
Memorandum

File: \\cvfiler\jeffland\eagle\Personnel\SummerStudents\2003\Grichener\FastPwrMtr.doc Page 1 of 4
Printed: 2003-06-04 16:18:11

To: Alex Grichener

cc: A. R. Kerr
John Webber
John Hibbard
S.-K. Pan
Dan Koller

From: John Effland

Date: 4 June 2003

Subject: Development of a System to Measure Noise Powers with a Chopper Wheel and Fast Power Meter
Measurements

Purpose

The existing SIS mixer noise measurement system uses an NRAO-designed square law detector to measure noise
powers when the receiver input is alternately connected using a chopper wheel to a hot and cold load. The chopper
wheel rotates at 12 revolutions per second, and because there are two hot/cold load positions per rotation, the
effective chopping rate is 24 measurements per second. The voltage output from the square law detector is read in
synchronism with the computer by a National Instruments AT-MIO-16DE10 data acquisition board1.

In the existing system, the chopper wheel and square law detector approach provides real-time Y-factors and noise
temperatures to a PC-based chart recorder so the operator can manually optimize the mixer operating point.
During actual receiver noise temperature measurements, a power meter is used to measure the noise power instead
of the square law detector. The measurement system would be simplified if the square law detector and its
complicated triggering mechanism could be replaced by the power meter for all power measurements.

The existing power meter, and HP 436A model, can generate power measurements at a maximum rate of two per
second. This is insufficient for fast data acquisition using the chopper wheel. Consequently, the newer Agilent
E4418 power meter, which can measure power at the rate of 200 measurements per second, will be used as the
measurement instrument.

This document describes a system to use the power meter with the chopper wheel for all receiver noise temperature
measurements. Hardware configuration, top-level software design, and a Statement of Work are included.

Hardware Configuration

Figure 1 shows the connections between the computer, power meter, and chopper wheel. Triggering of the power
meter must occur indirectly, using GPIB commands, because the power meter has no inputs for hardware
triggering. The chopper wheel generates trigger pulses using a trigger board and optical interrupters at

1 �Coax Switch Controller, Refrigerator Controller, and Chopper Wheel Controller Design Document�, Internal NRAO report
from J. Effland dated 2000-09-21 and available at http://www.cv.nrao.edu/~jeffland/SwitchControlHardwareDesign.pdf

NRAO Central Development Laboratory SIS Mixer Measurement System

Printed: 4 June 2003 Page 2

predetermined locations relative to its hot and cold load positions, which are installed on the chopper wheel
assembly. The trigger board is designed so that the first trigger pulse always corresponds to the hot load position
which provides a means for the software to synchronize to the hot and cold load positions of the chopper.

The software must wait for a trigger pulse from the chopper wheel, then send a GPIB command to the power meter
to commence data acquisition. The power meter program will collect samples during most of the time the chopper
wheel is in either the hot and cold load positions. The program pauses data acquisition only during guard times
while the chopper changes states from hot to cold load. The software will return the average absolute power
reading, and not just the relative power difference, for both the hot and cold load positions.

It would be ideal for the power meter, rather than the computer, to return the average of N to minimize traffic on
the GPIB. However, the power meter can�t calculate and return standard error values, and the standard error is
essential for confirming that the data have settled. Consequently, each individual power measurement will be
returned to the computer and the software will calculate the mean and standard error. The software continues
reading power measurements until the standard error is below a predefined threshold (or a predetermined number
of measurements has been made), after which the software returns the average power measurement and the
calculated standard error.

Chopper
Wheel

Agilent E4418
Power Meter

Computer

GPIB
Card

G
PI

B

NI
Analog

Card

(Trigger)

Trigger

Enable

Figure 1: Power Meter Triggering and Control

Software Design

The software will consist of a number of classes designed according to the structure shown in Figure 2. For
clarity, this class diagram shows only a subset of the class members and methods required. The base class, CGPIB,
contains low-level calls to the GPIB card. The class CHP4418 is built on CGPIB and provides an interface for a
specific type of Agilent power meter.

