
OBIT DEVELOPMENT MEMO SERIES NO. 75 1

Comparison of Vector and GPU Implementations
W. D. Cotton (NRAO), October 17, 2022

Abstract—This memo examines the relative performance of
different vector instruction sets on a test problem imaging a
moderate size VLA dataset. This problem is dominated by
computation susceptible to parallelization and vectorization. The
8 float vectors of AVX showed a 30 percent improvement over the
the 4 float vector SSE. AVX2 showed a variable improvement over
basic AVX. Use of a GPU for gridding and “degridding” showed
a substantial improvement over the multi–threaded, vectorized
tests. Lacking a GPU, substantial gains can be made using
the most advanced vector instruction available. Allowing more
threads than available cores can reduce the run times for the
vectorized implementation by 10-15%.

Index Terms—Vectorization, GPU, Interoferometric Synthesis

I. INTRODUCTION

MOST Computer processors current in use have vector

capabilities that can be exploited to improve perfor-

mance. These are instructions that work on blocks of data

the width of the memory bus. For 128 bit wide buses these

allow 4 floats or 2 doubles to be added or multiplied in

parallel at the cost of a single add or multiply. These were

implemented in a series of instruction sets labeled “SSE”.

More recently, 256 bit wide memory buses support up to 8

parallel floating adds/multiplies or 4 doubles using Advanced

Vector eXtensions (AVX and AVX2) instruction sets. The

current generation of 512 bit memory buses supports 16

parallel floating adds or multiplies using AVX512 instruction

sets. The more recent vector extension have included richer

instruction sets including features such as gather/scatter. Sig-

nificant processing gains can be had if these capabilities can

be utilized.

The simplest way to utilize these features is using opti-

mization capabilities of the compilers controlled by simple

compiler directives (-msse, -mavx, -mavx2, -mavx512f). One

down side of this is that an attempt to execute an unsupported

instruction causes the program to abort. Also, the useful

memory diagnostic tool, valgrind, doesn’t work for AVX512.

Compiler technology lags significantly behind the hardware

technology and generally don’t fully exploit the vector hard-

ware.

Frequently, a reorganization of an algorithm may be help-

ful in improving the efficiency of vectorization. When the

compiler doesn’t directly produce optimal vectorization, it

can be done explicitly using “intrinsics” functions which are

formally c function calls but map to a single instruction

directly manipulating vector registers. There are public domain

vectorized math libraries (sse mathfun.h, avx mathfun.h,

avx2 mathfun.h, avx512 mathfun.h) implementing heavily

used functions such as sincos and exp. These are distributed

National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville,
VA, 22903 USA email: bcotton@nrao.edu

as header files that expand inline and are quite efficient. See

https://github.com/aff3ct/MIPP/tree/master/src/math to obtain.

In addition to vector instructions universally available, some

higher performance systems include attached processors such

as GPUs. Parallel processing using GPUs has proven effective

for continuum imaging [1]. This memo evaluates the relative

performance of different levels of vectorization and GPUs

using the Obit package [2] 1. Timing results using VLA data

are given.

II. OBIT VECTORIZATION

Previous Obit memos on parallelization, vectorization and

GPUs are [1], [3], [4], [5], [6], [7], [8], [9], and [10].

Since the same software has to run on hardware of various

capabilities and an attempt to execute missing instructions

ends badly, the various vectorization specific sections of

code are wrapped in #ifdefs with priority given to the most

advanced version available. These are controlled by the com-

piler flags -DHAVE SSE, -DHAVE AVX, -DHAVE AVX2,

-DHAVE AVX512, -DHAVE GPU together with the flags to

enable the various instruction sets. A lot of “hand rolling” has

gone into the gridding and “degridding” routines and many

members of The ObitFArray and ObitCArray classes. These

routines also make heavy use of threading to maximize the

use of available cores.

