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ABSTRACT

A deep search for the potential glycine precursor hydroxylamine (NH2OH) using the Caltech Submillimeter
Observatory (CSO) at λ = 1.3 mm and the Combined Array for Research in Millimeter-wave Astronomy at
λ = 3 mm is presented toward the molecular outflow L1157, targeting the B1 and B2 shocked regions. We report
non-detections of NH2OH in both sources. We perform a non-LTE analysis of CH3OH observed in our CSO
spectra to derive the kinetic temperatures and densities in the shocked regions. Using these parameters, we derive
upper limit column densities of NH2OH of �1.4 × 1013 cm−2 and �1.5 × 1013 cm−2 toward the B1 and B2
shocks, respectively, and upper limit relative abundances of  ´ -N N 1.4 10NH OH H

8
2 2 and �1.5 × 10−8,

respectively.
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1. INTRODUCTION

Glycine (NH2CH2COOH), the simplest amino acid, has been
identified in cometary (Elsila et al. 2009) and meteoritic
samples (Kvenvolden et al. 1970); however, it is not yet known
whether the species is formed in these solid bodies, in the
interstellar medium (ISM), or both. Indeed, a detection in the
ISM has so far proven elusive (Snyder et al. 2005; Cunningham
et al. 2007; Jones et al. 2007). Although chemical models
predict the formation of glycine in the ISM in low abundance
(see, e.g., Garrod 2013 and the references therein), it has been
difficult to observationally constrain them without a detection
of the species. The relative likelihood of different possible
formation routes can, however, be constrained by careful
observation of the reactants used in the chemical models to
form glycine.

One pathway that has garnered significant interest is the
formation of glycine through the reaction of hydroxylamine
(NH2OH), or its protonated and ionized derivatives, with acetic
acid (CH3COOH), a known interstellar molecule (Mehringer
et al. 1997). Ionization or protonation of NH2OH under
interstellar conditions should be efficient (Angelelli et al. 1995;
Boulet et al. 1999), and subsequent laboratory work has
demonstrated the formation of glycine from NH2OH and its
ionized and protonated forms (Blagojevic et al. 2003; Snow
et al. 2007). Although recent theoretical work has suggested
that gas-phase routes forming glycine through these reactions
are inefficient under interstellar conditions (Barrientos
et al. 2012), condensed-phase surface-mediated reactions
remain a possibility, and observational constraints for the
precursors are still desirable for the refinement of models.
While acetic acid is readily constrained, NH2OH has yet to be
observed in the ISM.

In recent years, laboratory work has shown that a number of
pathways exist which result in the efficient formation of
NH2OH on grain surfaces. Zheng & Kaiser (2010) demon-
strated the formation of NH2OH in H2O–NH3 ices after UV-
irradiation. Formation by successive hydrogenation of NO has
been shown to proceed efficiently, without barriers, and in high
yield (Congiu et al. 2012a, 2012b; Fedoseev et al. 2012;
Ioppolo et al. 2014; Minissale et al. 2014). Most recently, He
et al. (2015) demonstrated the efficient formation of NH2OH
via the oxidation of NH3 in ices with a low barrier to activation
(of the order of 1000 K).
Earlier modeling work by Garrod et al. (2008) also suggested

that NH2OH is formed in high abundance in interstellar ices,
and is subsequently liberated into the gas phase during the
warm-up period of emerging hot cores and hot corinos in
readily-detectable quantities. Observational efforts by Pulliam
et al. (2012), however, failed to detect NH2OH toward a
selection of such sources known to be rich in complex organic
material (e.g., Sgr B2(N) and Orion-KL), establishing upper
limits of < -N N 10NH OH H

9
2 2 – -10 .11 Refinement of the Garrod

et al. (2008) model in subsequent work (Garrod 2013), as well
as limited modeling presented in the aforementioned laboratory
studies, resulted in predicted gas-phase abundances in agree-
ment with the upper limits established by Pulliam et al. (2012).
Yet, with the inclusion of the H + HNO HNOH pathway in
the model, as described by the laboratory work of Congiu et al.
(2012a), condensed-phase abundances of NH2OH again
approach ~ -N N 10 ,NH OH H

6
2 2 with gas-phase abundances of

~ -N N 10 .NH OH H
7

2 2

The Garrod (2013) model largely assumes that the release of
NH2OH into the gas phase is a gradual process dominated by
the warm-up of the hot core. Both the laboratory work and the
models, however, predict that NH2OH is initially formed in
large abundance at very cold (<20 K) temperatures and early in
the evolution of these sources. Thus, the most optimistic source
for a detection of gas-phase NH2OH is one where the reservoir
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of condensed-phase NH2OH formed at low temperatures is
liberated en masse into the gas phase prior to its release by
thermal mechanisms.

