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Towards a Wide-band Spectral Imaging Technique
in Obit

W. D. Cotton, October 3, 2008

Abstract—This memo describes the work in progress on a
technique for imaging wide-band radio interferometric data. The
basic technique is to replace the traditional concept of an image
as an array of scalar brightness values which that in which a
pixel is the representation of a spectrum. Several approaches
along this line are investigated. Many of the traditional robust
imaging techniques have analogues in this paradigm. This memo
describes an investigation using a simulated wide-band (∼50%
bandwidth) dataset. The technique of imaging and deconvolving
narrow subsections of the total bandwidth and then deriving joint
spectra in each pixel shows a lot of promise, producing dynamic
ranges of well in excess of 10

5 .
Index Terms—Wide-band Imaging, Interferometry

I. INTRODUCTION

ONE of the principle ways in which radio interferome-
ter arrays currently under construction or in planning

increase their sensitivities over current arrays is by a large
increase in the bandwidth being sampled. This presents chal-
lenges to imaging the data from the new arrays as the large
bandwidths violate one of the implicit assumption used in
imaging, that the sky looks the same at all frequencies in the
observed bandpass. This assumption can be relaxed somewhat
by assuming that all the emission in the image has the same
spectral shape but with a sufficiently wide bandpass and a
range of spectral shapes in the primary antenna pattern, this
assumption breaks down.

To reach the sensitivity which the new instruments are in
theory capable, all of the sky in which there are detectable
sources must be imaged in order to remove the side-lobes of
these sources. At lower frequencies this essentially means that
the entire primary beam must be imaged along with selected
areas in the side-lobes. Thus, especially at lower frequencies,
a wide-band imaging problem is also a wide-field imaging
problem. This increases the potential for a range of spectral
shapes in the image.

This memo explores the possibilities of replacing the “pixel
as scalar” paradigm with “pixel as spectrum”. This exploration
makes use of the rapid prototyping capabilities in the Obit ([1],
http://www.cv.nrao.edu/∼bcotton/Obit.html) package.

II. IMAGING AND BANDWIDTH

One of the simplifying assumptions made in traditional
imaging techniques is that the sky has a constant brightness
across the bandpass. In general, the fractional bandpasses
are so small that this is a reasonable approximation. This
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assumption can be relaxed slightly by allowing a constant
spectral shape (usually a spectral index) by scaling the data in
a frequency dependent fashion.

With larger bandwidths, the problem becomes acute when
a high dynamic range (ratio of peak brightness to off–source
“noise” in the image) is also needed. This is the case when
studying weak emission in the presence of much brighter
emission. The ability to study fainter emission is the driving
motivation behind increasing the sensitivity of interferometric
arrays.

The techniques for obtaining high dynamic range are mostly
variation on the visibility-based CLEAN (“Cotton-Schwab”
CLEAN) of [2], [3] in which the model of the sky is iteratively
refined by removing the current best estimate of the sky from
the data and obtaining a better estimate of the remaining emis-
sion. This general technique requires accurately subtracting the
sky model from the data. In the wideband-variable spectral
index case, this requires knowing the spectral shape as well
as the brightness of the emission.

Astrophysical sources of broadband emission generally emit
by either thermal or synchrotron mechanisms. In either case,
the spectral shape over large areas of the radio spectrum are
close to a power law. This suggests the form of the spectrum
to be used. The technique presented here uses the following
adaptation of the traditional representation of a continuum
source spectrum:

sν = sν0
eα log(ν/ν0) + β log(ν/ν0)2 +... eq.1

where s is the spectral flux density, ν is frequency, ν0 a
reference frequency and α, β, ... are the “spectral index” and
one or more curvature terms. As many terms can be used
in the exponent as are needed to accurately represent the
observed emission. This is the same as the traditional scalar
pixel representation with the addition of the exponential term
to give the spectral shape

In this model, a broadband continuum image becomes an
cube in which the planes are the parameters of eq. 1 for
each pixel. With this changed definition of the meaning of
a “pixel”, we can proceed with the redefining of the steps in
image reconstruction.

III. THE PROBLEM

Let’s explore the problem space by first generating a simu-
lated wideband dataset with known properties and then apply
the traditional techniques.

