
OBIT DEVELOPMENT MEMO SERIES NO. 5 1

The Implementation of Threaded Image
Interpolation in Obit

W. D. Cotton, November 11, 2008

Abstract—This memo describes an implementation of multi-
threaded image interpolation. Results of a test interpolating
the pixel values in an image from one geometry to another
geometry are presented. There is a nearly linear improvement in
performance with up to 8 parallel threads.

Index Terms—Computing efficiency, astronomical images

I. INTRODUCTION

ONE of the common relative compute intensive operations
in astronomy is interpolating the pixels in an image

onto another geometry. For large images or large numbers of
images, this can be an expensive operation. This operation
is almost always needed for the comparison of images at
various wavebands or for the “flattening” of a Fly’s eye
mosaic of images onto a single plane. The following discusses
an implementation of multi-threading of image interpolation
in Obit ([1], http://www.cv.nrao.edu/∼bcotton/Obit.html). This
implementation follows the general method of multi–threading
in Obit as described in [2].

II. IMAGE INTERPOLATION

The process of image interpolation is relatively straightfor-
ward. First, for each pixel in the output image, the correspond-
ing pixel in the input image on the sky must be determined;
then the value in the input image at that pixel must be
interpolated. The translation of pixel locations is complicated
by the various nonlinear geometries in common use and the
possibility of a precession of the equinox of the celestial
coordinates. In the general case, pixels in the input image will
not be aligned on the same grid as the output image and the
pixel values must be determined by interpolation. Edge effects
and pixels with undefined values further complicate this. These
two operations are described further in the following.

A. Coordinate Conversion
Astronomical images have the difficulty that they are flat

but the sky is not; therefore a number of different geometries
have been developed for projecting the curved sky onto a
flat image. Different projections are appropriate for different
applications. A further complication of celestial coordinates is
that the coordinate system rotates with time to stay aligned
with the earth’s rotational axis. Images are generally referred
to the mean coordinate system at standard equinoxes (e.g.
1900, 1950, 2000).

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

Manuscript received ; revised

TABLE I
PROJECTIVE GEOMETRIES IN OBIT

Geometry code Geometry name
-SIN Sin projection
-TAN Tan projection
-ARC Arc projection
-NCP NCP (WSRT) projection
-GLS Global sinusoid projection
-MER Mercator projection
-AIT Aitoff projection
-STG Stereographic projection

The general method for determining corresponding pixels
between two images is to convert the first pixel location to
a celestial coordinate using the projective geometry of that
image. Then it may be necessary to precess the equinox of
the coordinate to that of the second image. The pixel location
in the second image at the desired celestial coordinate then
can be determined from the celestial coordinate and the pro-
jective geometry of that image. Projective geometries in Obit
are implemented in the ObitSkyGeom utility module which
supports translations between pixels and celestial coordinates.
Obit supports the AIPS projective geometries shown in Table
I.

A further complication is that the coordinate translation
may need to also incorporate a distortion of the geometry.
This is implemented in Obit using a Zernike polynomial
representation. This is needed to incorporate the effects of the
ionosphere on the apparent positions of celestial locations.

B. Pixel Interpolation
In the general case, locations desired in the input image

will lie between pixels so an interpolation is necessary. This
operation in Obit is performed using the ObitFInterpolate class
which interpolates values in an ObitFArray containing the
pixel values. Interpolation is by the Lagrange method and gives
support of a range of interpolation kernel sizes. Pixels with
undefined values (“blanked”) must also be accommodated.

For the combination of overlapping images as in a linear
mosaic or flattening a Fly’s eye, it is desirable to taper the
images toward the edge to eliminate the “seams” between
images. In Obit, this is accomplished by creating a “weighted”
image and the corresponding “weight” image to be used in the
weighted combination of the overlapping images. The weight

OBIT DEVELOPMENT MEMO SERIES NO. 5 2

TABLE II
TIMING TESTS OF HGEOM

threads Avg. Run time (sec) Rel. Speed
1 10.35 1.00
2 5.94 1.74
3 4.23 2.45
4 3.31 3.13
5 2.68 3.86
6 2.22 4.66
7 1.90 5.95
8 1.65 6.28

used is unity inside a given radius and then rapidly tapers to
zero.