Shocked regions displaying high degrees of molecular
complexity likely represent this best-case scenario. In these
regions, complex molecules are formed efficiently in ices at
low temperatures, but are not otherwise liberated into the gas
phase except by thermal desorption at much greater tempera-
tures. When these ices are subjected to shocks, however, the
mantle is non-thermally ejected into the gas phase, resulting in
large abundances of relatively cool (Trot < 100 K), complex
organic material (see, e.g., Requena-Torres et al. 2006). One of
the most prominent of these regions is the young protostellar
outflow L1157. Numerous recent studies report high degrees of
molecular complexity arising from shocked regions within the
outflow, which originates in cold, quiescent gas around the
protostar (see, e.g., Arce et al. 2008 and Codella et al. 2015).

Here, we present deep searches for NH2OH using the
Caltech Submillimeter Observatory (CSO) at λ = 1.3 mm and
the Combined Array for Research in Millimeter-wave Astron-
omy (CARMA) at λ = 3 mm toward the L1157 outflow. We
report non-detections of NH2OH in both searches. In order to
derive upper limits to the column density of NH2OH, we use
transitions of CH3OH observed with the CSO to constrain the
kinetic temperature and density in the shocked gas using a
radiative-transfer approach, and CARMA images of CH3OH
and HNCO to determine the size of the shocked gas. Finally,
we estimate upper limits to the abundance of NH2OH and
discuss possible implications.

2. L1157

L1157 is a dark cloud in Cepheus located at a distance of
∼250 pc (Looney et al. 2007) which contains a prototypical
shocked bipolar outflow from a Class 0 protostar. It has been
the subject of great interest in the last 20 years, with numerous
studies investigating the physical conditions within the source.
Due to the variety of methods used in these studies, direct
comparisons between their results are challenging. Never-
theless, an overall picture does arise, and this general
description will be sufficient for the discussion presented here.

Originating in the cold, quiescent gas (T ∼ 13 K, Bachiller
et al. 1993) surrounding the Class 0 protostar L1157-mm, the
southern lobe of the accelerated outflow (T ∼ 50–100 K;
Bachiller et al. 1993) has undergone two major shocks, referred
to as L1157-B1 and L1157-B2. The B1 shock is younger and
warmer (∼2000 years, Tkin ∼ 80–100 K) than the B2 shock
(∼4000 years, Tkin ∼ 20–60 K), and many complex chemical
species are observed in enhanced abundance toward both
shocks due to non-thermal desorption from grains (Mendoza
et al. 2014; Codella et al. 2015). While the absolute values of
these physical parameters vary somewhat within the literature,
this qualitative picture and enhancement in chemical abun-
dance is consistently reported.

3. CSO OBSERVATIONS

The spectrum toward L1157 obtained with the CSO was
collected over eight nights in 2012 July–September, and seven
nights in 2014 September and December. The telescope was
pointed at the B1 shocked region at α(J2000) = 20h39m07 7, δ
(J2000) = 68°01′15 5 and the B2 shocked region at α
(J2000) = 20h39m13s, δ(J2000) = 68°00′37″ (see Figure 1), and

spectra were adjusted to a vLSR = 1.75 km s−1. A small subset
of scans toward B1 were obtained at a second position offset by
−4″ in declination. The CSO 230/460 GHz sidecab double-
sideband (DSB) heterodyne receiver was used in fair weather
(τ220 = 0.1–0.25) resulting in typical system temperatures of
300–500 K. The backend was a fast Fourier-transform spectro-
meter which provided 1 GHz of DSB data at 122 kHz
resolution (∼0.2 km s−1 at 230 GHz). The total frequency
coverage was 188–193, 200–205, 237–243, and 249–255 GHz
toward B1, and 237–243 and 249–255 GHz toward B2. The
targeted transitions of NH2OH are given in Table 1.
A chopping secondary mirror with a throw of 4′ was used for