III. TIMING EXAMPLES

A test data set of a deep VLA C+D configuration ob-

servation is used to evaluate the various vectorization/GPU

implements on a variety of different platforms ranging from

a laptop to a rack mounted compute server. The test used

Obit wide-band imager MFImage, described in [11] and then

compared the resulting CLEAN image with a “master” version

computed on yet another machine. Numerical noise will cause

the results of a different ordering of a set of operations to be

different, comparison with a master result allows evaluation

of this.

Various timing tests were performed using the range of

vector capabilities available in each platform and a GPU

where available. The tests use SSE, AVX, AVX2, AVX512

vectorization and GPU as available.

A. Test Data

The test VLA S band data-set ([12]) has 1,576,289 averaged

visibilities with 16 spectral windows of 31 channels each.

Imaging was to a radius of 0.25◦ needing 13 facets. The

resultant image was 1439 × 1439 pixels 1.′′ 25 in size with

15 subbands and a 7.′′ 5 restoring beam. CLEANing used

1http://www.cv.nrao.edu/∼bcotton/Obit.html



OBIT DEVELOPMENT MEMO SERIES NO. 75 2

Fig. 1. Greyscale rendition of the inner part of the field being imaged, from [12]. The restoring beam is 7.′′ 5.

5000 components in 10 major cycles; a CLEAN mask was

used containing the brighter sources. The master image was

computed on a 16 core (Intel(R) Xeon(R) CPU E5-2687W 0

@ 3.10GHz) work station using AVX which took 1167 sec

real and 10017 sec of CPU time. The central part of the field

imaged is shown in Figure 1.

B. Test Machines

A number of different computing platforms were compared.

• leopard

Leopard is a laptop running RHEL8 with 6 × Intel(R)

Core(TM) i7-10750H CPU @ 2.60GHz cores, 16 GByte

of RAM and a nvme disk. It has a 256 bit bus and

supports up to AVX2.

• smeagle

Smeagle is a RHEL7 work station with 24 (hyper-

threaded) cores of Intel Xeon Gold 6136 CPU @3.00

GHz with 256 GByte of RAM, 150 GBytes of which were

in a RAM disk for all files. Smeagle has a 512 bit memory

bus and supports AVX512. This machine has an NVIDIA

GeForce RTX 2080 Ti GPU with 68 Multiprocessors with

64 cores each (4352 cores total) and a clock speed of

1508 kHz. The CUDA capability is 7.5 with 10 GByte

of global memory.

• cheeta

Cheeta is a rack mounted RHEL7 compute server which

has 72 (hyperthreaded) cores of Intel Xenon CPU E5-

2695 v4 @ 2.1 GHz with 256 GByte of RAM, 150

GBytes of which were in a RAM disk for all files. Cheeta



OBIT DEVELOPMENT MEMO SERIES NO. 75 3

TABLE I
TIMING AND IMAGE COMPARISON

Test Real CPU Max RMS
sec. sec.

leopard SSE 2084 10154 2.192e-4 3.196e-7
leopard AVX 1596 7706 2.656e-4 3.319e-7
leopard AVX2 1315 6036 2.656e-4 3.319e-7
smeagle SSE 1500 21960 2.251e-4 2.206e-7
smeagle AVX 1037 14997 0 0
smeagle AVX2 934 12683 0 0
smeagle AVX512 876 11824 4.416e-4 1.458e-6
smeagle GPU 319 [365] 2.795e-3 3.576e-5
cheeta SSE 974 34283 2.476e-4 4.864e-7
cheeta AVX 700 20841 2.476e-4 4.863e-7
cheeta AVX2 683 18586 2.476e-4 4.863e-7
cheeta GPU 462 [575] 2.947e-3 3.580e-5

Notes:
Column “Real” is the total wall clock time.
Column “CPU” is the total CPU time in brackets [] if a GPU used.
Column “Max” is the fractional ratio of the most discrepant image pixel.
Column “RMS” is the RMS fractional ratio over image pixels.

has a 256 bit memory bus and supports AVX2. This

machine has two GPUs (only one was used for these tests)

NVIDIA GeForce GTX 1080 with 20 Multiprocessors

with 128 cores each (2560 cores total) and a clock speed

of 1508 kHz. The CUDA capability is 6.1 with 7 GByte

of global memory.