III. MULTI–THREAD IMAGE INTERPOLATION

The general method of image interpolation is to loop over
the pixels in the output image, calculate the corresponding
pixel in the input image and interpolate its value. Except for
the internal state of the interpolator, there are no dependencies
for this operation amoung different output pixels. This allows
dividing the work among various parallel processors/cores
when available. In the Obit implementation, different sets of
image rows are divided among different threads; some of the
details are given in the Appendix. (See [2] for a description
of the general technique in Obit for multi-threaded operation.)
Each thread has an independent interpolator but each uses the
same ObitFArray containing the input pixel values.

IV. TIMING TEST

To evaluate the effectiveness of this technique, a test was
constructed interpolating a 2500×2500 pixel image to one
with a slightly different pixel spacing but with the same
equinox and projective geometry. This interpolation was done
with Obit task HGeom.

The tests were performed on the Obit development com-
puter, mortibus, in Charlottesville. This machine has two quad
core processors for a total of 8 processing elements and
running a 32–bit Red Hat Linux OS. The Unix “time” facility
was used to determine the wall clock execution time of each
trial. A set of 5 trials was run using each of 1 to 8 threads.
The averaged results of the timing tests are shown in Table II
and Figure 1. This table gives the number of threads used, the
total wall clock execution time and the ratio of the time used
to that for a single thread.

V. DISCUSSION

The results given above demonstrate a significant improve-
ment in the speed of processing of a fairly compute intensive
problem up to at least 8 threads. With 8 threads, the run
time was reduced by a factor of 6.28 over the single thread
run time. The relatively linear increase in performance with
increasing number of threads shown in Figure 1 indicates that

Number of threads

Re
la

tiv
e

sp
ee

d

0 2 4 6 8 10

0
2

4
6

8
10

Fig. 1. Processing speed relative to a single processor. The solid line indicates
complete utilization of the processors.

the fraction of the work which was run in parallel was very
large and that performance would benefit from an increased
number of processors. However, the slope of the points in
Figure 1 is less than unity which suggests that the overhead
of starting threads is a non trivial fraction of the total work
performed, of order of 10%. This implementation used the
glib thread pools which dramatically reduces the thread startup
overhead whenever a given thread is reused many times. In
this particular application each thread was only given a single
package of work.

APPENDIX

The following software fragments are a detailed description
of the implementation of threading of image interpolation.
This implementation supports simple interpolation, weighted
interpolation and interpolation given a Zernike polynomial
representation of the distortion of the input geometry.

REFERENCES

[1] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

[2] ——, “Note on the Efficacy of Multi-threading in Obit,” Obit Develop-
ment Memo, no. 1, 2008.

OBIT DEVELOPMENT MEMO SERIES NO. 5 3

typedef struct {
/* Input descriptor */
ObitImageDesc *inDesc;
/* Input plane pixel data */
ObitFArray *inData;
/* Output descriptor */
ObitImageDesc *outDesc;
/* Output plane pixel data */
ObitFArray *outData;
/* Also do Weights? */
gboolean doWeight;
/* Output weight plane pixel data */
ObitFArray *wtData;
/* Radius in pixels of weighting circle */
olong radius;
/* Number of Zernike corrections */
olong nZern;
/* Zernike coefficients */
ofloat *ZCoef;
/* First (1-rel) row in image to process this thread */
olong first;
/* Highest (1-rel) row in image to process this thread */
olong last;
/* thread number, <0 -> no threading */
olong ithread;
/* Obit Thread object */
ObitThread *thread;
/* Obit error stack object */
ObitErr *err;
/* Input Image Interpolator */
ObitFInterpolate *Interp;

} InterpFuncArg;

Fig. 2. Thread call function argument structure

OBIT DEVELOPMENT MEMO SERIES NO. 5 4

/**
* Interpolate selected rows from one image onto another,
* possibly including weighting across the image.
* If doWeight, outData will be filled with the pixel values
* interpolated from inData multiplied by a weight based on a
* circle defined by radius from the center; this is 1.0
* in the center and tapers with distanceˆ2 to 0.0 outside
* and the weights are written into wtData.
* Distortion of the input image geometry by a Zernike polynomial
* is also supported.
* Magic value blanking is supported.
* Callable as thread
* \param arg Pointer to InterpFuncArg argument with elements:
* \li inDesc Image Descriptor for input image
* \li inData ObitFArray with input plane pixel data
* \li outDesc Image Descriptor for output image
* \li outData ObitFArray for output plane pixel data
* \li doWeight gboolean if TRUE, also do primary beam weighting
* \li wtData ObitFArray for output weight plane pixel data
* only used if doWeight
* \li radius Radius in pixels of weighting circle
* only used if doWeight
* \li nZern If>0 apply cernike corrections to position
* nZern is the number of terms in ZCoef
* \li zCoef Zernike correction coefficients
* only used if zCoef>0
* \li first First (1-rel) row in image to process this thread
* \li last Highest (1-rel) row in image to process this thread
* \li ithread thread number, <0 -> no threading
* \li thread thread Object
* \li err ObitErr Obit error stack object
* \li Interp ObitFInterpolate Input Image Interpolator
* \return NULL
*/