ON-OFF calibration. Pointing was performed every ∼2 hr and
typically converged to within 1″–2″. The raw data were
calibrated using the standard chopper wheel calibration method
resulting in intensities on the atmosphere-corrected *TA
temperature scale. These were then corrected to the main beam
temperature scale, Tmb, where * h=T T .mb A mb For these
observations, the main beam efficiency was ηb = 0.70. The
spectra were collected in DSB mode at a variety of IF settings
to allow for a robust deconvolution. The CLASS package from
the GILDAS suite of programs7 was used for the data
reduction. Spurious signals were removed from the spectra,
which were then baseline subtracted using a polynomial fit. The
standard CLASS deconvolution routine was used to generate
single-sideband data. The spectra were then Hanning smoothed
to a resolution of ∼1.4 km s−1. The average FWHM linewidth
in B1 was ∼7.9 km s−1, and in B2 was ∼5.2 km s−1.

Figure 1. CARMA observations of CH3OH and HNCO toward L1157.
Contours are an integrated Moment 0 map of the -2 1,2– -1 ,1,1 20,2–10,1++, and
20,2–10,1 transitions (Eu = 12.5 K, 7 K, and 20.1 K, respectively) of CH3OH at
contour levels of 0.16, 0.32, 0.49, 0.66, and 0.82 Jy beam−1. These are overlaid
on an integrated Moment 0 map of the 40,4–30,3 transition of HNCO spanning 0
 0.025 Jy beam−1 in a single color cycle. The HNCO transitions trace the
warmer, compact shocks, while the CH3OH transitions reveal the overall
structure of the colder, diffuse outflow. The location of the two targeted
observations of B1 and B2 with the CSO are shown as dashed white lines,
approximately equal to the CSO beam size (∼30″) at the observed frequencies.

7 Institut de Radioastronomie Millimétrique, Grenoble, France—http://www.
iram.fr/IRAMFR/GILDAS
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4. CARMA OBSERVATIONS

A total of 89.3 hr of observations were conducted with the
CARMA 15-element array in C-configuration (2013 May),
D-configuration (2012 October, November), and
E-configuration (2012 August) at λ = 3 mm. The phase center
for these observations was α(J2000) = 20h39m07 7, δ
(J2000) = 68°01′11 5. The CARMA correlator was used in
its 62MHz bandwidth, 3-bit mode providing 255 channels
across the band for a resolution of 243 kHz or 0.7 km s−1. The
three targeted transitions of NH2OH are given in Table 1.

MWC349 and Neptune were used as primary flux calibra-
tors; the passband calibrators were 1635+381, 2232+117,
0102+584, 1743-038, 2015+372, and 3C84. The gain
calibrator was 1927+739. Data reduction was completed using
the Miriad package. Data were flagged for antennas that were
offline or malfunctioning during observation or when the
phases in the calibrators had deviations greater than 30 degrees
from a smooth trend line. Image cleaning was also performed
using Miriad. The robust factor tended toward natural
weighting with cell size set to 0 4 and image size of 1024
pixels. No channel averaging was applied for the maps shown;
however, channel averaging to 1.4 km s−1 was used on
windows targeting hydroxylamine transitions. Clean regions
were drawn with the polygon tool around clear emission and
cleaned to an average noise of 0.7 mJy beam−1. The restoring
beam was typically ∼3 4× 3 2.

The full set of observations toward L1157 CARMA included
a host of other molecular species, and will be presented in a
follow-up paper by N. M. Dollhopf et al. (2015, in
preparation).

