VLBA Pipeline: Outline of Data Reduction Heuristics

Gareth Hunt, Bill Cotton, & Jared Crossley September 28, 2012

1 Introduction

The VLBA Pipeline was designed to take uncalibrated VLBA visibility data directly from the NRAO archive and to create a file set for reingestion into the archive or for direct use by end users. This file set contains reference images with associated diagnostic plots, reports, scripts, and log files, plus calibrated visibility data with associated tables. The scripts can be used to set non-default values to processing parameters and used to repeat part or all of the processing if the default processing is inadequate.

1.1 Scope

The scope of the present version of the pipeline is:

• VLBA data only

It may work with the inclusion of other telescopes if all of the VLBA calibration tables are available.

• 1-15 GHz

The pipeline has been used on continuum data sets with frequencies as high as 43 GHz with robust results.

- Calibrated fluxes Calibration uses standard external calibration and does not include coherence losses.
- Continuum imaging

Spectral line data sets can have the continuum calibration done but no spectral cubes are made. Corrections based on the pulsed–cal system may need to be turned off if this system was not used.

- Imaging including self-calibration Multi-resolution imaging with self calibration is done.
- No polarization No polarization calibration/imaging is currently implemented.

1.2 Software

The VLBA pipeline is:

- Written in python, and
- Uses Obit and AIPS tasks to do the data processing, and
- Uses AIPS data structures for intermediate data, and
- Writes FITS images and (AIPS FITAB format) calibrated datasets.

The pipeline scripts are publically available for checkout from a Subversion (SVN) repository (https://svn.cv.nrao.edu/svn/VLBApipeline).

AIPS (http://www.aips.nrao.edu/index.shtml) and

Obit (http://www.cv.nrao.edu/ bcotton/Obit.html)

are installed on all NRAO Linux computers and available for installation via download to non-NRAO computers.

1.3 Prototype Comparison

The Mojave project was selected as an initial set of observations. This comprises more than 150 datasets, each roughly 24 hours in duration, observing sources to track morphological changes over time. The observations are snapshots mostly at 2cm (Ku-band) with some 3cm (X-band) observations.

This extended project has the advantage that the data have already been calibrated and imaged by experts, and that the resultant images are publicly available for direct comparison with the images produced by the pipeline.

The FITS images of the Mojave project are available at

http://www.nrao.edu/2cmsurvey/.

For consistency between epochs, the Mojave project necessarily has limitations on the data that they fully reduce. The VLBA pipeline has no such limitations, and about 3500 individual images were produced from data taken between August 2003 and December 2011. These images typically had dynamic ranges (peak:rms) of 25-35dB. Roughly 3200 images were available for direct comparison. The comparison was excellent. On average, the integrated fluxes for the pipeline were just over 5% lower than the images in the Mojave catalog, as predicted.

2 The Process

The pipeline processing uses the following processes. Many of the default processing parameters are frequency dependent and may be overridden and the various steps may be turned on or off.

The following gives an overview of the processing. Details are documented in the main pipeline processing script, VLBAContPipe.py, and in the routines called in VLBACals.py (see python online documentation). The processing is driven by a parameter script which is initially automatically generated but may be modified for detailed control of the processing; parameters are described in the Appendix. These are described in more detail in the VLBA Pipeline User Manual.

1. Data retrieved from the archive

Pre-DifX data may be either multiple FITS IDI format files or a single AIPS UVFITS data file. Data from the DifX correlator are in a single FITS IDI format file.

- 2. Data converted to AIPS format Multiple FITS IDI format files can be concatenated.
- 3. "Flag"

Data at low elevations and at low fringe rates are flagged using AIPS/UVFLG.

4. Initial data filtering

The data are edited with a running median window (Obit/MednFlag) to flag deviant data such as when an antenna is late on source.