A. Model Data
In order to test various techniques, a model wideband data

set was created. This dataset was derived from a 15×390
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Fig. 1. Traditional imaging of all frequencies in the model noiseless wideband
dataset. Contour levels are powers of 2 from 0.1 mJy/beam, the peak in the
image is 3.7 Jy/beam. Negative contours are dashed

kHz channel VLA dataset at 1.4 GHz with 1 “IF” involving
multiple snapshots. This dataset was expanded to 10 IFs
spaced at 100 MHz intervals which (sparsely) covers the range
1.4 to 2.3 GHz. The data values were replaced by the Fourier
transform of the models given in Table I. The columns in
Table I are: component label, RA offset, declination offset,
flux density, spectral index, curvature, Gaussian major axis
FWHM, Gaussian minor axis, and Gaussian position angle.
The flux density of each model was calculated from the
spectral parameters for each channel. The models include a
range of flux densities, sizes, shapes and spectra. For some
tests, a known amount of zero mean Gaussian pseudo noise
was added.

B. Traditional Imaging
The simplest way of imaging this data is to grid all visibility

data onto a single uv-plane grid and then Fourier transform to
derive the dirty image. This was done using Obit Task Imager
using all data in the (noiseless) model dataset and deconvolved
using the “DFT” (more accurate) model calculation technique.
The result of this imaging is shown in Figure 1. The off-source
RMS is 7.3×10−4 and the “dynamic range” (ratio of peak
to off-source RMS) in this image is about 5000; the image
clearly has strong artifacts. On the other hand, if only a single
IF is imaged (see Figure 2) the result is far better. Here the
off-source RMS is 1.0×10−4 Jy/beam or a dynamic range of
35,000. Clearly making a traditional image using a wideband
dataset is the wrong thing to do.

IV. SPECTRAL IMAGING

This is the most extreme in a range of techniques explored
in which spectral images are derived by fitting spectral pa-
rameters in each pixel of a set of dirty images and then
performing a CLEAN using the flux density at the reference
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Fig. 2. Traditional imaging of one “IF” of the model noiseless wideband
dataset. Contour levels are powers of 2 from 0.1 mJy/beam, the peak in the
image is 3.5 Jy/beam. Negative contours are dashed

frequency. Various components of this technique are explored
in the following.

A. Forming the Dirty Image/Residual
The most straightforward path from a wideband visibility

data set to a cube of spectra of the form given in eq. 1 is
to first grid and transform the visibility data into an image
cube. Since only broadband spectra are considered here, this
image cube can be at fairly low spectral resolution but high
enough that the constant spectrum over the frequency range
approximation is not grossly violated. A spectral shape of the
form in eq. 1 can then be fitted to the frequency samples in
each cell of the image. Unfortunately, this fitting is non linear.
In the implementation described here, a Levenberg-Marquardt
least squares fitter from the Gnu Scientific Library was used.

As always, nonlinear least squares fitting must be ap-
proached with caution, fitting a high order function to noise
has unpleasant consequences. In the technique described here,
a variable number of terms from eq. 1 are fitted depending
on the SNR and the results of a fit with fewer parameters. In
order to evaluate the statistical significance of fitting results,
“noise” estimates are made by a robust estimation in each of
the frequency channel images; these RMS estimates are taken
as the expectation of the scatter from a spectral fit and used
to form weights for the spectral parameter estimation.

The initial parameter estimated in each pixel is sν0
which

is derived by a weighted average over all frequency images. If
the χ2 value of this fit is below a specified threshold (of order
a few), and the SNR of the data is below another limit, then
this fit is deemed acceptable and the terms in the exponential
(α, β...) are set to zero.

If the χ2 value of this fit exceeds the cutoff, or the SNR
is sufficiently high, a fit is attempted for sν0

and α using
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weighted flux as the initial guess of sν0
and 0 for α. If the

reduced χ2 of this fit is lower than the single parameter fit, it
is accepted, otherwise the α and higher order terms are set to
zero. If the reduced χ2 of this fit is lower than the threshold
and the SNR is below another threshold, no higher order fitting
is done. In the case that the χ2 exceeds the threshold, the next
higher order term is attempted. This continues until either the
χ2 is acceptable or a maximum number of terms is fitted.
This results in an image cube where the values in the planes
correspond to terms in eq. 1. Error estimates can also be saved
in further planes as well as the final χ2 of the fit. The cube
of fitted spectra becomes the analog of the dirty image in the
traditional technique, hence should be referred to as the “dirty
spectrum”.