5. NON-LTE MODELING OF CH3OH

An accurate determination of NH2OH column density upper
limits in the B1 and B2 shocks requires the kinetic temperature
and density in these regions. To obtain these, we fit the
observed CH3OH emission in the same spectral window
(Table 2) to a non-LTE model of the outflow and shock, based

on a physical model derived from our CARMA observations
using the RADEX code (van der Tak et al. 2007).
First, we determined the approximate spatial extent and

location of the shocked gas from the CH3OH emission
observed with CARMA. Figure 1 shows the CSO beam at
the targeted positions overlaid on our CARMA observations of
CH3OH and HNCO8 at λ = 3 mm. The pointing position for
B1 was chosen from the literature prior to our CARMA
observations, and is roughly centered on the shock front rather
than the peak of the shock emission. The pointing position for
B2 was chosen after we had acquired the CARMA observa-
tions, and is centered on the peak of the shocked HNCO
emission. In both cases, the shock is nearly completely
contained within the beam, and we estimate a reasonable
equivalent size of ∼12″ for the shock, and ∼20″ for the second
component, within our ∼30″ CSO beam. In B1, the shock is
not centered in the beam, and thus any emission will suffer
more significant fall-off effects than in B2.
We made the initial assumption that the two components in

our fit represented the shocked gas and the outflow. Under
these assumptions, and based on our CARMA observation as
well as prior studies (Bachiller et al. 1995), we constrained the
fit of the CH3OH emission with the following assumptions.

1. The kinetic temperature of the shock was no less than that
of the outflow.

2. The density of the shock was no less than that of the
outflow.

3. The column density of CH3OH was no less in the shock
than in the outflow.

Assumptions (1) and (2) are well-substantiated in the
literature, both toward L1157 (Bachiller et al. 1995) and in
shocked environments in general (van Dishoeck & Blake
1998), and assumption (3) agrees with the previous findings of
Bachiller et al. (1995). Using these constraints, and the two-
source component model described earlier, we performed a
reduced-χ2 analysis of a grid of models for the CSO

Table 1
Targeted NH2OH Transitions, Spectroscopic Parameters, Assumed Collisional Coefficients, and Critical Densities

Transition Frequencya EU mSij
2 γb log(A) ncr

c

(MHz) (K) (Debye2) (cm3 s−1) (log(s−1)) (cm−3)

21,2–11,1 100683.58(20) 15.204 0.520 4.1 × 10−11 −5.9079 3 × 104

20,2–10,1 100748.23(20) 7.2527 0.694 5.5 × 10−11 −5.7821 3 × 104

21,1–11,0 100807.62(20) 15.213 0.520 4.1 × 10−11 −5.9062 3 × 104

51,5–41,4 251677.3666(78) 44.194 1.665 4.0 × 10−12 −4.5515 7 × 106

54,1–44,0 251734.8061(82) 163.51 0.625 2.4 × 10−11 −4.9771 4 × 105

54,2–44,1 251734.8061(82) 163.51 0.625 2.4 × 10−11 −4.9771 4 × 105

53,3–43,2 251780.3167(70) 107.85 1.110 1.6 × 10−11 −4.7270 1 × 106

53,2–43,1 251780.3178(70) 107.85 1.110 1.6 × 10−11 −4.7270 1 × 106

52,4–42,3 251811.9913(70) 68.081 1.457 2.0 × 10−13 −4.6088 1 × 108

52,3–42,2 251813.8609(70) 68.081 1.457 2.0 × 10−13 −4.6087 1 × 108

50,5–40,4 251838.4937(79) 36.261 1.735 1.2 × 10−10 −4.5329 1 × 105

51,4–41,3 251987.1350(78) 44.239 1.665 4.0 × 10−12 −4.5498 1 × 106

Notes.
a Transitions and parameters accessible at www.splatalogue.net. Original laboratory work reported by Tsunekawa (1972) and Morino et al. (2000). Cataloged at
CDMS (Müller et al. 2005).
b Values were taken from corresponding transitions of A-CH3OH obtained from the Leiden Atomic and Molecular Database (Schöier et al. 2005) and used without
further modification. Original data reported by Rabli & Flower (2010).
c Given as ncr = A/γ.

8 Details and analysis of the HNCO observations will be presented in Paper II
by N. M. Dollhopf et al. (2015, in preparation).
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observations, simultaneously fitting A- and E-CH3OH follow-
ing the methods described in Crockett et al. (2014). A thorough

discussion of the uncertainties in the fitting method is provided
in the Appendix.