C. Run Times

Run times and image comparisons are shown in Table I.

The image comparisons are with respect to the master image

and are the image difference as a fraction of the master image

value.

D. More Threads than Cores

The tests described in Section III-C show a high degree of

parallelization. As shown by the utility top, the “degridding”

phase of the CLEAN operation comes close to using all of

the capability of the machine but the gridding utilizes roughly

half of the total capability. The previous tests allowed a single

thread per core (hyperthreaded or true). A number of tests

using the most advanced vector operation in each machine

were performed allowing a number of threads a multiple of

the number of cores. The timing results are shown in Table II.

IV. DISCUSSION

Table I shows that the CPU times used greatly exceeded the

run time showing the effects of multi-threading; each thread

was also vectorized. These ratios are shown in Table III.

NB: the GPU tests are not shown because the computation

in the GPU is not accounted for. Leopard has 6 real cores

and the CPU/Real ratios of nearly 5 reflect this. The “cores”

in smeagle and cheeta are hyperthreaded, meaning there were

TABLE II
MORE THREADS THAN CORES

Test # core # thread Real CPU Ratio
sec. sec.

leopard AVX2 6 6 1315 6036 1.00
leopard AVX2 6 12 1246 6048 1.06
leopard AVX2 6 24 1215 6125 1.08
smeagle AVX512 24 24 876 11824 1.00
smeagle AVX512 24 48 782 11234 1.12
smeagle AVX512 24 96 739 11242 1.18
cheeta AVX2 72 72 683 18586 1.00
cheeta AVX2 72 144 641 17294 1.07
cheeta AVX2 72 216 591 17163 1.16

Notes:
Column “# core” is the number of cores used.
Column “# thread” is the number of threads used.
Column “Real” is the total wall clock time.
Column “CPU” is the total CPU time in brackets [] if a GPU used.
Column “Ratio” is the ratio of real time wrt no. thread=no. core.

TABLE III
CPU/REAL RATIO

computer no. core SSE AVX AVX2 AVX512

leopard 6 4.87 4.8 4.6
smeagle 24 14.6 14.5 13.6 13.5
cheeta 72 35.2 29.8 27.2

Notes:
Column “no. core” is the number of cores used.
Column “SSE” is the CPU/Real ratio of SSE.
Column “AVX” is the CPU/Real ratio of AVX.
Column “AVX2” is the CPU/Real ratio of AVX2.
Column “AVX512” is the CPU/Real ratio of AVX512.

only half that number but extra sets of registers were allocated

to speed context switches; this gives a minor performance gain.

The hyper threading explains why the CPU/Real ratios are

around half of the number of “cores”. The vast majority of

the computing in these tests was done in parallel sections.

Tables I and IV show that using the AVX instructions gives

a substantial improvement over only the SSE instructions,

roughly 1/3 for the various machines tested. This shows that

the test problem was dominated by operations that could ben-

efit from vectorization, the common case for interferometric

imaging.

Both AVX and AVX2 process 8 floats in parallel but AVX2

has a stronger instruction set. This made a big difference for

leopard, an additional 30% but hardly made any difference

for cheeta with smeagle in between. It may be a coincidence

but this correlates with age of the computer, leopard being the

youngest and cheeta the oldest.

Only smeagle supported AVX512 which, while substantially

faster than SSE, the AVX512 run was only 6% faster than the

AVX2 time. The memory access will still be in 512 bytes



OBIT DEVELOPMENT MEMO SERIES NO. 75 4

TABLE IV
TIMING COMPARISON

computer SSE/AVX SSE/AVX2 SSE/AVX512 SSE/GPU

leopard 1.29 1.59
smeagle 1.44 1.61 1.71 4.70
cheeta 1.39 1.43 2.11

Notes:
Column “SSE/AVX” is the ratio of SSE to AVX run times.
Column “SSE/AVX2” is the ratio of SSE to AVX2 run times.
Column “SSE/AVX512” is the ratio of SSE to AVX512 run times.
Column “SSE/GPU” is the ratio of SSE to GPU run times.

blocks and this suggests that the second 256 was still in cache

when processed by the AVX2 instructions.