The threshold effects when the order of the fit changes
across the image introduce out-of-band artifacts that can drive
CLEAN into serious oscillations if the CLEAN reaches that
level. A Gaussian spatial frequency filter was used to reduce
these out of band artifacts.

B. Primary Beam Effects
With wide bandpasses, the power pattern of the antennas

is quite variable across the bandpass, especially far from the
pointing center. In the technique described here, correction for
this effect for a homogeneous array can be deferred until after
imaging is complete as the primary beam will steepen the
spectrum and add extra curvature. The effect of the primary
antenna pattern will be included in the spectral fitting.

C. Synthesized Beam Effects
The synthesized beam also varies across the bandpass. A

frequency variable beam causes trouble as in the process
described here, it will be mapped into physically incorrect
variations in spectral shape across a source, even across an
unresolved source. Tapering of the higher frequencies can be
used to force the beams to be (approximately) the same at
all frequencies. An unfortunate consequence of this is that it
reduces the sensitivity at the higher frequencies and reduces
the resolution to those of the lower frequencies.

In the technique implemented here, the lowest frequency
channel in the cube was imaged first and a 2D Gaussian fitted
to the dirty beam. The expected beam in each of the higher fre-
quency channels was then estimated from a simple frequency
scaling. On the basis of this estimated beam, the equivalent
image plane Gaussian convolution size was determined and
then converted into a taper (including orientation of the ellipse)
to be applied to each channel image. The UV coverage is
not uniform, especially in the outer parts of the UV plane
which determine the resolution of an image so the tapering
approach does not precisely result in the desired beam size (as
determined by Gaussian fitting); but with a fudge factor, seems
to be adequate in the tests described below. The parameters of
the taper used were:

tapermajor = 0.95 × 0.001 /(CBmajor ∗ const)

taperminor = 0.95 × 0.001 /(CBminor ∗ const)

taperposAngle = (CBposAng)

where const = ( 2π
360 )

√
0.5

1.17741022 , and CB is the equivalent
image plane convolving Gaussian. The fudge factor to correct
for the sparseness of the UV coverage is 0.95.

The fudge factor depends of the weights, when all the
weights were set to 1, the fudge factor became 1.05 or a bit
larger; these need to be determined empirically.

The cell spacing must be the same for all frequency planes.
The tapering to give constant synthesized beam size with
frequency should keep the higher frequency images from being
under sampled.

D. Redefinition of CLEAN component
The flux density in the traditional CLEAN component needs

to be replaced by a spectrum. This is easily accomplished by
adding terms for the coefficients of the powers of log(ν/ν0)
terms in eq. 1.

E. CLEAN Using Spectra
The term sν0

from eq. 1 can be used as a simple replacement
in CLEAN for the flux density of the traditional narrow band
image. The only modification required to CLEAN is that it
must keep track of the spectral terms from each pixel in the
image and record them in the CLEAN component. The “dirty
beam” used for the CLEAN is the average of the dirty beams
derived for the planes in the spectral cube.

Variations in the number of terms fitted can cause low level
discontinuities in the sν0

image. This introduces “out-of-band”
noise which can cause CLEAN to go into oscillations. The out-
of band spatial frequencies can be filtered, or the CLEAN can
be prohibited from going deep enough in each major cycle to
get into trouble.

F. Calculating the Sky Model
There are several techniques used to compute the instrumen-

tal response to a sky model, the “Direct Fourier Transform”
(“DFT” in AIPS and Obit) is the simplest and the only
implementation to date. This technique calculates the response
of the interferometer to each CLEAN component in each
visibility/frequency/IF. The necessary information to calculate
the exponential term is carried in the CLEAN component.
A simple frequency dependent factor applied to the flux
density of each CLEAN component is sufficient to make the
correction.

G. Spectral Imaging Technique
The general spectral imaging method is illustrated in Figure

3, the blocks of which are described in the following list:
• Form Coarse Spectral Cube

The multi–channel continuum data set is imaged averag-
ing multiple channels but with enough spectral resolu-
tion that the images are not seriously degraded by the
variation is spectral shape across the field. Frequency
dependent UV tapering should be applied to obtain an
(approximately) constant resolution for all planes of the
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Form Coarse Spectral Cube

Done?