Table 2
Observed CH3OH Transitions, Spectroscopic Parameters, Collisional Coefficients, and Critical Densities

Transitiona Frequencyb EU mSij
2 γc log(A) ncr

d

(MHz) (K) (Debye2) (cm3 s−1) (log(s−1)) (cm−3)

A-CH3OH

20,2–10,1 + + 96741.375(5) 6.9650 1.617 5.5 × 10−11 −5.4675 6 × 104

51,5–41,4 + + 239746.253 49.059 3.885 4.3 × 10−12 −4.2468 1 × 107

50,5–40,4 + + 241791.431 34.817 4.043 1.2 × 10−10 −4.2184 5 × 105

53,3–43,2 + + 241832.91(20) 84.618 2.578 1.6 × 10−11 −4.4137 2 × 106

53,2–43,1 − − 241832.91(20) 84.618 2.578 4.6 × 10−11 −4.4137 8 × 105

52,4–42,3 − − 241842.324 72.530 3.415 1.3 × 10−13 −4.2915 4 × 108

52,3–42,2 + + 241887.704 72.533 3.415 1.8 × 10−13 −4.2912 3 × 108

51,4–41,3 − − 243915.826 49.661 3.885 3.8 × 10−13 −4.2243 2 × 108

110,11–101,10 + + 250506.980 153.10 10.63 9.0 × 10−13 −4.0728 9 × 107

83,5–82,6 − + 251517.262 133.36 7.308 8.1 × 10−13 −4.0990 1 × 108

73,4–72,5 − + 251641.667 114.79 6.279 1.4 × 10−12 −4.1099 6 × 107

63,3–62,4 − + 251738.520 98.546 5.224 6.7 × 10−12 −4.1272 1 × 107

53,2–52,3 − + 251811.882 84.618 4.126 1.8 × 10−11 −4.1567 4 × 106

43,1–42,2 − + 251866.579 73.012 2.954 2.2 × 10−11 −4.2144 3 × 106

53,3–52,4 + − 251890.901 84.619 4.125 8.1 × 10−12 −4.1564 9 × 106

63,4–62,5 + − 251895.728 98.545 5.220 2.6 × 10−12 −4.1266 3 × 107

43,2–42,3 + − 251900.495 73.012 2.953 4.5 × 10−11 −4.2143 1 × 106

33,0–32,1 − + 251905.812 63.727 1.641 3.1 × 10−11 −4.3603 1 × 106

33,1–32,2 + − 251917.042 63.727 1.641 1.3 × 10−12 −4.3603 3 × 107

73,5–72,6 + − 251923.631 114.79 6.272 8.5 × 10−11 −4.1089 9 × 105

83,6–82,7 + − 251984.702 133.36 7.293 2.1 × 10−11 −4.0975 4 × 106

E-CH3OH

2−1,2–1−1,2 96739.362(5) 12.541 1.213 1.4 × 10−13 −5.5922 2 × 107

20,2–10,2 96744.550(5) 20.090 1.617 9.5 × 10−12 −5.4675 4 × 105

21,1–11,0 96755.511(5) 28.011 1.244 3.7 × 10−11 −5.5811 7 × 104

50,5–40,4 241700.219 47.934 4.040 3.0 × 10−11 −4.2192 2 × 106

5−1,5–4−1,4 241767.224 40.391 3.882 7.9 × 10−13 −4.2362 7 × 107

53,2–43,1 241843.646 82.531 2.587 1.5 × 10−12 −4.4120 3 × 107

51,4–41,3 241879.073 55.871 3.980 3.1 × 10−12 −4.2248 2 × 107

5−2,4–4−2,3 241904.152 60.725 3.399 1.1 × 10−13 −4.2932 5 × 108

52,3–42,2 241904.645 57.069 3.356 2.5 × 10−12 −4.2987 2 × 107

20,2–1−1,1 254015.340 20.090 0.499 4.7 × 10−13 −4.7208 4 × 107

Notes. Only those transitions with a modeled peak intensity above 5 mK are listed here. A complete modeled spectrum is available as supplementary information.
a
“+” and “−” refer to A+ and A− parity states, respectively. For E-CH3OH, a negative value of Ka is used to differentiate between (+)E1 and (−)E2 states, which

belong to the same E symmetry species.
b Transitions and parameters accessible at www.splatalogue.net. Original laboratory work reported by Xu & Lovas (1997) and the references therein and by Müller
et al. (2004). Cataloged at CDMS (Müller et al. 2005). Except where noted, uncertainties are 50 kHz.
c Values obtained from the Leiden Atomic and Molecular Database (Schöier et al. 2005). Original data reported by Rabli & Flower (2010).
d Given as ncr = A/γ.