static gpointer ThreadImageInterp (gpointer args)
{

/* Get arguments from structure */
InterpFuncArg *largs = (InterpFuncArg*)args;
ObitImageDesc *inDesc = largs->inDesc;
/* ObitFArray *inData = largs->inData;*/
ObitImageDesc *outDesc= largs->outDesc;
ObitFArray *outData = largs->outData;
gboolean doWeight = largs->doWeight;
ObitFArray *wtData = largs->wtData;
olong radius = largs->radius;
olong nZern = largs->nZern;
ofloat *ZCoef = largs->ZCoef;
olong loRow = largs->first;
olong hiRow = largs->last;
ObitErr *err = largs->err;
ObitThread *thread = largs->thread;
ObitFInterpolate *interp = largs->Interp;
/* local */
olong ix, iy, indx, pos[2];
ofloat inPixel[2], outPixel[2], *out, *outWt, rad2, dist2, irad2;
ofloat *crpix, wt, val, fblank = ObitMagicF();
gboolean OK;
gchar *routine = "ThreadImageInterp";

OBIT DEVELOPMENT MEMO SERIES NO. 5 5

/* Get output aray pointer */
pos[0] = pos[1] = 0;
out = ObitFArrayIndex (outData, pos);

/* Coordinate reference pixel of input */
crpix = inDesc->crpix;

/* if weighting */
if (doWeight) {
/* Working version of radius */
rad2 = radius * radius;
irad2 = 1.0 / rad2;
outWt = ObitFArrayIndex (wtData, pos);

}

/* Loop over image interpolating */
for (iy = loRow; iy<=hiRow; iy++) { /* loop in y */
outPixel[1] = (ofloat)iy;
for (ix = 1; ix<=outDesc->inaxes[0]; ix++) {/* loop in x */

outPixel[0] = (ofloat)ix;

/* Get pixel in input image - Zernike correction?*/
if (nZern>0) { /* yes */

OK = ObitImageDescCvtZern (outDesc, inDesc, nZern, ZCoef,
outPixel, inPixel, err);

} else { /* no */
OK = ObitImageDescCvtPixel (outDesc, inDesc, outPixel, inPixel, err);

}
if (err->error) {

ObitThreadLock(thread); /* Lock against other threads */
Obit_log_error(err, OBIT_Error,"%s: Error projecting pixel",

routine);
ObitThreadUnlock(thread);
goto finish;

}

if (doWeight) { /* weighting? */
if (OK) { /* In image? */
/* weight based on distance from center of inImage */
dist2 = (crpix[0]-inPixel[0])*(crpix[0]-inPixel[0]) +

(crpix[1]-inPixel[1])*(crpix[1]-inPixel[1]);
/*dist2 = (crpix[0]-xyzi[0])**2 + (crpix[1]-xyzi[1])**2;*/
if (dist2 <= rad2) {

wt = 1.0 - dist2 * irad2;
wt = MAX (0.001, wt);

} else {
wt = fblank;

}
} else {
wt = fblank; /* don’t bother */

}
} else wt = 1.0;

OBIT DEVELOPMENT MEMO SERIES NO. 5 6

/* interpolate */
/* array index in out for this pixel */
indx = (iy-1) * outDesc->inaxes[0] + (ix-1);
if (wt != fblank) {

val = ObitFInterpolatePixel (interp, inPixel, err);
if (doWeight & (val != fblank)) val *= wt;
out[indx] = val;
if (err->error) {
ObitThreadLock(thread); /* Lock against other threads */
Obit_log_error(err, OBIT_Error,"%s: Error interpolating pixel in %s",

routine, interp->name);
ObitThreadUnlock(thread);
goto finish;

}
if (doWeight) outWt[indx] = wt;

} else {
out[indx] = fblank;
if (doWeight) outWt[indx] = fblank;

}

} /* end loop over x */
} /* end loop over y */

/* Indicate completion */
finish:
if (largs->ithread>=0)
ObitThreadPoolDone (thread, (gpointer)&largs->ithread);

return NULL;
} /* ThreadImageInterp */

Fig. 3. Thread call function for image interpolation