The run time for the 2 GPU based runs was substantially

faster than any of the vector runs. This is especially true of

smeagle who’s GPU had roughly twice the number of cores

as cheeta.

Table II shows that increasing the number of threads allowed

to a multiple of the number of cores can lead to performance

gains, here a 10 to 15% reduction in run time. No more

threads can run sumultaneously than the number of cores but

waiting for data to be read from memory into registers can be

a nontrivial part of the execution time. Having more threads

than cores can reduce the memory latency cost when there are

other threads ready to execute. There is a limit to how many

threads can be used by an algorithm. The implementation of

the gridding allows a thread per facet per imaging subband;

in this test up to 13 × 15 = 195 threads can be usefully used.

The image comparisons with the master image shown in

Table I reflect the numerical noise from a changed ordering of

the numerical computations. The master was computed using

AVX instructions and the AVX and AVX2 runs on the other

machines are similar; for smeagle they are bitwise identical.

The SSE values are also similar. Both the GPU based runs had

substantially larger differences from the master, the maximum

difference about an order of magnitude higher and the RMS

two orders of magnitude. When a GPU is not available,

optimal use of available vector instructions can improve a

program’s performance.

REFERENCES

[1] W. D. Cotton, “GPU-Based Visibility Gridding for Faceting,” Obit

Development Memo Series, vol. 73, pp. 1–4, 2022. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/GPUGridv2.pdf

[2] W. D. Cotton, “Obit: A Development Environment for Astronomical
Algorithms,” PASP, vol. 120, pp. 439–448, 2008.

[3] W. D. Cotton, “Note on the Efficacy of Multi-threading in Obit,” Obit

Development Memo Series, vol. 1, pp. 1–8, 2008. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/Thread.pdf

[4] ——, “A Fast Sine/Cosine Routine,” Obit Development

Memo Series, vol. 14, pp. 1–9, 2009. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/FastSine.pdf

[5] ——, “A Fast Exp(-x) Routine,” Obit Development Memo

Series, vol. 27, pp. 1–7, 2011. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/FastExp.pdf

[6] ——, “Comparison of GPU and Multithreading for In-
terferometric DFT Model Calculation,” Obit Development

Memo Series, vol. 35, pp. 1–5, 2014. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/GPUDFTv2.pdf

[7] ——, “Comparison of GPU, Single- and Multi-threading
for Interferometric Gridding,” Obit Development Memo

Series, vol. 36, pp. 1–14, 2014. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/GPUGrid.pdf

[8] ——, “AVX2: First Look,” Obit Development Memo

Series, vol. 49, pp. 1–4, 2017. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/AVX2.pdf

[9] ——, “Notes on icc and AVX,” Obit Development Memo

Series, vol. 61, pp. 1–2, 2019. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/ICCAVX.pdf

[10] ——, “AVX512: First Look,” Obit Development Memo

Series, vol. 67, pp. 1–5, 2020. [Online]. Available:
https://www.cv.nrao.edu/∼bcotton/ObitDoc/AVX512.pdf

[11] W. D. Cotton, J. J. Condon, K. I. Kellermann, M. Lacy, R. A. Perley,
A. M. Matthews, T. Vernstrom, D. Scott, and J. V. Wall, “The Angular
Size Distribution of µJy Radio Sources,” ApJ, vol. 856, no. 1, p. 67,
Mar. 2018.

[12] J. J. Condon, W. D. Cotton, E. B. Fomalont, K. I. Kellermann, N. Miller,
R. A. Perley, D. Scott, T. Vernstrom, and J. V. Wall, “Resolving the
Radio Source Background: Deeper Understanding through Confusion,”
ApJ, vol. 758, p. 23, Oct. 2012.