Table 3
Best-fit Parameters for Two Components of CH3OH toward L1157-B1 and B2 Determined from Non-LTE RADEX Calculations

L1157-B1 L1157-B2

Parameter Component 1 Component 2 Component 1 Component 2

nH2 (cm−3) 3(1) × 105 3(1) × 105 6(2) × 105 6(2) × 105

Tkin (K) 60(20) 10(3) 50(15) 10(3)
NCH OH3 (cm−2) 3(1) × 1015 5(2) × 1014 3(1) × 1015 6(2) × 1014

Note. Errors given are from Equation (1) and calculated to be ∼32%.
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Based on these uncertainties, and the assumptions described
above, we find that the parameters in Table 3 represent a best-
fit to the data, with reduced-χ2 values of 2.50 and 1.77 for B1
and B2, respectively. These values are likely due to the
simplicity of our model relative to the complexity of the source.
Literature sources (see, e.g., Lefloch et al. 2012) suggest that a
structure with three or more components is more realistic, but
such additional components would not be well-constrained in
our case due to the limited number of observed CH3OH
transitions. Additionally, there are likely quite large tempera-
ture and density gradients, especially in the newer, more
compact B1 shock, which will contribute an additional error to
the fit that is not accounted for in our analysis. Finally, CH3OH
excitation is sensitive to the far-IR radiation field present,
which we have assumed as the standard galactic background,
any deviation from which would further impact the accuracy of
the model and increased the ultimate χ2.

Simulated non-LTE spectra of CH3OH from these results
toward B1 and B2 are provided in Figures2 and3,
respectively, overlaid on observations and corrected for beam
efficiency and a 12″ source size. The CH3OH column densities
and H2 densities found here are in relatively good agreement
with previous observations of the source (Bachiller et al. 1995;
Bachiller & Pérez Guti’eerrez 1997; Sugimura et al. 2010). The
derived values of Tkin for the warmer component, which we
ascribe to the shocks, agree well with previous measurements
in B2 (Lefloch et al. 2012), while the upper range of our
derived value in B1 falls at the lower edge of previous
measurements.

The kinetic temperature of the second component
(Tkin = 10 K) is significantly lower than previous measure-
ments of both the shock and the outflow (Tkin ∼ 60–120 K),
indicating that it is likely not probing the outflow as we had
originally presumed. Instead, toward B1, this component is
more likely related to the g3 component described by Lefloch
et al. (2012) as remnants from the gas in which the earlier B2
shock was formed, also offering a possible explanation for the
componentʼs presence toward B2. The g3 component has been
reported to be both cold (Tkin = 23 K) and extended (Mendoza
et al. 2014; Lefloch et al. 2012) in qualitatively good agreement
with our fit.

6. RESULTS

Despite deep searches, we find no conclusive evidence for
NH2OH emission at λ = 3 mm or λ = 1.3 mm in either the
CARMA or CSO data, respectively. To calculate appropriate
upper limits for NH2OH in the both data sets, we assume that
NH2OH, if present in the gas phase, originates in the warm,
shocked gas traced by the warm, dense CH3OH component.
The rationale for this assumption is discussed in Section 7.