CLEAN using S 0

Fit spectra to Pixels

Yes
No

Subtract CLEAN Spectra from UV data

Form Coarse Spectral Cube

Fit spectra to Pixels

Restore Components

Fig. 3. Block diagram of the spectral imaging technique.

output cube. The same image grid should be used for all
frequencies.

• Fit spectra to pixels
A spectrum is fitted using non–linear least squares to the
spectral samples in each pixel producing a cube of the
parameters in eq. 1. The number of terms actually fitted
depends on the SNR of the samples in each pixel. At
least the sν0

term is fitted for each pixel. The resultant
images are filtered to reduce the “out-of-band” noise.

• CLEAN using sν0

The sν0
image is used as in the traditional CLEAN

except that the resultant CLEAN components include the
spectral terms from the image pixel from which they were
derived.

• Subtract CLEAN spectra from UV data
The CLEAN components contain a spectrum which is
used to compute the instrumental response to the sky
model in each frequency channel. These frequency de-
pendent model values are subtracted from the visibility
samples in the corresponding frequency channels to pro-
duce a residual UV dataset.

• Restore Components
After the CLEANing has converged, a final spectral
image cube is formed and the sν0

values of the CLEAN
components removed in the CLEANing process are re-
stored to the residual sν0

image.

H. Evaluation of Spectral Imaging

In order to evaluate the results of the spectral imaging
technique, a model data set with 0.013 Jy/visibility Gaussian
noise added was processed as in the previous discussion. This
noise level corresponds to ∼ 1.0 × 10−5 Jy/beam in images

TABLE I
Model Parameters

X Y S α β Maj min PA
” ” Jy ” ” ◦

A -50.0 50.0 0.001 0.0 0.0 0.0 0.0
B -50.0 -20.0 0.0002 0.0 0.0 0.0 0.0
C -36.0 -53.0 2.0 -0.75 -0.01 15.0 3.0 90.0
D -15.0 -52.0 1.0 0.25 0.0 0.0 0.0
E -12.0 2.0 5.0 -1.25 -0.033 7.0 4.0 135.0
F 0.0 0.0 1.5 0.0 0.0 0.0 0.0
G 4.0 -51.0 2.5 -0.65 -0.05 16.0 3.0 90.0
H 6.0 71.0 3.5 0.25 -0.15 0.0 0.0
I 28.0 28.0 1.0 0.0 -0.0 1.0 1.0
J 38.0 -12.0 3.0 -0.55 -0.025 20.0 5.0 15.0
K 69.0 68.0 4.0 -0.05 -0.1 5.0 5.0

TABLE II
Fitted Parameters (Spectral Fitting)

X Y S α β Maj min PA
” ” Jy ” ” ◦

A -50.0 50.0 0.00077 -0.39 0.94 0.0 0.0
B -49.0 -20.0 0.00005 0.0 0.0
C -36.0 -53.0 2.01 -0.81 0.00 15.0 3.0 90.0
D -15.0 -52.0 1.01 0.17 0.10 0.0 0.0
E -12.0 2.0 5.02 -1.28 0.00 7.0 4.0 135.0
F 0.0 0.0 1.51 -0.06 0.08 0.0 0.0
G 4.0 -51.0 2.51 -0.70 0.00 16.0 3.0 89.9
H 6.0 71.0 3.51 0.20 -0.08 0.0 0.0
I 28.0 28.0 1.00 -0.08 0.12 1.0 1.0
J 38.0 -12.0 3.01 -0.57 0.07 20.0 5.0 15.0
K 69.0 68.0 4.02 -0.12 0.00 5.0 5.0

derived from a single IF. The processing proceeded with the
spectral fits including up to 3 spectral terms (sν0

, α, β).
Once the strongest emission was CLEANed, the spectral

fitting became less robust so an additional imaging was per-
formed with only the first two spectral terms fitted. The results
of spectral imaging using a two or three term spectral fit are
shown in Figure 4 which gives the sν0

images. At high flux
density levels the derived images show excellent agreement
with the model.

