HII Region Metallicity Distribution in the Milky Way Disk Dana Balser (NRAO) Loren Anderson (WVU), Tom Bania (BU), & Trey Wenger (UVa)

Photo: Harry Morton

Key Capabilities of the GBT

- Receivers cover 0.1 to 100 GHz
- Excellent point-source sensitivity
- Excellent sensitivity for low surface-brightness mapping
- >85% of total sky covered $\delta \ge -46^{\circ}$
- Location in the National Radio Quiet Zone

Unblocked Optics for High Dynamic Range

science.nrao.edu/facilities/gbt

Discoveries with the Green Bank Telescope

The Green Bank Telescope (GBT) is used by the scientific community for an extraordinary range of research. This document gives a brief summary of some of the resulting discoveries, with an emphasis on measurements that would be difficult or impossible to make on any other telescope.

PULSARS AND COMPACT OBJECTS	1
DARK ENERGY	2
EVOLUTION OF PHYSICAL CONSTANTS	2
GALAXY FORMATION	2
EVOLUTION OF GALAXY CLUSTERS	3
BLACK HOLES AND	
THE HUBBLE CONSTANT	3

GROWTH AND EVOLUTION	
OF GALAXIES	4
STAR FORMATION	4
SOLAR SYSTEM STUDIES	5
INTERSTELLAR ORGANIC CHEMISTRY	5
EXTREME ANGULAR RESOLUTION	6
WHO USES THE GREEN BANK TELESCOPE	6

Using Pulsars to Detect Gravitational Radiation

Water Masers in AGN

Mass of the Black Hole Hubble Constant (Ho)

H2O Masers in Nuclear Accretion Disks

Discovered by the GBT Monitored by the GBT Imaged by the VLBA+GBT

HII Region Metallicity Distribution in the Milky Way Disk Dana Balser (NRAO) Loren Anderson (WVU), Tom Bania (BU), & Trey Wenger (UVa)

Photo: Harry Morton

Primordial Nucleosynthesis

Primordial Abundances

- Izotov+ (2007)
- Peimbert+ (2007)
- Olive & Skillman (2004)

Kirkman+ (2003)

Bania, Rood & Balser (2002)

Ryan+ (2000) Boesgaard+. (2005)

Burles+ (2001) Spergel+ (2006)

Stellar Nucleosynthesis

Cat's Eye (NGC 6543) Corradi & Tsvetanov

Galaxy Formation and Evolution

Andromeda (M31)

Martin Pugh

Radial Abundance Gradients

THE ASTROPHYSICAL JOURNAL, 168:327-341, 1971 September 15 © 1971. The University of Chicago All rights reserved. Printed in U.S A.

EVIDENCE FOR COMPOSITION GRADIENTS ACROSS THE DISKS OF SPIRAL GALAXIES

LEONARD SEARLE

Hale Observatories, Carnegie Institution of Washington, California Institute of Technology Received 1971 A pril 7

ABSTRACT

The integrated spectra of H II regions located in the inner spiral arms of Sc galaxies are systematically different from those of H II regions in the outer arms. This is, in part at least, an abundance effect. The N/O ratio (and probably also the abundance ratios O/H and N/H) decreases from the inner to the outer arms.

Abundance Tracers

Open Clusters (Frinchaboy+ 2013)

Cepheids (Andrievsky+ 2004)

Chemodynamical Models

Schonrich & Binney (2009)

HII Region Electron Temperature Radial Gradient

Churchwell & Walmsley (1975)

Electron Temperature Radial Gradient

Balser+ (2011)

HII Region Electron Temperature and Metallicity

$$\frac{T_{L}}{T_{C}} \propto T_{e}^{-1.15}$$

RRL and free-free continuum emission in LTE at 3 cm.

Shaver+ (1983)

O/H Radial Gradient

Balser+ (2011)

HII Region Discovery Survey (HRDS)

Hn α RRLs (H87 α - H93 α)

Free - Free Thermal Continuum (3 cm)

- 343 $^{\circ}$ < 1 < 67 $^{\circ}$; | b | < 1 $^{\circ}$
- 95 % Detection Rate
- 603 Discrete Hn α RRLs; 448 Targets

GBT 100 m

Target	Selection :					
IR Surv	veys : Spitze	er (GLI	MPSE,	MIPSGAL)		
Radio	Continuum	: VLA	(NVSS,	MAGPIS);	VLA/GBT	(VGPS)

Spitzer IR HII Region Candidates

MIPSGAL 24 micron (red) GLIMPSE 8 micron (green) GLIMPSE 3.6 micron (blue)

Anderson+ (2011)

HRDS RRL Detections

Bania+ (2010)

Galactocentric Radius Distribution

Bania+ (2010)

Kinematic Distance Ambiguity

Roman-Duval+ (2009)

HRDS: Distances

HRDS Distances

Anderson+ (2012)

HRDS: Face-On Map

Anderson+ (2012)

HII Region Sample

Quireza+ (2006); Balser+ (2011)

Electron Temperature Radial Gradient

Electron Temperature Azimuthal Structure

O/H Radial Gradient

Summary

- HRDS Probes Metallicity Across the Galaxy
- Azimuthal Structure
- O/H radial gradients: -0.03 to -0.08 dex/kpc

Future

- Expand HRDS (WISE)
- Expand Te Measurements (GBT/VLA)
- Explore O/H Te Relationship
 - Modern Optical/Radio
 - IR data (Herschel/SOFIA)
 - Models (Cloudy)

WISE HII Region Catalog Distribution

Questions

GBT/140 Foot Cross Calibration

Balser+ (2011)

Open Cluster Data

O/H Radial Gradient - GBT

Balser+ (2011)

Milky Way Spiral Arms

Robert Hurt