6.1. NH2OH in CSO Data

Near the temperatures derived from our RADEX fit in the
warm component toward B1 and B2, the strongest NH2OH
transition is the 50,5–40,4 at 251,838MHz. As noted in Table 1,
the critical density (ncr) for this transition is 105 cm−3. This
value is based on the assumption that the collisional
coefficients for NH2OH are similar to those of A-CH3OH.
While not exact, the similar mass, dipole moments, molecular

size, and energy level structures make this a reasonable
approximation within the context of the following discussion.
Given the densities derived from our RADEX fit (3–6

× 105 cm−3), we therefore assume that, at least for this
transition, LTE is a reasonable approximation for determining
NH2OH upper limits, and thus Tex = Tkin. Under these
conditions, we derive 1σ upper limit column densities for
NH2OH of �1.4 × 1014 cm−2 and �1.0 × 1014 cm−2 in B1
and B2, respectively.
Lefloch et al. (2012) derive a CO column density of

0.9 × 1017 cm−2 in the g2 component of the B1 shock, arising
from the shocked gas and covering the entire region assuming a
20″ source size. Assuming that the CO is homogeneously
distributed over the region, this gives a source-averaged CO
column of 3.2 × 1016 cm−2 for the 12″ source size used here.
Taking = ´N N3 10H

4
CO2 ( ) (see Lefloch et al. 2012; Bolatto

et al. 2013), this results in an H2 column density of
∼1021 cm−2. A similar argument using the CO column density
of 5.2 × 1016 cm−2 for B2 found by Bachiller & Pérez
Guti’eerrez (1997) also results in an H2 column density of
∼1021 cm−2. This gives upper limits to the fractional
abundances of NH2OH of = ´ -N N 1.4 10NH OH H

7
2 2 and

�1.0 × 10−7 for B1 and B2, respectively.

6.2. NH2OH in CARMA Data

To calculate appropriate upper limits for NH2OH in the
CARMA data, we again assume that NH2OH, if present in the
gas phase, originates in the warm, shocked gas traced by the
warm, dense CH3OH component. The spectra extracted from a
12″ beam centered on these locations are shown in Figure 4.
While there is an unidentified feature at the frequency of the
21,2−11,1 NH2OH transition, if this were truly NH2OH
emission, then the other transitions in the observed window
would be of equal or greater intensity.
We measure the rms to be 1.6 and 2.9 mK in the B1 and B2

spectra. At the derived temperatures, the 20,2−10,1 transitions at
100,748MHz are predicted to be strongest. As both B1 and B2
have densities higher than ncr for this transition (see Table 1),
we again derive an upper limit to the column density assuming
LTE conditions.
Following the same procedure as for the CSO data, we find a

1σ upper limit of NH2OH of �1.4 × 1013 cm−2 for B1
and �1.5 × 1013 cm−2 for B2. This gives upper limits to
the fractional abundances of NH2OH of =N NNH OH H2 2

 ´ -1.4 10 8 and �1.5 × 10−8 for B1 and B2, respectively.
All of our results are summarized in Table 4.

7. DISCUSSION AND CONCLUSIONS

In Section 6, we assumed that NH2OH, if present, would
arise predominantly from the warm, shocked regions B1 or B2,
rather than the molecular outflow. Zheng & Kaiser (2010) show
that NH2OH is thermally liberated from their laboratory
samples between 160–180 K, whereas for realistic interstellar
ices and conditions, temperatures above ∼110 K are likely
sufficient (Collings et al. 2004). Both our non-LTE fits, and the
literature values discussed earlier have shown that temperatures
in the targeted regions are below these thresholds, and thus a
thermal mechanism for the desorption of NH2OH from grain
surfaces in L1157 is unlikely. Thus, non-thermal desorption in
the shocks should be the dominant mechanism for NH2OH
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Figure 2. Non-LTE simulation of CH3OH spectrum from RADEX fit in red, overlaid on CSO observations of the B1 shock in black. The 41,4–
++31,3 transition of A-

CH3OH at 191810.5 MHz was not included as part of the RADEX fit. It is, however, reasonably well reproduced by the fit of the higher-frequency lines, adding
additional evidence for the robustness of the fit.

6

The Astrophysical Journal, 812:76 (9pp), 2015 October 10 McGuire et al.



Figure 3. Non-LTE simulation of CH3OH spectrum from RADEX fit shown in red, overlaid on CSO observations of the B2 shock in black.
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liberation, and any NH2OH emission should trace these
shocked regions.