- 5. Standard "external" calibration
 - (a) 1/2 bit sampling correction Uses AIPS task ACCOR.
 - (b) Parallactic angle correction Phases are corrected for the effects of parallactic angle. Uses AIPS task CLCOR.
 - (c) Ionospheric correction (TEC) Relevant ionospheric models are downloaded from the Web and applied using AIPS/TECOR to correct for the Total Electron Content (TEC) given by the model.
 - (d) Earth Orientation Parameters (EOP) The most recent IERS earth orientation parameters (UT1-UTC,

position of pole) are downloaded from the Web and used by AIPS/CLCOR to correct the VLBA correlator model with the "final" values.

- (e) Tsys/atmosphere/gain correction The amplitudes are converted to Jy using measured system temperatures, standard gain curves and atmospheric opacity corrections estimated from the system temperatures. Uses AIPS task APCAL. These gains are smoothed before application to the data.
- (f) Calibrator selection

"Calibrator" sources are then determined by doing a fringe fit on all sources to determine which ones reliably give solid detections. The reference antenna is picked on the basis of strong source detections. The best calibration scan is then selected on the basis of the fringe fit signal-to-noise estimates. This scan is the one involving the largest number of antennas and with the highest average SNR. Obit task Calib is used for the fringe fitting.

(g) Pulse calibration

The pulse cal signals are used to align the phases and delays of the various parts of the electronics. Since these are based on phase measurements from discrete tones, the delays are ambiguous. This ambiguity is resolved using fringe fit results for the "best" calibrator scan. Obit tasks PCCor + CLCal are used for this.

(h) "Manual" phase calibration

There are generally residuals delay and phase errors after correction by the pulse calibration; these are corrected using delays and phases determined for the "best" calibrator scan and applied to all data. Obit tasks Calib + CLCal are used for this

- 6. Calibration from visibility data.
 - (a) Initial calibrator self-calibration

All sources deemed to be calibrators are self calibrated to provide initial images for further calibration. Phase calibration is applied and amplitude as well if the peak in the image exceeds a frequency dependent minimum value. Imaging uses Obit task SCMap.

(b) Delay calibration

Group delay fits are made using a fringe fit on the calibrator sources using the source models derived in the previous step. Obit tasks Calib + CLCal are used for the fringe fitting + correction. (c) Bandpass correction

A bandpass correction for the amplitudes and phases in each channel is determined from the best calibrator scan and the model derived for that calibrator from the cross–correlation data. No spectral index correction is included. Uses Obit task BPass.

(d) Calibrator phase calibration

Phase corrections on a short time scale are determined for the calibrator sources using the source models for each. This phase correction is then applied to the data (needed in the next step). Obit tasks Calib + CLCal are used.

(e) Calibrator amplitude calibration

Longer time amplitude solutions are determined for the calibrator sources. In able to prevent poor weather or other conditions at a small number of antennas from skewing the amplitude scale, a subset of the antennas with the most stable set of fitted gains are used to stabilize the flux density scale. The average gain for these antennas is divided into all gain solutions. The strong enough calibrator sources have the solutions determined for them applied in the calibration table. Other sources use a smoothed version of the amplitude calibration solutions.

(f) Calibrate and average data.

Calibration is applied and the data are averaged in frequency and possibly time. Subsequent steps use the averaged data. Uses Obit task Splat.

(g) Self calibration of all sources

An initial self calibration to get models of all sources is performed. Phase self–cal is always used and also amplitude self–cal if the peak in the image is above a given threshold. Imaging uses Obit task SCMap.

(h) Data clipping

Data with amplitudes significantly in excess of the sum of the CLEAN components for each source are flagged.

- (i) Phase calibration of all sources The source models are used to determine the phase corrections for all sources and these are applied to the cumulative calibration table. Obit tasks Calib + CLCal are used.
- 7. Imaging and production of results.

(a) Imaging

Each source for which previous calibration was successful is then imaged. This final imaging may use phase and possibly amplitude self-calibration and the imaging uses multiple resolutions(2) to help recover extended emission. Obit task Imager is used for the imaging.

(b) Saving images

Final and calibration images are written to FITS files.

(c) Saving visibility data

The averaged and calibrated uv data and the tables from the initial data are written to AIPS FITAB format FITS files.