At lower flux levels, the results were disappointing; the off-
source RMS levels were well above the expected level and
only marginally better than the single IF traditional image
shown in Figure 2. The RMS levels were 6.9×105 and
9.4×105 Jy/beam for the 2 and 3 term fits; this gives dynamic
ranges of 50,800 and 37,200 respectively. The 1 mJy faint
source is visible in the images in Figure 4 but not the 200 µJy
source.

V. SPECTRAL FITTING

The spectral imaging process consists of two nonlinear
components, the spectral fitting and the CLEAN. Of these, the
CLEAN seems more robust and doing the spectral fitting to
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Fig. 4. Spectral imaging sν0
results using a model set with 0.013 Jy/visibility

added noise. On the top is the is the result using a two term spectrum
(flux density and spectral index), and on the bottom using a three term (also
curvature) spectral fit. Both plots use the same contouring with levels spaced
by powers of 2.0 from 1.0×10

−4 Jy/beam.

the dirty/residual images seems to be limited by artifacts well
above the expected level. Reversing the order of the nonlinear
operations may produce superior results. This process will be
referred to in the following as “Spectral Fitting” to distinguish
it from the “Spectral Imaging” described in the previous.

In the spectral fitting process, each IF is imaged indepen-
dently and deconvolved using a visibility–based CLEAN using
the “DFT” model calculation. Then, the CLEAN images are
convolved to a common resolution, accumulated into a spectral
cube and spectra fitted in each pixel in the same way as was
done for the spectral imaging case on dirty/residual cubes.
The results for two different noise levels are given in Figure

TABLE III
COMPARISON OF METHODS AND TESTS

Method RMS (mJy) DR
Imager 1 IF 1 0.100 35400
Imager all IFs1 0.730 5100
Sp. Image 2 term1 0.069 50800
Sp. Image 3 term1 0.094 37200
Sp. Fit1 0.014 283000
Sp. Fit2 0.034 104000

Notes:
1 The data had added noise in the amount of 0.013 Jy/visibility.
2 The data had added noise in the amount of 0.13 Jy/visibility.

5. The python function used for this operation is given in the
appendix.

For the data with 0.013 Jy/visibility added, the expected
noise level per IF is ∼ 1.0× 10−5 Jy/beam and the measured
off-source RMS was 1.0 × 10−4 in a single IF image and
1.4 × 10−5 Jy/beam for the full band value; this corresponds
to a dynamic range of 253,000. These images appear to be
dynamic range rather than noise limited; possibly due to
the limited uv coverage of the data set. The reduction in
RMS faster than

√
n also suggests the presence of strong

systematics. Gaussians fitted to the images are given in Table
II and can be compared to the input parameters in Table I.
Spectral parameters in Table II are derived from the value in
the appropriate plane corresponding to the pixel of maximum
flux density.

The other test shown in Figure 5 used data with 0.13
Jy/visibility added which should give a single IF noise level
of 1.0× 10−4. In this case, the measured single IF RMS was
1.4 × 10−4 and for the full band fit, 3.4 × 10−5. Here, the
RMS values are closer to what was expected due to the noise
added although the single IF images may still be suffering
from some dynamic range limitation. The full band dynamic
range achieved was 104,000. Both the 1 mJy and 200 µJy faint
sources are visible in the images in Figure 5. A comparison
of the various methods used is summarized in Table III.

VI. DISCUSSION

The preceding section has demonstrated that the spectral
fitting technique (CLEAN narrow band images then do spec-
tral fitting) produces significantly better results than ’spectral
imaging” in which the order of these operations is reversed.
Dynamic ranges of more than 200,000 were obtained using
a relatively complex source model which allowed the easy
recovery of a source 1/17500 th of the brightest in the
field. This is basically a proof of concept of the method
which now needs further development and conversion into
production quality software for further evaluation and use. The
following list discusses areas that need further investigation or
development.

• Integration into Obit library/tasks
The current implementation of the spectral fitting is in
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Fig. 5. Spectral fitting sν0
results. On the top using a model set with 0.013

Jy/visibility added noise. and on the bottom 0.13 Jy/visibility . Both plots use
the same contouring with levels spaced by powers of 2.0 from 2.0×10

−5

Jy/beam.

the form of a python function that should be translated
to c allowing it to the used by tasks.