CPwrMtr is a generic power meter class that provides a general interface for other modules requiring power meter
functions. The class CstdDev is included as a member in class CPwrMtr to allow the power meter to repeatedly
take measurements until the standard error, as calculated by CstdDev, is below a specific threshold. The method
Read() returns the average power measurement only after the standard error is below the threshold, or after the
number of measurements exceeds a predefined maximum, as specified by the class member m_lMaxBufferSize.

The top-level class, CNoiseMeas, returns average absolute power levels when the receiver beam is directed towards
the hot and then towards the cold load by synchronizing power meter measurements with the chopper wheel state

NRAO Central Development Laboratory SIS Mixer Measurement System

Printed: 4 June 2003 Page 3

using the class CChopper. The methods GetPhot() and GetPcold() return the average absolute powers in
milliwatts for the hot and cold load states after the standard error is below a specified threshold.

The classes will be coded using Visual Basic .Net (VB.Net) compiler, but they will need to be called from legacy
Visual Basic Version 6 (VB.6) code that exists both in stand-along Visual Basic programs and in Excel macros.
That requires providing a software layer that encloses the .Net code in a COM wrapper so the Visual Basic 6
routines see these new classes as ordinary COM-compatible classes in an Active-X dynamic link library.

Maintaining VB6 compatibility means that many methods require two names for essentially the same function
because VB6 can�t use the exception-based Try…Catch error handling that�s now available to VB.Net. Instead,
calls intended for VB6 routines must test for errors by checking the state of the boolean value returned with the
function. This is accomplished by using two names, such as bRead() and Read(). The method bRead() returns
TRUE if the call was successful while Read() and is intended to be used by VB.Net�s exception-based error
handling construct:

Try

Read(nPowerMean, dStdErr)

Catch ex as Exception

M_sError = “Error in module…” & ex.message
Throw New System.Exception(m_sError)

End Try

Statement of Work

The student should complete following tasks:

1. Port the existing CHP4418 power meter class and associated sub classes to VB.Net and write routines to use
the 200 measurements per second mode of the power meter.

2. Document the software design with UML class, activity, and sequence diagrams.
3. Configure the National Instruments AT-MIO-16DE10 analog card and associated classes to generate an

enable signal and receive the trigger signal from the chopper wheel.
4. Design, document, code, and test the CPwrMtr and CNoiseMeas classes, including robust error handling for

all classes, using the class diagrams shown in Figure 2.
5. Connect the hardware to the mixer measurement system and record noise powers using an actual SIS

mixer.

NRAO Central Development Laboratory SIS Mixer Measurement System

Printed: 4 June 2003 Page 4

CGPIB

CHP4418

CChopper

CPwrMtr

m_iGPIB_ADDRESS
m_sError
sGetError()
bRead()
Read()
bReadFast()
ReadFast()

m_iUnitDesc
m_sError
sGetError()
bRead()
Read()
bWrite()
Write()
bSPoll()
SPoll()

m_sError

sGetError()
bRead()
Read()
bReadOnce()
ReadIOnce()
bSetStdErrThreshold()
SetStdErrThreshold()

m_sError

sGetError()
bInit()
Init()
bSetColdLoad()
SetColdLoad()
bSetHotLoad()
SetHotLoad()
SetEnable()
GetTrigger()

CNoiseMeas

m_sError

sGetError()
bGetPhot()
GetPhot()
bGetPcold()
GetPcold()
bSetStdErrThreshold()
SetStdErrThreshold()

CStdDev

m_sError
m_lMaxBufferSize
m_lMinBufferSize

sGetError()
bInit()
Init()
bCompareStdError()
bGetStdDev()
bGetStdErr()
GetMean()

Figure 2: Class Diagram for Chopper Synchronized Noise Measurement Class