(d) Reports

Statistics of the images are determined and an HTML page constructed to simplify viewing the results. An XML file manifest is generated for re-ingestion into the archive.

(e) Cleanup

All AIPS data files are deleted.

3 The Products

- Calibrated (u,v) dataset with calibration and flagging tables in AIPS FITAB format Tables from initial data and averaged visibilities per input dataset.
- FITS Images one per source observed plus calibration images.
- Diagnostic plots several per image.
- Reports and logs created during the process
- Meta-data for a VOTable to describe the products

The file set comprising all files and the meta-data are stored in a single directory. For approved pipeline use, this directory is stored on the lustre file system in NRAO Socorro. From there it is ingested directly into the NRAO archive.

Sources that did not image acceptably are added to the failTargets list. This is referenced in the HTML Report.

A General Parameters

This section lists the default global parameters used in the VLBA Pipeline scripts. They are only explained briefly, but experienced users should have no difficulty recognizing their use and functionality. It is clearly possible to re-run or re-start the pipeline using different values than the defaults.

Several parameters are actually placeholders for derived intermediate products: failTarg, contCalModel, targetModel; although, in principle, contCalModel could be user-supplied. These are initialized as specified here at the beginning of the pipeline process but may be overridden in the parameter script.

Quantization corr	rection			
doQuantCor	True	Do quantization correction		
QuantSmo	0.5	Smoothing time (hr) for quantization corrections		
QuantFlag	0.0	If >0 , flag solutions $<$ QuantFlag		
		(use 0.9 for 1 bit, 0.8 for 2 bit)		
Parallactic angle	correcti	on		
doPACor	True	Make parallactic angle correction		
Total Electron Co	ontent (TEC) correction		
doTECor	True	Make TEC correction		
Earth Orientation	Earth Orientation Parameters (EOP) correction			
doEOPCor	True	Make EOP correction		
Opacity/Tsys correction				
doOpacCor	True	Make Opacity/Tsys/gain correction?		
OpacSmoo	0.25	Smoothing time (hr) for opacity corrections		
Apply phase cal o	correctio	ons?		
doPCcor	True	Apply PC table?		
doPCPlot	True	Plot results?		
"Manual" phase of	cal - eve	n to tweak up PCals		
doManPCal	True	Determine and apply manual phase cals?		
manPCsolInt	None	Manual phase cal solution interval (min)		
manPCSmoo	None	Manual phase cal smoothing time (hr)		
doManPCalPlot	True	Plot the phase and delays from manual phase cal		
Special editing list				
doEditList	False	Edit using editList?		
editFG	2	Table to apply edit list to		
editList	[]	EditList		

Do median flaggin	ng				
doMedn	True	Median editing?			
mednSigma	10.0	Median sigma clipping level			
mednTimeWind	1.0	Median window width in min for median flagging			
mednAvgTime	10.0/60.	Median Averaging time in min			
mednAvgFreq	0	Median $1 = $ avg chAvg chans, $2 = $ avg all chan,			
		$3 \Rightarrow avg$ chan and IFs			
mednChAvg	1	Median number of channels to average			
Flag Suspect data	ì				
doFlags	True	UVFLG editing?			
elLim	10.0	Min. allowed source elevation (deg)			
flag0	2.0	if > 1 . flag data near zero fringe rate			
Editing					
doClearTab	True	Clear cal/edit tables			
doGain	True	Clear SN and CL tables >1			
doFlag	True	Clear FG tables > 1			
doBP	True	Clear BP tables?			
doCopyFG	True	Copy FG 1 to FG 2quack			
doQuack	False	Quack data?			
quackBegDrop	0.1	Time to drop from start of each scan in min			
quackEndDrop	0.0	Time to drop from end of each scan in min			
quackReason	"Quack"	Reason string			
Bandpass Calibra	tion?				
doBPCal	True	Determine Bandpass calibration			
bpBChan1	1	Low freq. channel, initial cal			
bpEChan1	0	Highest freq channel, initial cal, $0 => all$			
bpDoCenter1	None	Fraction of channels in 1st, overrides bpBChan1,			
		bpEChan1			
bpBChan2	1	Low freq. channel for BP cal			
bpEChan2	0	Highest freq channel for BP cal,0=>all			
bpChWid2	1	Number of channels in running mean BP soln			
bpdoAuto	False	Use autocorrelations rather than cross?			
bpsolMode	'A&P'	Band pass type 'A&P', 'P', 'P!A'			
bpsolint1	None	BPass phase correction solution in min			
bpsolint2	10.0	BPass bandpass solution in min			
specIndex	0.0	Spectral index of BP Cal			
doSpecPlot	True	Plot the amp. and phase across the spectrum			