• Remove typical spectral index
The majority of sources in a field observed at GHz
frequencies are optically thin synchrotron sources with
spectral indexes (α) of around -0.7. The data could be
scaled in frequency to remove this spectral index which
would then become the effective default as opposed to
the current default of 0.0. Any spectral index removed
during the processing would need to be restored at the
end.

• Adapting to use with self-calibration
The spectral image produced by spectral fitting can be

used in the self calibration process. The spectral image
can be decomposed into a set of CLEAN components
with attached spectra by “CLEANing” the final image as
was done in spectral imaging although using the restoring
beam instead of the dirty beam. These components can
then be used in routines developed for spectral imaging
to compute the frequency dependent sky model for self
calibration.

• Primary beam corrections
Since the sν0

image is at the reference frequency, the
primary beam correction for it is the same as for a
traditional image. The effect of the primary beam on the
other spectral terms is to steepen and add curvature to the
spectrum. Primary beam corrections to the spectral terms
are needed.

• Heterogeneous Arrays
The techniques described here were designed for and
tested on simulated from from a heterogeneous array. The
technique needs to be expanded for arrays like eMerlin
which have a variety of antenna sizes. This could possi-
bly be implemented by explicitly making primary beam
corrections in the imaging and deconvolution stages.

• Control fitting threshold effects
The spectral fitting was adequate for the tests done here
but need improvement; especially the threshold effects
of variations from pixel to pixel of the number of terms
added needs work.

VII. CONCLUSION

This memo has described the work in progress on the spec-
tral fitting technique to produce high dynamic range images
of data with a wide bandpass. The technique is basically to
replace the concept of a pixel as a scalar brightness with one of
the pixel as a spectrum. The spectral fitting technique applied
to simulated wideband data gave a dynamic range significantly
better than the traditional technique when limited to a narrow-
band section of the same data. Further investigation and
development of this technique appears warranted.
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APPENDIX

The following python scripts show the processing used for
spectral fitting.
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# Python routine to make a wideband image mosaic by spectral fitting

import UVImager, ImageMosaic, Image, UV, Table, FArray, SpectrumFit, OErr
import CleanVis, ConvUtil
import math

def MakeWBClean (inUV, err, \
outName=’CleanWB’, outCClass=’Cube’, outSClass=’Spect’, outDisk=1, outSeq=1, \
FOV=3.0/60., cells=1.0, robust=0.0, gain=0.03, niter=25000, minFlux=0.0, \
winds=[], maxChi2=5.0, nterm=3, dispURL="None"):

""" Create a wideband image with spectrum from an ObitUV

returns (spectral_cube, spectral_fit)
Each IF is CLEANed, convolved to the lowest resolution, formed into a cube
and Spectrum fitted in each pixel to produce the output mosaic.

inUV Data to be imaged
err message/error object
outName Name of output AIPS image
outCClass Class of output AIPS spectral cube image
outSClass Class of output AIPS fitted spectrum image
outDisk output disk
outSeq output sequence
FOV Field of view in deg
cells cellspacing in asec
gain CLEAN loop gain
niter max Number of CLEAN iterations
minFlux min. level to CLEAN to
winds CLEAN windows
robust Briggs robust weighting factor
nterm number of terms in spectrum including flux

"""

# define clean
CleanInput = CleanVis.CleanInput
CleanInput["Niter"] = niter
CleanInput["Gain"] = gain
CleanInput["minFlux"] = minFlux
CleanInput["autoWindow"]= True
CleanInput["Stokes"] = "I"
CleanInput["Mode"] = 1
CleanInput["Robust"] = 0.0
CleanInput["Type"] = 1 # ’AIPS’
CleanInput["Name"] = ’TempWB’
CleanInput["Class"] = ’Temp’
CleanInput["Seq"] = 0
CleanInput["Disk"] = outDisk
CleanInput["NField"] = 0
CleanInput["FOV"] = FOV
CleanInput["doFull"] = True
CleanInput["xCells"] = cells
CleanInput["yCells"] = cells
CleanInput["doRestore"] = True
CleanInput["doFlatten"] = True
CleanInput["BChan"] = 1
CleanInput["EChan"] = 0
CleanInput["PBCor"] = False
CleanInput["dispURL"] = dispURL
CleanInput["doCalSelect"]= True
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# Get IF frequencies from FQ table
refFreq=inUV.Desc.Dict["crval"][inUV.Desc.Dict["jlocf"]]
FQtab=inUV.NewTable(Table.READONLY,"AIPS FQ",1,err)
FQtab.Open(Table.READONLY,err)
FQrow=FQtab.ReadRow(1,err)
FQtab.Close(err)
OErr.printErrMsg(err,"Error reading frequencies ")
numIF = len (FQrow["IF FREQ"])
freq = []
for f in FQrow["IF FREQ"]:

freq.append(refFreq+f)

