potential to use multi-threaded proces-
sors for large radio astronomy computing problems.

The author would like to thank Brian Mason for the use of
his computer for these tests and Darrell Schiebel for assistance
on system related issues.



OBIT DEVELOPMENT MEMO SERIES NO. 1 3

/* FT threaded function argument */
typedef struct {

/* SkyModel with model components loaded (ObitSkyModelLoad) */
ObitUVGrid *in;
/* UV data set to model and subtract from current buffer */
ObitUV *UVin;
/* First (1-rel) vis in uvdata buffer to process this thread */
olong first;
/* Highest (1-rel) vis in uvdata buffer to process this thread */
olong last;
/* thread number, >0 -> no threading */
olong ithread;
/* Temporary gridding array for thread */
ObitCArray *grid;

} UVGridFuncArg;

Fig. 2. Thread call function argument structure

APPENDIX

The following software fragments are a detailed description
of UV data griding from class ObitUVGrid.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

[2] J. Uson and W. D. Cotton, “Beam Squint and Stokes V with Off–axis
Feeds,” A&A, vol. in press, 2008.

[3] W. D. Cotton and J. Uson, “Pixelization and Dynamic Range in Radio
Interferometry,” A&A, vol. in press, 2008.



OBIT DEVELOPMENT MEMO SERIES NO. 1 4

/**
* Read a UV data object, applying any shift and accumulating to grid.
* Buffering of data will use the buffers as defined on UVin
* ("nVisPIO" in info member).
* The UVin object will be closed at the termination of this routine.
* Requires setup by #ObitUVGridCreate.
* The gridding information should have been stored in the ObitInfoList on in:
* \li "Guardband" OBIT_float scalar = maximum fraction of U or v range allowed in grid.
* Default = 0.4.
* \li "MaxBaseline" OBIT_float scalar = maximum baseline length in wavelengths.
* Default = 1.0e15.
* \li "startChann" OBIT_long scalar = first channel (1-rel) in uv data to grid.
* Default = 1.
* \li "numberChann" OBIT_long scalar = number of channels in uv data to grid.
* Default = all.
* \param in Object to initialize
* \param UVin Uv data object to be gridded.
* Should be the same as passed to previous call to
* #ObitUVGridSetup for input in.
* \param err ObitErr stack for reporting problems.
*/

void ObitUVGridReadUV (ObitUVGrid *in, ObitUV *UVin, ObitErr *err)
{

ObitIOCode retCode = OBIT_IO_OK;
ObitInfoType type;
gint32 dim[MAXINFOELEMDIM];
ofloat temp, czero[2] = {0.0,0.0};
olong itemp;
olong i, nvis, lovis, hivis, nvisPerThread, nThreads;
UVGridFuncArg *args=NULL;
ObitThreadFunc func=(ObitThreadFunc)ThreadUVGridBuffer ;
gboolean doCalSelect, OK;
gchar *routine="ObitUVGridReadUV";

/* error checks */
g_assert (ObitErrIsA(err));
if (err->error) return;
g_assert (ObitUVGridIsA(in));
g_assert (ObitUVIsA(UVin));
g_assert (ObitUVDescIsA(UVin->myDesc));
g_assert (UVin->myDesc->fscale!=NULL); /* frequency scaling table */

/* If more than one Stokes issue warning */
if ((UVin->myDesc->jlocs>=0) &&

(UVin->myDesc->inaxes[UVin->myDesc->jlocs]>1)) {
Obit_log_error(err, OBIT_InfoWarn,

"%s: More than one Stokes ( %d) in data, ONLY USING FIRST",
routine, UVin->myDesc->inaxes[UVin->myDesc->jlocs]);

}

/* get gridding information */
/* guardband */
temp = 0.4;
/* temp = 0.1; debug */
ObitInfoListGetTest(in->info, "Guardband", &type, dim, &temp);
in->guardband = temp;

Fig. 3. Read and grid UV data



OBIT DEVELOPMENT MEMO SERIES NO. 1 5

/* baseline range */
temp = 1.0e15;
ObitInfoListGetTest(in->info, "MaxBaseline", &type, dim, &temp);
in->blmax = temp;
temp = 0.0;
ObitInfoListGetTest(in->info, "MinBaseline", &type, dim, &temp);
in->blmin = temp;

/* Spectral channels to grid */
itemp = 1;
ObitInfoListGetTest(in->info, "startChann", &type, dim, &itemp);
in->startChann = itemp;
itemp = 0; /* all */
ObitInfoListGetTest(in->info, "numberChann", &type, dim, &itemp);
in->numberChann = itemp;

/* Calibrating or selecting? */
doCalSelect = FALSE;
ObitInfoListGetTest(UVin->info, "doCalSelect", &type, (gint32*)dim, &doCalSelect);