Amp/phase calibration parameters				
refAnt	0	Reference antenna		
refAnts	[0]	List of Reference antenna for fringe fitting		
Imaging calibra	Imaging calibrators (contCals) and targets			
doImgCal	True	Image calibrators		
targets	[]	List of target sources		
failTarg	[]	List of failed target (source, process)		
doImgTarget	True	Image targets?		
outCclass	"ICalSC"	Output calibrator image class		
outTclass	"IImgSC"	Output target temporary image class		
outIclass	"IClean"	Output target final image class		
Robust	0.0	Weighting robust parameter		
Niter	500	Max number of clean iterations		
minFlux	0.0	Minimum CLEAN flux density		
minSNR	4.0	Minimum Allowed SNR		
solMode	"DELA"	Delay solution for phase self cal		
avgPol	True	Average poln in self cal?		
avgIF	False	Average IF in self cal?		
maxPSCLoop	6	Max. number of phase self cal loops		
minFluxPSC	0.05	Min flux density peak for phase self cal		
maxASCLoop	1	Max. number of Amp+phase self cal loops		
minFluxASC	0.2	Min flux density peak for amp+phase self cal		
nTaper	1	Number of additional imaging multiresolution tapers		
Tapers	[20.0, 0.0]	List of tapers in pixels		
do3D	False	Make ref. pixel tangent to celest. sphere for each facet		
noNeg	False	F=Allow negative components in self cal model		
Find good calib	oration data			
doFindCal	True	Search for good calibration/reference antenna		
findSolInt	None	Solution interval (min) for Calib		
findTimeInt	None	Maximum timerange, large=>scan		
contCals	None	Name or list of continuum cals		
contCalModel	None	No cal model		
targetModel	None	No target model yet		
If need to search for calibrators				
doFindOK	True	Search for OK cals if contCals not given		
minOKFract	0.5	Minimum fraction of acceptable solutions		
minOKSNR	20.0	Minimum test SNR		
failTarg	[]	list of failed sources		

Delay calibration					
doDelayCal	True	Determine/apply delays from contCals			
delaySmoo	None	Delay smoothing time (hr)			
Amplitude calibra	Amplitude calibration				
doAmpCal	True	Determine/smooth/apply amplitudes			
		from contCals			
doStable	True	Stablize gains with best antennas?			
stableFract	0.667	Fraction of antenna to use in stabilization			
stableBadAnts	[]	List of antennas to exclude from stabilization			
stableGoodAnts"	[]	List of antennas to always include in stabilization			
Apply calibration	and average	?			
doCalAvg	True	calibrate and average cont. calibrator data			
avgClass	"UVAvg"	AIPS class of calibrated/averaged uv data			
CalAvgTime	None	Time for averaging calibrated uv data (min)			
CABIF	1	First IF to copy			
CAEIF	0	Highest IF to copy			
CABChan	1	First Channel to copy			
CAEChan	0	Highest Channel to copy			
chAvg	10000000	Average all channels			
avgFreq	1	Average all channels			
Phase calibration	of all targets	s in averaged calibrated data			
doPhaseCal	True	Phase calibrate contCals data with self-cal?			
doPhaseCal2	True	Phase target data with self-cal?			
Instrumental polarization cal?					
doInstPol	False	determination instrumental polarization			
		from instPolCal			
instPolCal	None	Defaults to contCals			
Right-Left phase (EVPA) calibration					
doRLCal	False	Set RL phases from RLCal - also needs RLCal			
RLCal	None	RL Calibrator source name, if given, a list of triplets,			
		(name, R-L phase (deg@1GHz), RM (rad/m^2))			