# Loop over IFs - image all frequencies in each
cube = None # No spectrum cube yet
beams = [] # Restoring beams
for IF in range(1,numIF+1):

print "Start IF",IF

# Create CLEAN object
CleanInput["Seq"] = 10+IF
CleanInput["BIF"] = IF
CleanInput["EIF"] = IF
clean = CleanVis.PCreate("Clean", inUV, err, input=CleanInput)

# Any windows
for win in winds:

clean.AddWindow(1, win, err)

# Image/Clean
CleanVis.PClean(clean, err)
OErr.printErrMsg(err,"Error imaging/cleaning IF "+str(IF))

# Extract Flattened Clean plane from mosaic
mosaic = CleanVis.PGetMosaic(clean)

full = ImageMosaic.PGetFullImage(mosaic, err)
if full.me==None:

del full
full = ImageMosaic.PGetImage(mosaic, 0, err)

# output cube exist yet?
if cube==None:

cube = Image.newPAImage("cube",outName,outCClass,outDisk,outSeq,False,err)
d = full.Desc.Dict
d["inaxes"][d["jlocf"]] = numIF
d["cdelt"][d["jlocf"]] = freq[1] - freq[0]
cube.Desc.Dict = d
cube.Open(Image.WRITEONLY, err)
cube.Close(err)
# Make scratch copys of full for convolution
tmpImage1 = full.Scratch(err)
tmpImage2 = full.Scratch(err)
OErr.printErrMsg(err,"Error creating output cube ")
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# Collect into Cube
full.Open(Image.READONLY,err)
full.Read(err)
# Set up output
plane = [IF,1,1,1,1]
cube.Open(Image.READWRITE, err)
cube.PutPlane(full.FArray, plane,err)
full.Close(err)
cube.Close(err)
OErr.printErrMsg(err,"Error copy to cube for IF "+str(IF))

# Save beam information
h=full.Desc.Dict
Beam = [h["beamMaj"], h["beamMin"] ,h["beamPA"]]
beams.append(Beam)

# Cleanup
ImageMosaic.PZapImage(mosaic, -1, err)
OErr.printErrMsg(err,"Error cleaning up mosaic "+str(IF))
del clean
# End Image/CLEAN IF loop

# Convolve all to same resolution as IF 1 and collect into cube
for IF in range(2,numIF+1):

plane = [IF,1,1,1,1]
cube.Open(Image.READWRITE, err)
# Get convolution structures
refBeam = beams[0]
IFBeam = beams[IF-1]
Beam = ConvUtil.Deconv(refBeam, IFBeam)
convFn = ConvUtil.PGaus(cube, Beam)
# Normalize peak
scale = (refBeam[0]/IFBeam[0])*(refBeam[1]/IFBeam[1])

# Get plane from cube
cube.GetPlane(cube.FArray, plane,err)
tmpImage1.Open(Image.READWRITE, err)
tmpImage1.WriteFA(cube.FArray,err)
tmpImage1.Close(err)
ConvUtil.PConv(tmpImage1, convFn, False, scale, tmpImage2 ,err)
tmpImage2.Open(Image.READONLY, err)
tmpImage2.ReadFA(cube.FArray,err)
tmpImage2.Close(err)
cube.PutPlane(cube.FArray, plane,err)
cube.Close(err)
OErr.printErrMsg(err,"Error convolving IF "+str(IF))
del convFn
# End convolution loop

# Spectral fitting
spec = Image.newPAImage("spectrum",outName,outSClass,outDisk,outSeq,False,err)
sf = SpectrumFit.PCreate("fitter", nterm)
sf.Cube(cube, spec, err)
OErr.printErrMsg(err,"Error fitting spectrum to cube ")

# Done
del tmpImage1, tmpImage2
return (cube, spec)

# end MakeWBClean