/* UVin should have been opened in ObitUVGridSetup */

/* How many threads? */
in->nThreads = MAX (1, ObitThreadNumProc(in->thread));

/* Initialize threadArg array */
if (in->threadArgs==NULL) {
in->threadArgs = g_malloc0(in->nThreads*sizeof(UVGridFuncArg*));
for (i=0; i<in->nThreads; i++)

in->threadArgs[i] = g_malloc0(sizeof(UVGridFuncArg));
}

/* Set up thread arguments */
for (i=0; i<in->nThreads; i++) {
args = (UVGridFuncArg*)in->threadArgs[i];
args->in = in;
args->UVin = UVin;
if (i>0) {

/* Need new zeroed array */
args->grid = ObitCArrayCreate("Temp grid", in->grid->ndim, in->grid->naxis);
ObitCArrayFill (args->grid, czero);

} else {
args->grid = ObitCArrayRef(in->grid);

}
}
/* end initialize */

Fig. 4. Read and grid UV data, initialization



OBIT DEVELOPMENT MEMO SERIES NO. 1 6

/* loop gridding data */
while (retCode == OBIT_IO_OK) {

/* read buffer */
if (doCalSelect) retCode = ObitUVReadSelect (UVin, NULL, err);
else retCode = ObitUVRead (UVin, NULL, err);
if (err->error) Obit_traceback_msg (err, routine, in->name);

/* Divide up work */
nvis = UVin->myDesc->numVisBuff;
if (nvis<1000) nThreads = 1;
else nThreads = in->nThreads;
nvisPerThread = nvis/nThreads;
lovis = 1;
hivis = nvisPerThread;
hivis = MIN (hivis, nvis);

/* Set up thread arguments */
for (i=0; i<nThreads; i++) {

if (i==(nThreads-1)) hivis = nvis; /* Make sure do all */
args = (UVGridFuncArg*)in->threadArgs[i];
args->first = lovis;
args->last = hivis;
if (nThreads>1) args->ithread = i;
else args->ithread = -1;

/* Update which vis */
lovis += nvisPerThread;
hivis += nvisPerThread;
hivis = MIN (hivis, nvis);

}

/* Do operation on buffer possibly with threads */
OK = ObitThreadIterator (in->thread, nThreads, func, in->threadArgs);

/* Check for problems */
if (!OK) {

Obit_log_error(err, OBIT_Error,"%s: Problem in threading", routine);
break;

}
} /* end loop reading/gridding data */

Fig. 5. Read and grid UV data, loop over data gridding



OBIT DEVELOPMENT MEMO SERIES NO. 1 7

/* Accumulate thread grids if more than one */
if (in->nThreads>1) {
for (i=1; i<in->nThreads; i++) {

args = (UVGridFuncArg*)in->threadArgs[i];
ObitCArrayAdd(in->grid, args->grid, in->grid);

}
} /* end accumulating grids */

/* Shut down any threading */
ObitThreadPoolFree (in->thread);
if (in->threadArgs) {
for (i=0; i<nThreads; i++) {

args = (UVGridFuncArg*)in->threadArgs[i];
if (args->grid) ObitCArrayUnref(args->grid);
g_free(in->threadArgs[i]);

}
g_free(in->threadArgs);

}
in->threadArgs = NULL;
in->nThreads = 0;

/* Close data */
retCode = ObitUVClose (UVin, err);
if (err->error) Obit_traceback_msg (err, routine, in->name);

} /* end ObitUVGridReadUV */

Fig. 6. Read and grid UV data, accumulate thread grids



OBIT DEVELOPMENT MEMO SERIES NO. 1 8

/**
* Prepare and Grid a portion of the data buffer
* Arguments are given in the structure passed as arg
* \param arg Pointer to UVGridFuncArg argument with elements
* \li in ObitUVGrid object
* \li UVin UV data set to grid from current buffer
* \li first First (1-rel) vis in UVin buffer to process this thread
* \li last Highest (1-rel) vis in UVin buffer to process this thread
* \li ithread thread number, >0 -> no threading
*/

static gpointer ThreadUVGridBuffer (gpointer arg)
{

/* Get arguments from structure */
UVGridFuncArg *largs = (UVGridFuncArg*)arg;
ObitUVGrid *in = largs->in;
ObitUV *UVin = largs->UVin;
olong loVis = largs->first-1;
olong hiVis = largs->last;
ObitCArray *grid = largs->grid;

/* prepare data */
PrepBuffer (in, UVin, loVis, hiVis);

/* grid */
GridBuffer (in, UVin, loVis, hiVis, grid);

/* Indicate completion */
if (largs->ithread>=0)
ObitThreadPoolDone (in->thread, (gpointer)&largs->ithread);

return NULL;
} /* end ThreadUVGridBuffer */

Fig. 7. Function called for each thread