Clip excessive visi	bilities				
doClipFlag	True	Clip (flag) visibilities above sum of CCs?			
clipFactor	1.25	Factor above sum of CCs to clip			
clipTime	0.25	Time in min for which the data is to be averaged			
		before clipping			
Final Image/Clear	n				
doImgFullTarget	True	Final Image/Clean/selfcal			
Stokes	"I"	Stokes to image			
doKntrPlots	True	Contour plots			
Final					
outDisk	0	FITS disk number for output $(0=cwd)$			
doSaveUV	True	Save uv data			
doSaveImg	True	Save images			
doSaveTab	True	Save Tables			
doCleanup	True	Destroy AIPS files			
copyDestDir	ډ ,	Destination directory for copying output files			
		empty string -> do not copy			
Diagnostics					
doSNPlot	True	Plot SN tables etc			
doDiagPlots	True	Plot single source diagnostics			
prtLv	2	Amount of task print diagnostics			
doMetadata	True	Save source and project metadata			
doHTML	True	Output HTML report			

B Band-dependent Parameters

This section lists the default band-dependent parameters used in the VLBA Pipeline scripts. They are only explained briefly, but experienced users should have no difficulty recognizing their use and functionality. It is clearly possible to re-run or re-start the pipeline using different values than the defaults.

Note that the VLBA has two receiver bands below 1GHz (90cm and 50cm). The band-dependent parameters are the same for both bands. Note also that 9mm (Ka) is included for completeness in the software, but there is no receiver.

Parameter	Description
manPCsolInt	Manual phase cal solution interval (min)
manPCSmoo	Manual phase cal smoothing time (hr)
delaySmoo	Delay smoothing time (hr)
bpsolint1	BPass phase correction solution in min
FOV	Field of view radius in deg.
solPInt	phase self cal solution interval (min)
solAInt	amp+phase self cal solution interval (min)
findSolInt	Solution interval (min) for Calib
findTimeInt	Maximum timerange, large=>scan
CalAvgTime	Time for averaging calibrated uv data (min)

Parameter	<1GHz (P)	$20 \mathrm{cm} (\mathrm{L})$	$13 \mathrm{cm}(\mathrm{S})$	$6 \mathrm{cm} (\mathrm{C})$	$3 \mathrm{cm}(\mathbf{X})$
manPCsolInt	0.25	0.5	0.5	0.5	0.5
$\operatorname{manPCSmoo}$	10.0	10.0	10.0	10.0	10.0
delaySmoo	0.5	0.5	0.5	0.5	0.5
bpsolint1	10/60	15/60	10/60	10/60	10/60
FOV	0.4/3600	0.4/3600	0.2/3600	0.2/3600	0.1/3600
solPInt	0.10	0.25	0.25	0.25	0.25
solAInt	3.0	3.0	3.0	3.0	3.0
findSolInt	0.1	0.25	0.25	0.5	0.5
findTimeInt	10.0	10.0	10.0	10.0	10.0
CalAvgTime	10/60	10/60	10/60	10/60	10/60

Parameter	2cm (Ku)	1cm (K)	9mm (Ka)	$7 \mathrm{mm} (\mathrm{Q})$	3mm (W)
manPCsolInt	0.5	0.2	0.2	0.1	0.1
manPCSmoo	10.0	10.0	10.0	10.0	10.0
delaySmoo	0.5	0.5	0.5	0.5	0.5
bpsolint1	10/60	10/60	10/60	5/60	5/60
FOV	0.05/3600	0.05/3600	0.04/3600	0.04/3600	0.02/3600
solPInt	0.25	0.25	0.25	0.1	0.1
solAInt	3.0	3.0	3.0	3.0	3.0
findSolInt	0.5	0.3	0.2	0.1	0.1
findTimeInt	10.0	10.0	10.0	10.0	10.0
CalAvgTime	10/60	5/60	5/60	5/60	4/60