The upper limit column densities established with the
CARMA data are equivalent to those established by Pulliam
et al. (2012) of(0.9–8)´ 1013 cm−2. The limits established by
Pulliam et al. (2012), however, are beam-averaged column
densities, whereas the CARMA measurements presented here
provide a more well-constrained source size, and thus a more
robust upper limit. Nevertheless, the upper limits to relative
abundance found here are significantly higher than those
determined by Pulliam et al. (2012) of ∼10−10 due to the low
H2 column in the region. These low columns are common in
other chemically-complex shocked regions as well: the host of
Galactic Center clouds studied by Requena-Torres et al. (2006;
NH2 = (2–68)´ 1021 cm−2) and other shocked outflows like
BHR 71 (NH2 = (3–11)´ 1021 cm−2; Garay et al. 1998).

Yet, these regions likely represent the best-case scenario for
a gas-phase detection of NH2OH. Such a detection is critical to
accurately constrain the application of laboratory results, which
show that NH2OH is a significant player in grain-surface
nitrogen chemistry to chemical models. The deep search
presented here stretched the capabilities of the CSO and
CARMA to the limit; searches deep enough to be sensitive to
the relative abundances predicted by laboratory work and
modeling are simply time-prohibitive on these types of
instruments. The Garrod (2013) model, without the addition
of the H + HNO HNOH pathway, predicts peak condensed-
phase NH2OH abundances of ∼(5–10) × 10−9, which, if

liberated en masse in a shock, is a detectable population, but
likely only with the sensitivity and spatial resolution of ALMA.
The upper limits established here, however, are several orders
of magnitude lower than both the condensed-phase and gas-
phase populations predicted by the augmented model which
includes this hydrogenation pathway. Thus, our results
demonstrate that further efforts are needed both in modeling
and in the laboratory, to identify and fully constrain both the
formation and the destruction pathways for NH2OH.
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Figure 4. Spectra toward L1157-B1 (bottom) and B2 (top) extracted from 12″ beams centered on the peaks of the shocked CH3OH emission and smoothed to a
velocity resolution of ∼1.4 km s−1. Red lines indicate the frequencies of NH2OH transitions in this frequency region. A U line is present toward the B1 shock at the
frequency of the 21,2–11,1 NH2OH transition.

Table 4
Derived Upper Limits to NH2OH Column Density and Relative Abundance in L1157-B1 and L1157-B2 from the CSO and CARMA Data

CSO λ = 1 mm CARMA λ = 3 mm

B1 B2 B1 B2

NNH OH2 (cm−2) �1.4 × 1014 �1.0 × 1014 �1.4 × 1013 �1.5 × 1013

N NNH OH H2 2 �1.4 × 10−7 �1.0 × 10−7 �1.4 × 10−8 �1.5 × 10−8
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APPENDIX
ERROR ANALYSIS

The uncertainty in the observations is given as Equation (1),
modified from Equation (A1) in Crockett et al. (2014):

s s s s s= + + + . 1tot rms
2

cal
2

pt
2

bf
2 ( )

σrms is the uncertainty due to the rms noise level of the
spectra. This value is consistently ∼0.0058 K across the
CH3OH transitions in B1, and ∼0.0078 K in B2.

σcal is the uncertainty in the absolute flux calibration of the
observations, which is ∼30%.

σpt is the uncertainty in the pointing accuracy, which is taken
to be 2″ based on the average convergence of pointing
observations throughout the observing period.

σbf is the uncertainty in the beam-filling factor. The size of
the telescope beam varies by ∼4″ across the band, is well
described, and is calculated independently at each transition
frequency, and thus we assume no contribution to σbf from the
telescope beam. However, the sizes of the two source
components are not a varied parameter, and are only modestly
well-described by our CARMA observations. Furthermore, in
the case of B1, the shock is positioned off-center of the beam,
making the emission more sensitive to fall-off effects that are
not accounted for explicitly in the calculations. We therefore
assume a factor of two uncertainty in source size to take both
issues into consideration, which is reflected in σbf.

These result in net uncertainties of ∼32% in the absolute
intensity of the observed transitions, with the largest contribu-
tion coming from the absolute flux calibration. χ2 values
outside of the extremes represented by these uncertainties more
than double those of the best-fit parameters, and so we take
∼32% to be a reasonable estimate of the overall uncertainty in
n ,H2

N ,CH OH3 and Tkin.
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